ABSTRACT
We determined the intersubject association between the rhythmic entrainment abilities of human subjects during a synchronization-continuation tapping task (SCT) and the macro- and microstructural properties of their superficial (SWM) and deep (DWM) white matter. Diffusion-weighted images were obtained from 32 subjects who performed the SCT with auditory or visual metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine the density of short-range fibers that run underneath the cortical mantle, interconnecting nearby cortical regions (U-fibers). Notably, individual differences in the density of U-fibers in the right audiomotor system were correlated with the degree of phase accuracy between the stimuli and taps across subjects. These correlations were specific to the synchronization epoch with auditory metronomes and tempos around 1.5 Hz. In addition, a significant association was found between phase accuracy and the density and bundle diameter of the corpus callosum (CC), forming an interval-selective map where short and long intervals were behaviorally correlated with the anterior and posterior portions of the CC. These findings suggest that the structural properties of the SWM and DWM in the audiomotor system support the tapping synchronization abilities of subjects, as cortical U-fiber density is linked to the preferred tapping tempo and the bundle properties of the CC define an interval-selective topography.
Subject(s)
White Matter , Humans , White Matter/physiology , White Matter/diagnostic imaging , White Matter/anatomy & histology , Male , Female , Adult , Young Adult , Diffusion Magnetic Resonance Imaging , Corpus Callosum/physiology , Corpus Callosum/diagnostic imaging , Corpus Callosum/anatomy & histology , Psychomotor Performance/physiologyABSTRACT
The white matter is an important constituent of the central nervous system, containing axons, oligodendrocytes, and its progenitor cells, astrocytes, and microglial cells. Oligodendrocytes are central for myelin synthesis, the insulating envelope that protects axons and allows normal neural conduction. Both, oligodendrocytes and myelin, are highly vulnerable to toxic factors in many neurodevelopmental and neurodegenerative disorders associated with disturbances of myelination. Here we review the main alterations in oligodendrocytes and myelin observed in some organic acidurias/acidemias, which correspond to inherited neurometabolic disorders biochemically characterized by accumulation of potentially neurotoxic organic acids and their derivatives. The yet incompletely understood mechanisms underlying the high vulnerability of OLs and/or myelin in glutaric acidemia type I, the most prototypical cerebral organic aciduria, are particularly discussed.
Subject(s)
Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Glutaryl-CoA Dehydrogenase , Oligodendroglia , White Matter , Oligodendroglia/metabolism , Oligodendroglia/pathology , Amino Acid Metabolism, Inborn Errors/pathology , Amino Acid Metabolism, Inborn Errors/metabolism , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/metabolism , Humans , Animals , White Matter/pathology , White Matter/metabolism , Brain Diseases, Metabolic/pathology , Brain Diseases, Metabolic/metabolism , Myelin Sheath/metabolism , Myelin Sheath/pathologyABSTRACT
BACKGROUND: Migraine is associated with several genetic or acquired comorbidities. Studies conducted in recent years emphasize that the frequency of thrombophilia is high in migraine, especially migraine with aura (MA). Similarly, the presence of white matter lesions (WMLs) on brain magnetic resonance imaging (MRI) scans has been associated with migraine for many years. OBJECTIVE: Based on the knowledge that both WMLs and thrombophilia variants are frequently observed in MA, we aimed to investigate whether there is a relationship between genetic thrombophilia and the presence of WMLs in these patients. METHODS: The levels of proteins S and C, antithrombin III activities, activated protein C (APC) resistance, antiphospholipid immunoglobulin G/immunoglobulin M (IgG/IgM) and anticardiolipin IgG/IgM antibodies were investigated in 66 MA patients between the ages of 18 and 49 years who presented no cardiovascular risk factors. The presence of WMLs and the Fazekas grade was determined from the brain magnetic resonance imaging (MRI) scans' T2-weighted and fluid-attenuated inversion recovery (FLAIR) sequence taken from the patients. The rates of WMLs were compared in patients with and without thrombophilia. RESULTS: Thrombophilia was detected in 34.8% of the patients, and 27.3% were determined to have WMLs in brain MRI scans. The WMLs were detected in 23.3% of the patients without thrombophilia, in 34.8% of those with thrombophilia, and in 50% of the subjects with multiple thrombophilia disorders. Among the thrombophilia disorders, only APC resistance was significantly more common in patients with WMLs. CONCLUSION: The results of the present study showed that thrombophilia may be a mechanism that should be investigated in the etiology of increased WMLs in MA.
ANTECEDENTES: La migraña se asocia con una serie de comorbilidades genéticas o adquiridas. Los estudios realizados en los últimos años destacan que la frecuencia de trombofilia es elevada en la migraña, especialmente en la migraña con aura (MA). De manera similar, la presencia de lesiones de la sustancia blanca (LSB) en las imágenes por resonancia magnética (RM) del cerebro se ha asociado con la migraña hace muchos años. OBJETIVO: Con base en la información de que se suelen observar tanto LSB como variantes de la trombofilia en MA, nuestro objetivo fue investigar si existe una relación entre la trombofilia genética y la presencia de LSB en estos pacientes. MéTODOS: Se investigaron los niveles de proteína S y de proteína C, actividades de antitrombina III, resistencia a la proteína C activada (PCA), anticuerpos antifosfolípidos inmunoglobulina G/inmunoglobulina M (IgG/IgM) y anticuerpos anticardiolipina IgG/IgM en 66 pacientes con MA entre 18 y 49 años que no presentaban factores de riesgo cardiovascular. Se determinaron la presencia de LSB y el grado de Fazekas a partir de imágenes por RM del cerebro en la secuencia ponderada en T2 y recuperación de la inversión atenuada de fluido (fluid-attenuated inversion recovery, FLAIR, en inglés) obtenidas de los pacientes. Se compararon las tasas de LSB en pacientes con y sin trombofilia. RESULTADOS: Se detectó trombofilia en el 34,8% de los pacientes y LSB en el 27,3%. Las LSB estuvieron presentes en el 23,3% de los pacientes sin trombofilia, en el 34,8% de los que tenían trombofilia, y en el 50% de los que tenían múltiples trastornos trombofílicos. La resistencia a la PCA fue significativamente más común en aquellos pacientes con LSB. CONCLUSIóN: Los resultados del presente estudio mostraron que la trombofilia puede ser un mecanismo que debe investigarse en la etiología del aumento de LSB en MA.
Subject(s)
Magnetic Resonance Imaging , Migraine with Aura , Thrombophilia , White Matter , Humans , Adult , Female , Male , Thrombophilia/blood , Middle Aged , Migraine with Aura/diagnostic imaging , Migraine with Aura/blood , Young Adult , White Matter/diagnostic imaging , White Matter/pathology , Adolescent , Antithrombin III/analysis , Protein S/analysis , Risk Factors , Antibodies, Anticardiolipin/blood , Protein C/analysis , Immunoglobulin G/blood , Antibodies, Antiphospholipid/bloodABSTRACT
OBJECTIVE: To evaluate whether white matter injury (WMI) volumes and spatial distribution, which are important predictors of neurodevelopmental outcomes in preterm infants, have changed over a period of 15 years. STUDY DESIGN: Five hundred and twenty-eight infants born <32 weeks' gestational age from 2 sequential prospective cohorts (cohort 1: 2006 through 2012; cohort 2: 2014 through 2019) underwent early-life (median 32.7 weeks postmenstrual age) and/or term-equivalent-age MRI (median 40.7 weeks postmenstrual age). WMI were manually segmented for quantification of volumes. There were 152 infants with WMI with 74 infants in cohort 1 and 78 in cohort 2. Multivariable linear regression models examined change in WMI volume across cohorts while adjusting for clinical confounders. Lesion maps assessed change in WMI location across cohorts. RESULTS: There was a decrease in WMI volume in cohort 2 compared with cohort 1 (ß = -0.6, 95% CI [-0.8, -0.3], P < .001) with a shift from more central to posterior location of WMI. There was a decrease in clinical illness severity of infants across cohorts. CONCLUSIONS: We found a decrease in WMI volume and shift to more posterior location in very preterm infants over a period of 15 years. This may potentially reflect more advanced maturation of white matter at the time of injury which may be related to changes in clinical practice over time.
Subject(s)
Infant, Premature , Magnetic Resonance Imaging , White Matter , Humans , Infant, Newborn , Female , Male , White Matter/diagnostic imaging , White Matter/pathology , White Matter/injuries , Prospective Studies , Gestational Age , Infant, Premature, Diseases , InfantABSTRACT
OBJECTIVES: Evidence from diffusion tensor imaging (DTI) and postmortem studies has demonstrated white-matter (WM) deficits in bipolar disorder (BD). Changes in peripheral blood biomarkers have also been observed; however, studies evaluating the potential relationship between brain alterations and the periphery are scarce. The objective of this systematic review is to investigate the relationship between blood-based biomarkers and WM in BD. METHODS: PubMed, Embase, and PsycINFO were used to conduct literature searches. Cross-sectional or longitudinal studies reporting original data which investigated both a blood-based biomarker and WM (by neuroimaging) in BD were included. RESULTS: Of 3,750 studies retrieved, 23 were included. Several classes of biomarkers were found to have a significant relationship with WM in BD. These included cytokines and growth factors (interleukin-8 [IL-8], tumor necrosis factor alpha [TNF-a], and insulin-like growth factor binding protein 3 [IGFBP-3]), innate immune system (natural killer cells [NK]), metabolic markers (lipid hydroperoxidase, cholesterol, triglycerides), the kynurenine (Kyn) pathway (5-hydroxyindoleacetic acid, kynurenic acid [Kyna]), and various gene polymorphisms (serotonin-transporter-linked promoter region). CONCLUSION: This systematic review revealed that blood-based biomarkers are associated with markers of WM deficits observed in BD. Longitudinal studies investigating the potential clinical utility of these specific biomarkers are encouraged.
Subject(s)
Biomarkers , Bipolar Disorder , Myelin Sheath , White Matter , Bipolar Disorder/blood , Humans , Biomarkers/blood , White Matter/diagnostic imaging , White Matter/pathology , Myelin Sheath/pathology , Cytokines/bloodABSTRACT
Accurately studying structural connectivity requires precise tract segmentation strategies. The U-Net network has been widely recognized for its exceptional capacity in image segmentation tasks and provides remarkable results in large tract segmentation when high-quality diffusion-weighted imaging (DWI) data are used. However, short tracts, which are associated with various neurological diseases, pose specific challenges, particularly when high-quality DWI data acquisition within clinical settings is concerned. Here, we aimed to evaluate the U-Net network ability to segment short tracts by using DWI data acquired in different experimental conditions. To this end, we conducted three types of training experiments involving 350 healthy subjects and 11 white matter tracts, including the anterior, posterior, and hippocampal commissure, fornix, and uncinated fasciculus. In the first experiment, the model was exclusively trained with high-quality data of the Human Connectome Project (HCP) dataset. The second experiment focused on images of healthy subjects acquired from a local hospital dataset, representing a typical clinical routine acquisition. In the third experiment, a hybrid training approach was employed, combining data of the HCP and local hospital datasets. Then, the best model was also tested in unseen DWIs of 10 epilepsy patients of the local hospital and 10 healthy subjects acquired on a scanner from another company. The outcomes of the third experiment demonstrated a notable enhancement in performance when contrasted with the preceding trials. Specifically, the short tracts within the local hospital dataset achieved Dice scores ranging between 0.60 and 0.65. Similar intervals were obtained with HCP data in the first experiment, and a substantial improvement compared to the scores between 0.37 and 0.50 obtained with the local hospital dataset at the same experiment. This improvement persisted when the method was applied to diverse scenarios, including different scanner acquisitions and epilepsy patients. These results indicate that combining datasets from different sources, coupled with resolution standardization strengthens the neural network ability to generalize predictions across a spectrum of datasets. Nevertheless, short tract segmentation performance is intricately linked to the training composition, to validation, and to testing data. Moreover, curved tracts have intricate structural nature, which adds complexities to their segmenting. Although the network training approach tested herein has provided promising results, caution must be taken when extrapolating its application to datasets acquired under distinct experimental conditions, even in the case of higher-quality data or analysis of long or short tracts.
Subject(s)
Connectome , Epilepsy , Image Processing, Computer-Assisted , White Matter , Humans , Male , Female , Image Processing, Computer-Assisted/methods , Adult , Epilepsy/diagnostic imaging , White Matter/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging/methods , AlgorithmsABSTRACT
We present a case study of a patient exhibiting acquired microcephaly along with global developmental delay and drug-resistant epilepsy. Brain magnetic resonance imaging revealed distinctive features, including a Z-shaped morphology of the brainstem, volumetric reduction of white matter, diffuse thinning of the corpus callosum, and partial fusion of the cerebellar hemispheres at their most cranial portion. Whole-exome sequencing uncovered a pathogenic variant in the ARF3 gene c.200A>T, p.(Asp67Val). The neurodevelopmental disorder associated with the ARF3 gene is exceptionally rare, with only two previously documented cases in the literature. This disorder is characterized by global developmental delay and brain malformations, particularly affecting the white matter, cerebellum, and brainstem. It can also manifest as acquired microcephaly and epilepsy. These phenotypic characteristics align with Golgipathies, underscoring the significance of considering this group of conditions in relevant clinical contexts. In cases where a Z-shaped morphology of the brainstem is observed, ARF3-associated disorder should be included in the list of differential diagnoses.
Subject(s)
ADP-Ribosylation Factors , Neurodevelopmental Disorders , Female , Humans , ADP-Ribosylation Factors/genetics , Brain/diagnostic imaging , Brain/pathology , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Exome Sequencing , Genetic Predisposition to Disease , Magnetic Resonance Imaging , Microcephaly/genetics , Microcephaly/pathology , Microcephaly/diagnosis , Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Neurodevelopmental Disorders/diagnostic imaging , Phenotype , White Matter/pathology , White Matter/diagnostic imaging , Child, PreschoolABSTRACT
BACKGROUND AND PURPOSE: Recent studies have suggested an association between dysfunction of the choroid plexus and the glymphatic system. However, information is inconclusive. Following a population-based study design, we aimed to assess the association between choroid plexus calcifications (CPCs)-as a surrogate of choroid plexus dysfunction-and severity and progression of putative markers of glymphatic dysfunction, including white matter hyperintensities (WMH) of presumed vascular origin and abnormally enlarged basal ganglia perivascular spaces (BG-PVS). METHODS: This study recruited community-dwellers aged ≥40 years living in neighboring Ecuadorian villages. Participants who had baseline head CTs and brain MRIs were included in cross-sectional analyses and those who additional had follow-up MRIs (after a mean of 6.4 ± 1.5 years) were included in longitudinal analyses. Logistic and Poisson regression models, adjusted for demographics and cardiovascular risk factors, were fitted to assess associations between CPCs and WMH and enlarged BG-PVS severity and progression. RESULTS: A total of 590 individuals were included in the cross-sectional component of the study, and 215 in the longitudinal component. At baseline, 25% of participants had moderate-to-severe WMH and 27% had abnormally enlarged BG-PVS. At follow-up, 36% and 20% of participants had WMH and enlarged BG-PVS progression, respectively. Logistic regression models showed no significant differences between CPCs volumes stratified in quartiles and severity of WMH and enlarged BG-PVS. Poisson regression models showed no association between the exposure and WMH and enlarged BG-PVS progression. Baseline age remained significant in these models. CONCLUSIONS: Choroid plexus calcifications are not associated with putative markers of glymphatic system dysfunction.
Subject(s)
Calcinosis , Choroid Plexus , Glymphatic System , Magnetic Resonance Imaging , Humans , Male , Female , Choroid Plexus/diagnostic imaging , Choroid Plexus/pathology , Middle Aged , Glymphatic System/diagnostic imaging , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Aged , Calcinosis/diagnostic imaging , Longitudinal Studies , Ecuador , White Matter/diagnostic imaging , White Matter/pathology , Adult , Tomography, X-Ray Computed , BiomarkersABSTRACT
T1/T2-weighted ratio is a novel magnetic resonance imaging (MRI) biomarker based on conventional sequences, related to microstructural integrity and with increasing use in multiple sclerosis (MS) research. Different from other advanced MRI techniques, this method has the advantage of being based on routinely acquired MRI sequences, a feature that enables analysis of retrospective cohorts with considerable clinical value. This article provides an overview of this method, describing the previous cross-sectional and longitudinal findings in the main MS clinical phenotypes and in different brain tissues: focal white matter (WM) lesions, normal-appearing white matter (NAWM), cortical gray matter (GM), and deep normal-appearing gray matter (NAGM). We also discuss the clinical associations, possible reasons for conflicting results, correlations with other MRI-based measures, and histopathological associations. We highlight the limitations of the biomarker itself and the methodology of each study. Finally, we update the reader on its potential use as an imaging biomarker in research.
Subject(s)
Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/pathology , Retrospective Studies , Cross-Sectional Studies , Brain/pathology , Magnetic Resonance Imaging/methods , White Matter/pathology , BiomarkersABSTRACT
Although some studies have shown neuroimaging and neuropsychological alterations in post-COVID-19 patients, fewer combined neuroimaging and neuropsychology evaluations of individuals who presented a mild acute infection. Here we investigated cognitive dysfunction and brain changes in a group of mildly infected individuals. We conducted a cross-sectional study of 97 consecutive subjects (median age of 41 years) without current or history of psychiatric symptoms (including anxiety and depression) after a mild infection, with a median of 79 days (and mean of 97 days) after diagnosis of COVID-19. We performed semi-structured interviews, neurological examinations, 3T-MRI scans, and neuropsychological assessments. For MRI analyses, we included a group of non-infected 77 controls. The MRI study included white matter (WM) investigation with diffusion tensor images (DTI) and functional connectivity with resting-state functional MRI (RS-fMRI). The patients reported memory loss (36%), fatigue (31%) and headache (29%). The quantitative analyses confirmed symptoms of fatigue (83% of participants), excessive somnolence (35%), impaired phonemic verbal fluency (21%), impaired verbal categorical fluency (13%) and impaired logical memory immediate recall (16%). The WM analyses with DTI revealed higher axial diffusivity values in post-infected patients compared to controls. Compared to controls, there were no significant differences in the functional connectivity of the posterior cingulum cortex. There were no significant correlations between neuropsychological scores and neuroimaging features (including DTI and RS-fMRI). Our results suggest persistent cognitive impairment and subtle white matter abnormalities in individuals mildly infected without anxiety or depression symptoms. The longitudinal analyses will clarify whether these alterations are temporary or permanent.
Subject(s)
Brain Diseases , COVID-19 , Cognitive Dysfunction , White Matter , Humans , Adult , Diffusion Tensor Imaging/methods , Cross-Sectional Studies , COVID-19/complications , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Brain/diagnostic imaging , White Matter/diagnostic imaging , Memory Disorders , Fatigue/etiologyABSTRACT
OBJECTIVE: To compare brain magnetic resonance imaging (MRI) biomarkers and neurodevelopmental test scores in infants born preterm with and without prenatal opioid exposure (POE). STUDY DESIGN: We examined 395 preterm infants (≤32 weeks gestational age) who had term-equivalent brain MRIs, composite scores from the Bayley Scales of Infant and Toddler Development-III at 2 years corrected age, and POE data. MRI parameters included total/regional brain volumes and severe punctate white matter lesions (PWMLs). We conducted bivariable analysis and multivariable logistic regression analyses. RESULTS: The mean ± SD gestational age was 29.3 ± 2.5 weeks; 35 (8.9%) had POE and 20 (5.1%) had severe PWML. Compared with unexposed infants, those with POE exhibited higher rates of severe PWML (17.1% vs 3.9%, respectively; P = .002); findings remained significant with an OR of 4.16 (95% CI, 1.26-13.68) after adjusting for confounders. On mediation analysis, the significant relationship between POE and severe PWML was not indirectly mediated through preterm birth/gestational age (OR, 0.93; 95% CI, 0.78-1.10), thus suggesting the association was largely driven by a direct adverse effect of POE on white matter. In multivariable analyses, POE was associated with a significantly lower score by -6.2 (95% CI, -11.8 to -0.6) points on the Bayley Scales of Infant and Toddler Development-III Motor subscale compared with unexposed infants. CONCLUSIONS: POE was associated with severe PWML; this outcome may be a direct effect of POE rather than being mediated by premature birth. POE was also associated with worse motor development. Continued follow-up to understand the long-term effects of POE is warranted.
Subject(s)
Premature Birth , White Matter , Infant , Pregnancy , Female , Infant, Newborn , Humans , Child, Preschool , Infant, Premature , Analgesics, Opioid/adverse effects , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , Gestational AgeABSTRACT
BACKGROUND: Multiple sclerosis (MS) is an important cause of acquired neurological disability in young adults, characterized by multicentric inflammation, demyelination, and axonal damage. OBJECTIVE: The objective is to investigate white matter (WM) damage progression in a Brazilian MS patient cohort, using diffusion tensor imaging (DTI) post-processed by tract-based spatial statistics (TBSS). METHODS: DTI scans were acquired from 76 MS patients and 37 sex-and-age matched controls. Patients were divided into three groups based on disease duration. DTI was performed along 30 non-collinear directions by using a 1.5T imager. For TBSS analysis, the WM skeleton was created, and a 5000 permutation-based inference with a threshold of p < .05 was used, to enable the identification of abnormalities in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). RESULTS: Decreased FA and increased RD, MD, and AD were seen in patients compared to controls and a decreased FA and increased MD and RD were seen, predominantly after the first 5 years of disease, when compared between groups. CONCLUSION: Progressive WM deterioration is seen over time with a more prominent pattern after 5 years of disease onset, providing evidence that the early years might be a window to optimize treatment and prevent disability.
Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , White Matter , Young Adult , Humans , White Matter/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Diffusion Tensor Imaging/methods , Brazil , Anisotropy , BrainABSTRACT
Chronic social stress is a significant risk factor for several neuropsychiatric disorders, mainly major depressive disorder (MDD). In this way, patients with clinical depression may display many symptoms, including disrupted social behavior and anxiety. However, like many other psychiatric diseases, MDD has a very complex etiology and pathophysiology. Because social isolation is one of the multiple depression-inducing factors in humans, this study aims to understand better the link between social stress and MDD using an animal model based on social isolation after weaning, which is known to produce social stress in mice. We focused on cellular composition and white matter integrity to establish possible links with the abnormal social behavior that rodents isolated after weaning displayed in the three-chamber social approach and recognition tests. We used the isotropic fractionator method to assess brain cellularity, which allows us to robustly estimate the number of oligodendrocytes and neurons in dissected brain regions. In addition, diffusion tensor imaging (DTI) was employed to analyze white matter microstructure. Results have shown that post-weaning social isolation impairs social recognition and reduces the number of neurons and oligodendrocytes in important brain regions involved in social behavior, such as the anterior neocortex and the olfactory bulb. Despite the limitations of animal models of psychological traits, evidence suggests that behavioral impairments observed in patients might have similar biological underpinnings.
Subject(s)
Depressive Disorder, Major , White Matter , Humans , Mice , Animals , Diffusion Tensor Imaging/methods , Brain , Social IsolationABSTRACT
We aimed to investigate changes in olfactory bulb volume and brain network in the white matter (WM) in patients with persistent olfactory disfunction (OD) following COVID-19. A cross-sectional study evaluated 38 participants with OD after mild COVID-19 and 24 controls, including Sniffin' Sticks identification test (SS-16), MoCA, and brain magnetic resonance imaging. Network-Based Statistics (NBS) and graph theoretical analysis were used to explore the WM. The COVID-19 group had reduced olfactory bulb volume compared to controls. In NBS, COVID-19 patients showed increased structural connectivity in a subnetwork comprising parietal brain regions. Regarding global network topological properties, patients exhibited lower global and local efficiency and higher assortativity than controls. Concerning local network topological properties, patients had reduced local efficiency (left lateral orbital gyrus and pallidum), increased clustering (left lateral orbital gyrus), increased nodal strength (right anterior orbital gyrus), and reduced nodal strength (left amygdala). SS-16 test score was negatively correlated with clustering of whole-brain WM in the COVID-19 group. Thus, patients with OD after COVID-19 had relevant WM network dysfunction with increased connectivity in the parietal sensory cortex. Reduced integration and increased segregation are observed within olfactory-related brain areas might be due to compensatory plasticity mechanisms devoted to recovering olfactory function.
Subject(s)
COVID-19 , White Matter , Humans , Diffusion Tensor Imaging/methods , Cross-Sectional Studies , COVID-19/pathology , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance ImagingABSTRACT
BACKGROUND: Information on the association between the systemic immune-inflammation index (SII) and white matter hyperintensities (WMH) of presumed vascular origin is confined to cross-sectional studies. We sought to evaluate the impact of SII on WMH progression in community-dwelling older adults. METHODS: Following a longitudinal prospective study design, participants of a population-based cohort received baseline blood tests to calculate the SII (platelets x neutrophils / lymphocytes x 109 L) together with clinical interviews and brain MRIs. Participants with follow-up brain MRI were included in the analysis. Poisson regression models adjusted for demographics and cardiovascular risk factors were fitted to assess the incidence rate ratio of WMH progression by levels of the SII. RESULTS: Across 246 study participants (mean age: 65.5 ± 5.9 years; 55% women), the mean SII was 434.7 ± 193.8 × 109 L, and WMH progression was found in 101 (41%) individuals after a mean of 7.3 ± 1.5 years. A multivariate Poisson regression model showed increased WMH progression rate among individuals in the fourth quartile of the SII compared with those in the first quartile (IRR: 1.87; 95% C.I.: 1.02-3.41). CONCLUSIONS: Study results provided novel evidence of an independent association between the SII and WMH progression. The SII may be able to identify individuals at high risk of WMH progression.
Subject(s)
Independent Living , White Matter , Humans , Female , Aged , Middle Aged , Male , Prospective Studies , White Matter/diagnostic imaging , Ecuador/epidemiology , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Inflammation/diagnostic imagingABSTRACT
INTRODUCTION: Bipolar disorder (BD) has been associated with a decrease in white matter integrity. Diffusion tensor imaging (DTI) studies have enabled these changes to be elucidated with higher quality. Due to BD's high heritability, some studies have been conducted in relatives of BD patients looking at white matter integrity, and have found that structural connectivity may also be affected. This alteration has been proposed as a potential BD biomarker of vulnerability. However, there are few studies in children and adolescents. OBJECTIVE: To conduct a review of the literature on changes in white matter integrity determined by DTI in high-risk children and adolescents. RESULTS: Brain structural connectivity in the paediatric population is described in studies using DTI. Changes in the myelination process from its evolution within normal neurodevelopment to the findings in fractional anisotropy (FA) in BD patients and their high-risk relatives are also described. CONCLUSIONS: Studies show that both BD patients and their at-risk relatives present a decrease in FA in specific brain regions. Studies in children and adolescents with a high risk of BD, indicate a reduced FA in axonal tracts involved in emotional and cognitive functions. Decreased FA can be considered as a vulnerability biomarker for BD.
Subject(s)
Bipolar Disorder , White Matter , Humans , Adolescent , Child , Bipolar Disorder/diagnostic imaging , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , White Matter/diagnostic imaging , BiomarkersABSTRACT
Metaphor comprehension is a cognitively complex task, with evidence pointing to the engagement of multiple cerebral areas. In addition, the involvement of the right hemisphere appears to vary with cognitive effort. Therefore, the interconnecting pathways of such distributed cortical centers should be taken into account when studying this topic. Despite this, the potential contribution of white matter fasciculi has received very little attention in the literature to date and is not mentioned in most metaphor comprehension studies. To highlight the probable implications of the right inferior fronto-occipital fasciculus, right superior longitudinal system, and callosal radiations, we bring together findings from different research fields. The aim is to describe important insights enabled by the cross-fertilization of functional neuroimaging, clinical findings, and structural connectivity.
Subject(s)
Comprehension , White Matter , Humans , Language , Metaphor , Magnetic Resonance Imaging , White Matter/diagnostic imagingABSTRACT
White matter hyperintensities of presumed vascular origin (WMH) are the most common imaging feature of cerebral small vessel disease (cSVD) and are associated with cognitive impairment, especially information processing speed (IPS) deficits. However, it is unclear how WMH can directly impact IPS or whether the cortical thickness and brain connectivity mediate such association. In this study, it was evaluated the possible mediating roles of cortical thickness and brain (structural and functional) connectivity on the relationship between WMH (also considering its topography distribution) and IPS in 389 patients with cSVD from the RUN-DMC (Radboud University Nijmegen Diffusion tensor and Magnetic resonance imaging Cohort) database. Significant (p < 0.05 after multiple comparisons correction) associations of WMH volume and topography with cortical thickness, brain connectivity, and IPS performance in cSVD individuals were found. Additionally, cortical thickness and brain structural and functional connectivity were shown to mediate the association of WMH volume and location with IPS scores. More specifically, frontal cortical thickness, functional sensorimotor network, and posterior thalamic radiation tract were the essential mediators of WMH and IPS in this clinical group. This study provided insight into the mechanisms underlying the clinical relevance of white matter hyperintensities in information processing speed deficits in cSVD through cortical thinning and network disruptions.