Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 305
Filter
1.
Environ Geochem Health ; 46(11): 433, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316220

ABSTRACT

Nitrosamines and semi-volatile organic compounds (SVOCs) are carcinogenic contaminants in water and biological matrices. Conventional analytical methods often struggle to detect trace concentrations due to poor extraction efficacies. This study presents a novel, low-cost, in-syringe-assisted fast extraction cum cleanup technique coupled with GC-FID for monitoring four nitrosamines and two SVOCs in drinking water and human urine samples to measure the contamination and exposure levels. This extraction protocol combines a novel green in-syringe liquid-liquid extraction step using dimethyl carbonate as the green extraction solvent, coupled with a semi-automated solid-phase extraction cleanup process. Then, the final extractant is analyzed using gas chromatography-flame ionization detection (GC-FID) for monitoring. The method demonstrated excellent linearity (R2 > 0.998) between 1.5 and 500 ng mL⁻1 for all six target compounds. Detection limits ranged from 1.0 to 2.0 ng mL⁻1. Extraction recoveries were between 87 and 105% for both urine samples and water samples. Intra-day and inter-day precision were below 9% RSD. The blue applicability grade index evaluation scored 70.0, indicating good practical applicability. The developed analytical protocol offers a sensitive, accurate, low-cost, rapid, and environmentally friendly method for simultaneously quantifying multiple nitrosamines and SVOCs in environmental and human samples. Its performance characteristics and sustainability metrics suggest the potential for broad application in monitoring and exposure studies.


Subject(s)
Nitrosamines , Volatile Organic Compounds , Water Pollutants, Chemical , Humans , Nitrosamines/urine , Volatile Organic Compounds/urine , Volatile Organic Compounds/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/urine , Chromatography, Gas/methods , Green Chemistry Technology/methods , Solid Phase Extraction/methods , Drinking Water/chemistry , Limit of Detection , Environmental Monitoring/methods , Liquid-Liquid Extraction/methods
2.
Anal Chim Acta ; 1320: 343020, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39142772

ABSTRACT

BACKGROUND: An increasing number of ß2-adrenergic agonists are illicitly used for growth promoting and lean meat increasing in animal husbandry in recent years, but the development of analytical methods has lagged behind these emerging drugs. RESULTS: Here, we designed and developed an ultrasound probe enhanced enzymatic hydrolysis reactor for quick separation and simultaneously quantification of 22 ß2-adrenergic agonists in animal urine and livestock wastewater. Owing to the enhancement of the conventional enzymatic digestion through the ultrasound acoustic probe power, only 2 min was required for the comprehensively separation of ß2-adrenergic agonists from the sample matrices, making it a much more desirable alternative tool for high-throughput investigation. The swine, bovine and sheep urines (n = 287), and livestock wastewater (n = 15) samples, collected from both the north and south China, were examined to demonstrate the feasibility and capability of the proposed approach. Six kinds of ß2-adrenergic agonists (clenbuterol, salbutamol, ractopamine, terbutaline, clorprenaline and cimaterol) were found in animal urines, with concentrations ranged between 0.056 µg/L (terbutaline) and 5.79 µg/L (clenbuterol). Up to nine ß2-adrenergic agonists were detected in wastewater samples, of which four were found in swine farms and nine in cattle/sheep farms, with concentration levels from 0.069 µg/L (tulobuterol) to 2470 µg/L (clenbuterol). SIGNIFICANCE: Interestingly, since ß2-adrenergic agonists are usually considered to be abused mainly in the pig farms, our data indicate that both the detection frequencies and concentrations of these agonists in the ruminant farms were higher than the pig farms. Furthermore, the findings of this work indicated that there is a widespread occurrence of ß2-adrenergic agonists in livestock farms, especially for clenbuterol and salbutamol, which may pose both food safety and potential ecological risks. We recommend that stricter controls should be adopted to prevent the illegally usage of these ß2-adrenergic agonists in agricultural animals, especially ruminants, and they should also be removed before discharging to the environment.


Subject(s)
Wastewater , Animals , Wastewater/chemistry , Wastewater/analysis , Hydrolysis , Swine , Cattle , Livestock , Adrenergic beta-2 Receptor Agonists/urine , Sheep , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/urine , Water Pollutants, Chemical/metabolism
3.
Mikrochim Acta ; 191(7): 374, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38847878

ABSTRACT

The combination of silica nanoparticles with fluorescent molecularly imprinted polymers (Si-FMIPs) prepared by a one-pot sol-gel synthesis method to act as chemical sensors for the selective and sensitive determination of captopril is described. Several analytical parameters were optimized, including reagent ratio, solvent, concentration of Si-FMIP solutions, and contact time. Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and the ninhydrin assay were used for characterization. The selectivity was evaluated against molecules belonging to other drug classes, such as fluoroquinolones, nonacid nonopioids, benzothiadiazine, alpha amino acids, and nitroimidazoles. Under optimized conditions, the Si-FMIP-based sensor exhibited a working range of 1-15 µM, with a limit of detection (LOD) of 0.7 µM, repeatability of 6.4% (n = 10), and suitable recovery values at three concentration levels (98.5% (1.5 µM), 99.9% (3.5 µM), and 99.2% (7.5 µM)) for wastewater samples. The sensor provided a working range of 0.5-15 µM for synthetic urine samples, with an LOD of 0.4 µM and a repeatability of 7.4% (n = 10) and recovery values of 93.7%, 92.9%, and 98.0% for 1.0 µM, 3.5 µM, and 10 µM, respectively. In conclusion, our single-vessel synthesis approach for Si-FMIPs proved to be highly effective for the selective determination of captopril in wastewater and synthetic urine samples.


Subject(s)
Captopril , Limit of Detection , Nanoparticles , Wastewater , Captopril/urine , Captopril/analysis , Captopril/chemistry , Wastewater/analysis , Nanoparticles/chemistry , Molecularly Imprinted Polymers/chemistry , Fluorescent Dyes/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/urine , Silicon Dioxide/chemistry , Molecular Imprinting , Humans
4.
Anal Bioanal Chem ; 416(18): 4057-4070, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38842689

ABSTRACT

A novel ferrofluid prepared from a hydrophobic deep eutectic solvent (DES) and Fe3O4@graphite composite materials was introduced as a green microextraction medium for the separation and enrichment of trace estrogens in real samples. It was found that the ferrofluid greatly improved the capacity and selectivity of target analytes, benefiting from the enrichment of both DES and Fe3O4@graphite composite materials. Using a combination of high-performance liquid chromatography-fluorescence detection (HPLC-FLD) and vortex-assisted liquid-liquid microextraction (VALLME), a new method was established for simultaneous rapid processing and accurate determination of three estrogens (estradiol [E2], estriol [E3], and ethinyl estradiol [EE2]) in environmental water and urine samples. Key parameters affecting the extraction efficiency were optimized using a single-factor approach and response surface methodology. Under optimal conditions, this method yielded a low limit of detection (1.01 ng L-1, 3.03 ng L-1, and 25.0 ng L-1 for EE2, E2, and E3, respectively), wide linear range (3-200,000 ng L-1), high enrichment factors (9.81-47.2), and satisfactory recovery (73.8-129.0%). Compared with traditional analytical techniques, this method avoids the use of volatile toxic organic extraction solvents and cumbersome phase separation operations.


Subject(s)
Estrogens , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Liquid Phase Microextraction , Water Pollutants, Chemical , Estrogens/urine , Estrogens/analysis , Water Pollutants, Chemical/urine , Water Pollutants, Chemical/analysis , Liquid Phase Microextraction/methods , Chromatography, High Pressure Liquid/methods , Deep Eutectic Solvents/chemistry , Humans
5.
Angew Chem Int Ed Engl ; 63(25): e202401729, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38657037

ABSTRACT

We developed a simple, paper-based device that enables sensitive detection by mass spectrometry (MS) without solid phase extraction or other sample preparation. Using glass fiber filter papers within a 3D printed holder, the device employs electrokinetic manipulations to stack, separate, and desalt charged molecules on paper prior to spray into the MS. Due to counter-balanced electroosmotic flow and electrophoresis, charged analytes stack on the paper and desalting occurs in minutes. One end of the paper strip was cut into a sharp point and positioned near the inlet of a MS. The stacked analyte bands move toward the paper tip with the EOF where they are ionized by paper spray. The device was applied to analysis of PFAS in tap water with sub part-per-trillion detection limits in less than ten minutes with no sample pretreatment. Analysis of opioids in urine also occurs in minutes. The crucial parameters to enable stacking, separation, and MS ionization of both positively and negatively charged analytes were determined and optimized. Experimental and computational modeling studies confirm the electrokinetic stacking and analyte transport mechanisms. On-paper separations were carried out by stacking analyte bands at different locations depending on their electrophoretic mobility, achieving baseline separation in some cases.


Subject(s)
Analgesics, Opioid , Mass Spectrometry , Paper , Mass Spectrometry/methods , Analgesics, Opioid/urine , Analgesics, Opioid/analysis , Humans , Water/chemistry , Fluorocarbons/chemistry , Fluorocarbons/analysis , Fluorocarbons/urine , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/urine
6.
Sci Total Environ ; 927: 171870, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38531444

ABSTRACT

In wastewater-based epidemiology (WBE), the selection of appropriate biomarkers presents a significant challenge. Recently, sulfated bisphenols have garnered attention as potential WBE biomarkers due to their increased stability in wastewater compared to glucuronide conjugates. This study aims to comprehensively assess the feasibility of employing sulfated BPA and BPS as WBE biomarkers by analyzing both WBE and human biomonitoring data. To conduct this research, wastewater samples were collected from six domestic wastewater treatment plants in Guangzhou, China, and urinary concentration of BPA and BPS were obtained from peer-reviewed literature. The results revealed that mean urinary concentrations of BPA and BPS, calculated using Monte Carlo simulations, significantly exceeded those reported in human biomonitoring studies. Furthermore, the per capita mass load ratio of sulfated BPA and BPS in human urine to the mass load in wastewater was found to be below 10 %. This outcome suggests that the excretion of BPA-S and BPS-S in urine does not make a substantial contribution to wastewater, hinting at the existence of other notable sources. Consequently, our study concludes that sulfated BPA-S and BPS-S are not suitable candidates as WBE biomarkers. This work provides a referenceable analytical framework for evaluating the feasibility of WBE biomarkers and emphasizes the necessity for caution when utilizing WBE to assess human exposure to chemicals.


Subject(s)
Benzhydryl Compounds , Biomarkers , Phenols , Sulfones , Wastewater , Water Pollutants, Chemical , Humans , Phenols/urine , Wastewater/chemistry , Benzhydryl Compounds/urine , China , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/urine , Biomarkers/urine , Feasibility Studies , Sulfates/urine , Sulfates/analysis , Environmental Monitoring/methods , Wastewater-Based Epidemiological Monitoring
7.
Acta Clin Croat ; 62(Suppl2): 95-103, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38966031

ABSTRACT

Increased values of arsenic in potable water in eastern Croatia has been a matter of scientific interest for the past two decades due to numerous health effects, including carcinogenic ones. This study investigated whether prolonged exposure to increased arsenic from water could be detectable through increased arsenic in urine, and whether it influenced the incidence of kidney and bladder cancer in Osijek-Baranja County. Inductively coupled plasma mass spectrometry (ICP-MS) was used for analysis of water samples from available water sources (wells, aqueducts). In addition, examinees from Osijek, Nasice, Vladislavci, Cepin and Dalj gave their urine samples for analysis. Data on cancer incidence were obtained from the Institute for Public Health Registry and cumulative incidence of kidney and bladder cancer was calculated for the period between January 1, 2000 and December 31, 2018. Elevated arsenic concentration in drinking water was recorded in Vladislavci, Cepin and Osijek area with values above the allowed maximum according to the EU standards (10 µg L-1) and as a result, arsenic levels in urine of the inhabitants were also elevated. Cumulative incidence for bladder cancer showed correlation between increased arsenic in water and urine in the areas affected by increased arsenic in water. Epidemiologic data suggest a conclusion that elevated arsenic could be considered at least as a cofounding factor for urinary tract cancer.


Subject(s)
Arsenic , Drinking Water , Urinary Bladder Neoplasms , Humans , Croatia/epidemiology , Arsenic/urine , Arsenic/analysis , Drinking Water/chemistry , Drinking Water/analysis , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/urine , Incidence , Male , Female , Kidney Neoplasms/epidemiology , Kidney Neoplasms/urine , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/urine , Middle Aged
8.
J Chromatogr A ; 1648: 462215, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34000593

ABSTRACT

A new analyte separation and preconcentration method for the trace determination of antidepressant drugs, Fluoxetine (FLU) and Citalopram (CIT) in urine and wastewaters, was developed based on HPLC-DAD analysis after magnetic solid phase extraction (MSPE). In the proposed method, FLU and CIT were retained on the newly synthetized magnetic sorbent (Fe3O4@PPy-GO) in the presence of buffer (pH 10.0) and then were desorbed into a lower volume of acetonitrile prior to the chromatographic determinations. Before HPLC analysis, all samples were filtered through a 0.45 µm PTFE filter. Experimental parameters such as interaction time, desorption solvent and volume, and pH were studied and optimized in order to establish the detection limit, linearity, enrichment factor and other analytical figures of merit under optimum operation conditions. In the developed method, FLU and CIT were analyzed by diode array detector at the corresponding maximum wavelengths of 227 and 238 nm, respectively, by using an isocratic elution of 60% pH 3.0 buffer, 30% acetonitrile, and 10% methanol. By using the optimum conditions, limit of detections for FLU and CIT were 1.58 and 1.43 ng mL-1, respectively, while the limit of quantifications was 4.82 and 4.71 ng mL-1, respectively. Relative standard deviations (RSD%) for triplicate analyses of model solutions containing 100 ng mL-1 target molecules were found to be less than 5.0 %. Finally, the method was successfully applied to urine (both simulated and real healthy human) and wastewater samples, and quantitative results were obtained in recovery experiments.


Subject(s)
Antidepressive Agents/analysis , Chromatography, Liquid/methods , Citalopram/analysis , Fluoxetine/analysis , Spectrophotometry, Ultraviolet/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Antidepressive Agents/urine , Citalopram/urine , Fluoxetine/urine , Humans , Limit of Detection , Solid Phase Extraction/methods , Solvents/chemistry , Water Pollutants, Chemical/urine
9.
Ecotoxicol Environ Saf ; 219: 112319, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33993090

ABSTRACT

Herein, we synthesized a kind of magnetic covalent organic framework nanohybrids (NiFe2O4@COF), and integrated it with polydimethyl siloxane and silicone rubber curing agent for solid phase microextraction (SPME) fiber coating. The fiber coating demonstrated a porous and uniform surface with the BET specific surface of 169.7 m2 g-1. As for seven environmental analytes, the NiFe2O4@COF-based SPME fiber coating gave the higher extraction recoveries for triclosan (TCS) and methyltriclosn (MTCS) than those of fenpropathrin, bifenthrin, permethrin, fenvalerate and deltamethrin. Several operational parameters were rigorously optimized, such as extraction temperature, extraction time, thermal desorption time, solution pH and salt effect. Combined with the GC-ECD detection, the newly developed microextraction method supplied the wide linear range of 0.1-1000 µg L-1 with the correlation coefficients of > 0.9995. The limits of detection (LODs) and limits of quantitation (LOQs) reached as low as 1-7 ng L-1 and 3.3-23 ng L-1, respectively. The intra-day and inter-day precisions in six replicates (n = 6 ) were < 3.55% and < 5.06%, respectively, and the fiber-to-fiber reproducibility (n = 3) was < 7.64%. To evaluate its feasibility in real samples, the fortified recoveries for TCS and MTCS, at low (0.2 µg L-1), middle (2.0 µg L-1) and high (20.0 µg L-1) levels, varied between 81.9% and 119.1% in tap, river and barreled waters as well as male, female and children urine samples. Especially, it is worth mentioning that the NiFe2O4@COF-based SPME coating fiber can be recycled for at least 150 times with nearly unchanged extraction efficiency. Moreover, the extraction recoveries by the as-fabricated fiber coating were much higher than those by three commercial fibers (PDMS, PDMS/DVB and PDMS/DVB/CAR). Overall, the NiFe2O4@COF-based SPME is a convenient, sensitive, efficient and "green" pretreatment method, thereby possessing important application prospects in trace monitoring of TCS-like pollutants in complex liquid matrices.


Subject(s)
Triclosan/chemistry , Water Pollutants, Chemical/chemistry , Dimethylpolysiloxanes , Humans , Limit of Detection , Magnetic Phenomena , Metal-Organic Frameworks , Polyvinyls , Reproducibility of Results , Rivers , Solid Phase Microextraction/methods , Temperature , Triclosan/analogs & derivatives , Triclosan/urine , Water , Water Pollutants, Chemical/urine
10.
PLoS One ; 15(10): e0241223, 2020.
Article in English | MEDLINE | ID: mdl-33119651

ABSTRACT

In 2014, in some parts of the water distribution system of the municipality of Pietrasanta (Tuscany, Italy), thallium (Tl) levels above the recommended limits were measured and some restrictions to water usage for drinking and food preparation were imposed. The study aimed to assess Tl exposure and possible health effects by means of a human biomonitoring survey. In the 2014-2016 time frame, 2154 urine and 254 hair samples were taken from different population groups and from a control group. The levels of Tl found in urine and hair were statistically higher in exposed groups than in controls and compared to the reference values for the general population. Concentrations in urine were significantly associated with the geographical origin of the sample, the consumption of drinking water and food grown in local gardens. A significant association was found between urine and hair. No positive associations were found between the Tl levels in hair or urine and several self-reported symptoms and health effects, except for sleep disturbance. The study indicates that the concentration of Tl in drinking water can be traced by urine analysis. Urine and hair have proven to be biological matrices that can be effectively used for the evaluation of Tl exposure. To date, the study represents the most extensive human biomonitoring campaign for the evaluation of the Tl exposure available at international level.


Subject(s)
Biological Monitoring/methods , Drinking Water/chemistry , Hair/chemistry , Thallium/urine , Water Pollutants, Chemical/urine , Environmental Exposure/analysis , Humans , Italy , Risk Assessment
11.
Ecotoxicol Environ Saf ; 203: 111031, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32888610

ABSTRACT

Bone mineral density (BMD) changes were reported to be associated with excessive fluoride exposure and abnormal expression of RUNX2. However, whether the alteration of methylation status, a most commonly used marker for the alteration of gene expression in epidemiological investigation, of RUNX2 is associated with low-to-moderate fluoride exposure and BMD changes has not been reported. Our study aims to explore the role of RUNX2 promoter methylation in BMD changes induced by low-to-moderate fluoride exposure. A total of 1124 adults (413 men and 711 women) were recruited from Kaifeng City in 2017. We measured BMD using ultrasound bone densitometer. Concentrations of urinary fluoride (UF) were measured using ion-selective electrode, and the participants were grouped into control group (CG) and excessive fluoride group (EFG) according to the concentration of UF. We extracted DNA from fasting peripheral blood samples and then detected the promoter methylation levels of RUNX2 using quantitative methylation-specific PCR. Relationships between UF concentration, RUNX2 promoter methylation and BMD changes were analyzed using generalized linear model and logistic regression. Results showed in EFG (UF concentration > 1.6 mg/L), BMD was negatively correlated with UF concentration (ß: -0.14; 95%CI: -0.26, -0.01) and RUNX2 promoter methylation (ß: -0.13; 95%CI: -0.22, -0.03) in women. The methylation rate of RUNX2 promoter increased by 2.16% for each 1 mg/L increment in UF concentration of women in EFG (95%CI: 0.37, 3.96). No any significant associations between UF concentration, RUNX2 promoter methylation, and BMD were observed in the individuals in CG. Mediation analysis showed that RUNX2 promoter methylation mediated 18.2% (95% CI: 4.2%, 53.2%) of the association between UF concentration and BMD of women in EFG. In conclusion, excessive fluoride exposure (>1.6 mg/L) is associated with changes of BMD in women, and this association is mediated by RUNX2 promoter methylation.


Subject(s)
Bone Density/drug effects , Core Binding Factor Alpha 1 Subunit/genetics , Environmental Exposure/analysis , Fluorides/toxicity , Water Pollutants, Chemical/toxicity , Absorptiometry, Photon , Adult , Aged , Bone Density/genetics , China , Core Binding Factor Alpha 1 Subunit/metabolism , Cross-Sectional Studies , DNA Methylation/drug effects , Female , Fluorides/urine , Humans , Male , Middle Aged , Promoter Regions, Genetic , Surveys and Questionnaires , Water Pollutants, Chemical/urine
12.
Mikrochim Acta ; 187(6): 330, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32409915

ABSTRACT

Dual-emission carbon dots were synthesized by one-pot hydrothermal pyrolysis of citric acid and polyethyleneimine in the presence of rhodamine B at 160 °C for 5 h. The carbon dots have an average diameter of 2.51 nm with rhodamine moiety on their surface. Two emission bands centered at 447 and 581 nm are exhibited in their fluorescence spectra excited at 360 nm, and the former is sensitive while the latter is insensitive to Hg2+ and pH. Glutathione (GSH) can recover the fluorescence quenched by Hg2+. Therefore, the dual-emission carbon dots were developed as a fluorescent ratiometric probe employing the ratio of the two intensities at 447 and 581 nm (RI447/I581) as the signal for the determinations of pH, Hg2+, and GSH. In the range of 5.0-10.0, a good linear relationship between RI447/I581 and pH was built with a regression equation of RI447/I581 = 11.95-0.56 pH (R2 = 0.998). In the range from 0.0 to 8.0 µM, an excellent linear relationship between RI447/I581 and the concentration of Hg2+ was obtained with a calibration equation of RI447/I581 = 6.2317-0.4458c (R2 = 0.995) and a limit of detection (LOD) of 0.24 µM. In the range from 1.0 to 10.0 µM, a linear equation, RI447/I581 = 1.9133-0.4157c (R2 = 0.995), was calibrated between RI447/I581 and the concentration of glutathione with a LOD of 0.27 µM. The recoveries for the determinations of Hg2+ and GSH in real samples were in the ranges of 94.6 to 103.8% and 94.3 to 104.2%, respectively. Graphical abstract Dual-emission carbon dots achieved by luminescence center modulation within one-pot synthesis for a fluorescent ratiometric probe of pH, Hg2+, and glutathione.


Subject(s)
Fluorescent Dyes/chemistry , Glutathione/analysis , Mercury/analysis , Quantum Dots/chemistry , Carbon/chemistry , Drinking Water/chemistry , Glutathione/blood , Glutathione/urine , Humans , Hydrogen-Ion Concentration , Lakes/chemistry , Limit of Detection , Mercury/blood , Mercury/urine , Rhodamines/chemistry , Spectrometry, Fluorescence , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/blood , Water Pollutants, Chemical/urine
13.
J Hazard Mater ; 392: 122330, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32172069

ABSTRACT

Anticancer drugs have been detected in the aquatic environment, they have a potent mechanism of action and their consumption is expected to drastically increase in the future. Consequently, it is crucial to routinely monitor the occurrence of anticancer drugs and to develop effective treatment options to avoid their release into the environment. Prior to implementing a monitoring program, it is important to define which anticancer drugs are more prone to be found in the surface waters. In this study the consumption of anticancer drugs in the Lisbon region (Portugal), Belgium and Haryana state (India) were used to estimate the concentrations that can be expected in surface waters. Moreover, one important aspect is to define the major entry route of anticancer drugs in the aquatic environment: is it hospital or household effluents? The results disclosed in this study showed that in Belgium and Lisbon, 94 % of the total amount of anticancer drugs were delivered to outpatients, indicating that household effluents are the primary input source of these drugs and thus, upgrading the treatment in the domestic wastewater facilities should be the focus.


Subject(s)
Antineoplastic Agents/analysis , Water Pollutants, Chemical/analysis , Antineoplastic Agents/urine , Drug Utilization , Environmental Monitoring , Feces/chemistry , Fresh Water/analysis , Hospitals , Housing , Humans , India , Portugal , Wastewater , Water Pollutants, Chemical/urine
14.
Environ Geochem Health ; 42(9): 2841-2851, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32034620

ABSTRACT

Water quality improvement is the most efficient way to prevent arsenic exposure. After the cessation of arsenic ingestion, arsenic methylation capacity of the exposed population can change significantly. The factors associated with these changes remain poorly understood. Therefore, arsenic methylation capacity in a study cohort was estimated before and after water quality improvement in the present study. Results indicated that urinary content of the arsenic species in the study cohort significantly decreased after water quality improvement. In addition, the proportions of inorganic arsenic (%iAs) and monomethyl arsenic acid (%MMA) were significantly decreased, while proportions of dimethyl arsenic (%DMA) increased. The primary methylation index (PMI) and secondary methylation index (SMI) increased from 0.85 to 0.92 and 0.82 to 0.84, respectively. Arsenic species urinary content and arsenic methylation index varied slightly between the study cohort after water quality improvement and the control cohort. The rate of increase in PMI was higher than that in SMI. The study group aged 31-50 years had the highest increase in PMI. Logistic regression revealed that %DMA before water quality improvement was negatively associated with the increase in PMI, while %iAs were positively related, and %MMA were positively associated with the increase in SMI. It is concluded that urinary arsenic species content and arsenic methylation capacity increased to the levels of the control cohort after water quality improvement. An increase in primary arsenic methylation capacity may be a burden on the secondary arsenic methylation capacity. The main role of arsenic methylation capacity recovery may be the cessation of arsenic exposure.


Subject(s)
Arsenic/urine , Environmental Exposure/analysis , Water Quality , Adolescent , Adult , Aged , Arsenic/metabolism , Arsenicals/urine , Child , China , Cohort Studies , Drinking Water/analysis , Female , Humans , Logistic Models , Male , Methylation , Middle Aged , Quality Improvement , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/urine , Young Adult
15.
Mikrochim Acta ; 187(2): 145, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31970521

ABSTRACT

The authors describe a novel electrochemical determination method for bisphenol A (BPA) based on the electrosynthesised Cu-BTC (H3BTC: trimesic acid) films. Using H3BTC as the ligand, Cu(NO3)2 as the precursor of copper ions, and triethylamine hydrochloride (Et3NHCl) as the probase source, Cu-BTC films were directly deposited on glassy carbon electrode (GCE) surface via cathodic electrochemical reduction under -1.30 V. Considering the electrocatalytic activity of metal center Cu2+, Cu-BTC films were applied to construct the electrochemical determination platform for BPA. Chronocoulometry and electrochemical impedance spectroscopy were used to study the signal enhancement mechanism. The determination conditions were optimized. As a result, a sensitive electrochemical method was constructed for BPA. The peak currents, best measured at voltage of 0.496 V vs. SCE (KCl saturated calomel reference electrode), increase linearly in the range from 5.0 to 2000 nM. The value of determination limit is 0.72 nM. The proposed method was successfully applied to determine BPA in spiked urine, spiked waste water samples and plastic products. The results were in good agreement with those obtained for the same samples by high-performance liquid chromatography (HPLC). Graphical abstract Schematics for the construction of electrochemical determination for bisphenol A.


Subject(s)
Benzhydryl Compounds/analysis , Metal-Organic Frameworks/chemistry , Phenols/analysis , Tricarboxylic Acids/chemistry , Benzhydryl Compounds/urine , Carbon/chemistry , Copper/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Phenols/urine , Plastics/analysis , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/urine
16.
J Appl Toxicol ; 40(3): 342-351, 2020 03.
Article in English | MEDLINE | ID: mdl-31631368

ABSTRACT

The identification of gene-environment interactions related to breast cancer reveals the biological and molecular mechanisms underlying the disease and allows the distinction of women at high risk from women at lower risk, which could decrease the morbimortality of this neoplasm. The current study evaluated the association between polymorphisms rs1820453 and rs11225161 of the Yes-associated protein (YAP) gene in women with breast cancer exposed to arsenic (As) through drinking water. In total, 182 women were assessed for the frequency of YAP rs1820453 and rs11225161 polymorphisms and As urinary levels. The results demonstrated a positive and significant association between breast cancer and smoking, type of drinking water, and levels of AsIII , AsV and inorganic As (iAs) but not the YAP gene polymorphisms evaluated. In conclusion, our data showed that the source of drinking water and AsV and iAs urinary levels increased the risk for breast cancer, but no interactions between YAP gene polymorphisms and As urinary levels were found.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Arsenicals/adverse effects , Breast Neoplasms/genetics , Drinking Water/adverse effects , Gene-Environment Interaction , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Water Pollutants, Chemical/adverse effects , Adult , Arsenicals/urine , Breast Neoplasms/diagnosis , Breast Neoplasms/ethnology , Cross-Sectional Studies , Female , Genetic Predisposition to Disease , Humans , Mexico , Middle Aged , Phenotype , Risk Assessment , Risk Factors , Smoking/adverse effects , Water Pollutants, Chemical/urine , YAP-Signaling Proteins
17.
Environ Pollut ; 258: 113319, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31882189

ABSTRACT

Thallium (TI) is one of the most toxic heavy metals and priority pollutant metals. The emerging TI environmental pollution worldwide has posed a great threat to human health. However, based on the World Health Organization (WHO), the risk and severity of adverse health effects of TI in the range of 5-500 µg/L are uncertain. Moreover, evidence regarding the adverse impacts of TI on children's health is still insufficient. Herein, we aim to investigate the early adverse effects of TI on children's health and provide references for the WHO to establish stricter safety limits of TI. From 2015 to 2019, urinary TI and many clinical laboratory parameters related to blood routine, hepatic, renal, myocardial, coagulation function and serum electrolyte were measured in six children aged 1-9 years. The urinary TI concentration ranged from 13.4 µg/L to 60.1 µg/L with a mean of 36.1 µg/L and a median of 34.8 µg/L in six children in 2015. Although only four children felt a little poor appetite, several laboratory abnormalities indicated early damage in liver, renal, and myocardial functions in all children in 2015. After treatment and following up for four years, although the children's TI concentration decreased below 5 µg/L, their liver and renal functions did not completely recover, and their myocardial function worsened. Results indicated that impaired liver, renal, and myocardial functions were closely associated with elevated urinary TI concentration in children. Considering the increasing use of TI in high-technology industries and emerging TI environmental-contamination zones worldwide, establishing stricter safety limits of TI and paying more attention to the adverse health effects of TI on children are urgently required. SUMMARY: We found that a relatively low concentration of thallium (13.4 µg/L to 60.1 µg/L) impaired liver, renal, and myocardial function in six children. After treatment and following up these children for four years, although their urinary TI concentration decreased below 5 µg/L, their liver and renal functions did not completely recover, and their myocardial function worsened.


Subject(s)
Environmental Pollutants/urine , Heart/physiopathology , Kidney/physiopathology , Liver/physiopathology , Metals, Heavy/urine , Thallium/adverse effects , Thallium/urine , Water Pollutants, Chemical/urine , Child , Child, Preschool , Environmental Exposure , Female , Humans , Infant , Male , Metals, Heavy/toxicity , Myocardial Infarction , Water Pollutants, Chemical/toxicity
18.
Environ Sci Pollut Res Int ; 27(3): 3247-3256, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31838679

ABSTRACT

This work evaluated human exposure to bisphenol A (BPA) and its analogues based on human urinary excretion data and wastewater-based epidemiology (WBE). The results showed that the world's average human daily intake ranked from high to low is in order of bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), bisphenol P (BPP), bisphenol AP (BPAP), bisphenol B (BPB), bisphenol Z (BPZ), and bisphenol AF (BPAF), and their corresponding human daily intakes are 2.53, 0.68, 0.60, 0.41, 0.36, 0.29, 0.24, and 0.06 µg/p/day, respectively. BPA is clearly the dominant bisphenol for human exposure. However, the results also showed that humans have been widely exposed to BPA analogues as well. Many BPA analogues showed similar estrogenic activities to those of BPA; therefore, the adverse effects of BPA and its analogues on humans should be comprehensively evaluated. The nominal exposure levels obtained based on wastewater-based epidemiology ranked high to low are in order of BPA (513.73 µg/p/day), BPF (10.20 µg/p/day), BPS (5.21 µg/p/day), BPP (1.15 µg/p/day), BPZ (0.66 µg/p/day), BPB (0.61 µg/p/day), BPAF (0.58 µg/p/day), and BPAP (0.35 µg/p/day). The world's human average daily intakes of BPA and its analogues are only 0.5-47.9% of the intakes of their corresponding human nominal exposures. This study suggests that other sources rather human excretions are important origins in municipal wastewater, which indicates that the WBE method based on parent compounds is inappropriate for evaluations of human daily intakes of BPA and its analogues, neither for other industrial compounds that have multiple important sources. Three main important sources of BPA and its analogues in municipal wastewater are likely effluents of industrial wastewater, discharges of hospital wastewater, and landfill leachates. To decrease discharges of BPA and its analogues to the natural environment, any mixing of industrial and hospital wastewater as well as landfill leachates in municipal wastewater is not favorable.


Subject(s)
Benzhydryl Compounds/pharmacology , Estrone/chemistry , Phenols/pharmacology , Wastewater-Based Epidemiological Monitoring , Water Pollutants, Chemical , Benzhydryl Compounds/chemistry , Environmental Pollutants/urine , Humans , Phenols/chemistry , Wastewater , Water Pollutants, Chemical/urine
19.
Environ Sci Pollut Res Int ; 26(36): 36434-36440, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31724128

ABSTRACT

The aim of this study was to examine the effect of the secondary biological treatment plant effluent administration on the kidneys, urinary bladder, and testis of Wistar rats in relation to lead (Pb) and cadmium (Cd) accumulation, since such an effluent is used for irrigation of edible plants. Male Wistar rats, randomly assigned into 5 groups, were treated with domestic sewage effluent (DSE) for 24 months. Cadmium and lead concentrations in the DSE, rats' tissues, and urine were estimated by means of atomic spectroscopy. Lead was rapidly accumulated in high amounts in rats' kidney and to a lesser extent in the testis whereas Cd concentration was raised in all tissues examined. Deposition of Cd and Pd in the kidney of the rats resulted in profound damage over time. The results showed that long-term administration to DSE as drinking water exposes living organisms to urogenital stress related to heavy metal concentration and pH of the effluent.


Subject(s)
Cadmium/toxicity , Drinking Water/chemistry , Lead/toxicity , Urogenital System/drug effects , Water Pollutants, Chemical/toxicity , Water Purification/methods , Animals , Cadmium/urine , Lead/urine , Male , Rats , Rats, Wistar , Sewage/chemistry , Urogenital System/metabolism , Urogenital System/pathology , Water Pollutants, Chemical/urine
20.
Environ Int ; 133(Pt B): 105246, 2019 12.
Article in English | MEDLINE | ID: mdl-31675567

ABSTRACT

Benzophenones (BPs) and other ultra violet (UV) filters (UV-filters) are widely used in sunblock and other personal care products, raising concerns about their adverse health risks to human, especially for children. In the present study, BP-type UV-filters and other four widely used UV-filters were evaluated in the child urinary samples (4-6 years, n = 53), tap water and commercial distilled water in Hong Kong. The results suggested that the target chemicals are ubiquitous in the subject. BP1, BP2, BP3 and BP4 in children urine samples contributed closely to the overall children exposure of UV filters, with detection rates above 58% and geometric means ranging from 44.2 to 76.7 ng/mL. As a contrast, BP3 was the major substance found in the tap water and distilled bottle water, with detection rates of 100% and geometric means of 9.64 and 14.5 ng/L, respectively. There were some significant relationships between urinary UV filters and personal characteristics (BMI values, sex, income level, hand washing frequency, and body location usage), but the health risks associated with UV-filters in Hong Kong children might not be concerning. Only two children applied sun creams in this research, indicating that there were other sources to exposure these chemicals.


Subject(s)
Benzophenones/urine , Drinking Water/chemistry , Environmental Exposure/analysis , Sunscreening Agents/analysis , Water Pollutants, Chemical/urine , Benzophenones/analysis , Child, Preschool , Hong Kong , Humans , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL