Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
1.
J Virol ; 98(3): e0180523, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38323810

ABSTRACT

Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE: Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.


Subject(s)
Arthropod Proteins , Hemocytes , Host Microbial Interactions , Penaeidae , RNA-Seq , Single-Cell Gene Expression Analysis , White spot syndrome virus 1 , Animals , Arthropod Proteins/genetics , Cell Differentiation/genetics , Cell Differentiation/immunology , Gene Expression Regulation , Hemocytes/cytology , Hemocytes/immunology , Hemocytes/metabolism , Hemocytes/virology , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Penaeidae/cytology , Penaeidae/genetics , Penaeidae/immunology , Penaeidae/virology , White spot syndrome virus 1/genetics , White spot syndrome virus 1/immunology
2.
Front Immunol ; 12: 733730, 2021.
Article in English | MEDLINE | ID: mdl-34950131

ABSTRACT

Toll-like receptors (TLRs) are canonical cell membrane receptors functioning to recognize pathogens and transduce signals to activate immune responses. It has been known that Toll3 in Pacific white shrimp Litopenaeus vannamei (LvToll3) plays a critical role in antiviral immunity by inducing the transcription of interferon regulatory factor (IRF), which mediates a signaling axis that is similar to the interferon system of vertebrates. However, the regulatory mechanism of the Toll3-IRF signaling is still unclear. In this study, a novel microRNA (miRNA) of miR-10 family, temporarily named as miR-10c, was identified from L. vannamei. miR-10c may play a nonnegligible regulatory role in shrimp immune responses since it was constitutively expressed in all detected tissues and transcriptionally induced by immune stimulation. Functional analysis validated that miR-10c could target LvToll3 to inhibit its expression, through which miR-10c blocked the nuclear translocation of IRF and facilitated white spot syndrome virus (WSSV) infection. To our knowledge, the present study revealed the first report of a Toll targeted by miRNA in crustaceans and provided a solid evidence base for supporting the role of LvToll3 in antiviral defense by activating IRF signaling in L. vannamei. Identification of the miR-10c/Toll3/IRF regulatory axis in shrimp provides new insights into the participation of miRNA in the regulation of immune responses and contributes to in-depth understanding of the mechanisms of Toll-induced immune responses in L. vannamei.


Subject(s)
Arthropod Proteins/metabolism , Immunity, Innate/genetics , MicroRNAs/metabolism , Penaeidae/immunology , Penaeidae/virology , Signal Transduction/immunology , Toll-Like Receptors/metabolism , White spot syndrome virus 1/immunology , Animals , Arthropod Proteins/genetics , Gene Expression Regulation , Interferon Regulatory Factors/metabolism , Interferons/metabolism , MicroRNAs/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics
3.
Int J Biol Macromol ; 193(Pt B): 2173-2182, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34780895

ABSTRACT

Although class B scavenger receptors (SR-Bs) in mammals are multifunctional molecules, the functions of SR-Bs in invertebrates remain largely unknown. In this study, we characterized an SR-B homolog, namely SpSR-B2, from Scylla paramamosain. SpSR-B2 shared high similarity with mammalian SR-Bs, and exhibited specific binding activity to ac-LDL, indicating that it may be a new member of SR-B class in invertebrates. SpSR-B2 was upregulated after challenge with white spot syndrome virus (WSSV) or bacteria. Binding assays showed that SpSR-B2 specifically interacted with WSSV envelope protein VP24. Besides, SpSR-B2 could bind to all tested bacterial cells and agglutinate these bacteria. SpSR-B2 also exhibited a strong binding activity to LPS but weak binding activities to other tested polysaccharides. These findings indicated that SpSR-B2 was a potential recognition molecule for viral protein VP24 and bacterial LPS. Knockdown of SpSR-B2 resulted in dramatically decreased expressions of certain antimicrobial peptides (AMPs), and overexpression of SpSR-B2 led to the increased expression of the AMP of SpALF2, suggesting that SpSR-B2 could regulate the expression of AMPs. Taken together, this study revealed that SpSR-B2 functioned as a potential pattern recognition receptor participating in antiviral and antibacterial immunity, and provided new insights into the immune functions of invertebrate SR-Bs.


Subject(s)
Anti-Bacterial Agents/immunology , Antiviral Agents/immunology , Arthropod Proteins/immunology , Brachyura/immunology , Receptors, Pattern Recognition/immunology , Animals , Antimicrobial Peptides/immunology , Bacteria/immunology , Immunity/immunology , Lipopolysaccharides/immunology , Phylogeny , White spot syndrome virus 1/immunology
4.
Sci Rep ; 11(1): 19188, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584112

ABSTRACT

The 14-3-3 proteins interact with a wide variety of cellular proteins for many diverse functions in biological processes. In this study, a yeast two-hybrid assay revealed that two 14-3-3ε isoforms (14-3-3ES and 14-3-3EL) interacted with Rab11 in the white shrimp Litopenaeus vannamei (LvRab11). The interaction of 14-3-3ε and LvRab11 was confirmed by a GST pull-down assay. The LvRab11 open reading frame was 645 bp long, encoding a protein of 214 amino acids. Possible complexes of 14-3-3ε isoforms and LvRab11 were elucidated by in silico analysis, in which LvRab11 showed a better binding energy score with 14-3-3EL than with 14-3-3ES. In shrimp challenged with the white spot syndrome virus (WSSV), the mRNA expression levels of LvRab11 and 14-3-3ε were significantly upregulated at 48 h after challenge. To determine whether LvRab11 and binding between 14-3-3ε and LvRab11 are active against WSSV infection, an in vivo neutralization assay and RNA interference were performed. The results of in vivo neutralization showed that LvRab11 and complexes of 14-3-3ε/LvRab11 delayed mortality in shrimp challenged with WSSV. Interestingly, in the RNAi experiments, the silencing effect of LvRab11 in WSSV-infected shrimp resulted in decreased ie-1 mRNA expression and WSSV copy number. Whereas suppression of complex 14-3-3ε/LvRab11 increased WSSV replication. This study has suggested two functions of LvRab11 in shrimp innate immunity; (1) at the early stage of WSSV infection, LvRab11 might play an important role in WSSV infection processes and (2) at the late stage of infection, the 14-3-3ε/LvRab11 interaction acquires functions that are involved in immune response against WSSV invasion.


Subject(s)
14-3-3 Proteins/metabolism , Arthropod Proteins/metabolism , Penaeidae/immunology , White spot syndrome virus 1/immunology , rab GTP-Binding Proteins/metabolism , Animals , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Penaeidae/metabolism , Penaeidae/virology , Virus Replication , White spot syndrome virus 1/pathogenicity
5.
Fish Shellfish Immunol ; 118: 205-212, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34517138

ABSTRACT

In recent years, the use of natural products with immune-stimulating and antimicrobial properties has attracted increasing attention in aquaculture researches. In our study, the effect of diet supplemented with quercetin, a flavonoid commonly found in some types of plants substance on the innate immune response and disease resistance in crayfish (Procambarus clarkii) against white spot syndrome virus (WSSV) is reported. It was found that dietary 40 mg/kg quercetin significantly reduced the mortality of crayfish and WSSV copy number after WSSV challenge. Dietary quercetin increased catalase (CAT), and lysozyme (LZM) activity in crayfish. Dietary quercetin increased the expression of NF-κB, anti-lipopolysaccharide factor (ALF) and toll-like receptor (TLR) genes in crayfish. The apoptosis rate of hemocyte was increased by quercetin supplement in crayfish. Our results suggest that dietary quercetin may affect the innate immunity of crayfish and protect crayfish from WSSV infection.


Subject(s)
Animal Diseases , Astacoidea , Diet , Disease Resistance , Immunity, Innate , Quercetin , White spot syndrome virus 1 , Animal Diseases/immunology , Animal Diseases/prevention & control , Animals , Astacoidea/immunology , Astacoidea/virology , Diet/veterinary , Disease Resistance/drug effects , Immunity, Innate/drug effects , Quercetin/administration & dosage , Quercetin/pharmacology , White spot syndrome virus 1/immunology
6.
Arch Virol ; 166(10): 2763-2778, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34342747

ABSTRACT

White spot syndrome virus (WSSV) is a significant threat to the aquaculture sector, causing mortality among crabs and shrimps. Currently available diagnostic tests for WSSV are not rapid or cost-effective, and a new detection method is therefore needed. This study demonstrates the development of a biosensor by functionalization of magnetosomes with VP28-specific antibodies to detect WSSV in seafood. The magnetosomes (1 and 2 mg/ml) were conjugated with VP28 antibody (0.025-10 ng/µl), as confirmed by spectroscopy. The magnetosome-antibody conjugate was used to detect the VP28 antigen. The binding of antigen to the magnetosome-antibody complex resulted in a change in absorbance. The magnetosome-antibody-antigen complex was then concentrated and brought near a screen-printed carbon electrode by applying an external magnetic field, and the antigen concentration was determined using impedance measurements. The VP28 antigen (0.025 ng/µl) bound more efficiently to the magnetosome-VP28 antibody complex (0.025 ng/µl) than to the VP28 antibody (0.1 ng/µl) alone. The same assay was repeated to detect the VP28 antigen (0.01 ng/µl) in WSSV-infected seafood samples using the magnetosome-VP28 antibody complex (0.025 ng/µl). The WSSV in the seafood sample was also drawn toward the electrode due to the action of magnetosomes controlled by the external magnetic field and detected using impedance measurement. The presence of WSSV in seafood samples was verified by Western blot and RT-PCR. Cross-reactivity assays with other viruses confirmed the specificity of the magnetosome-based biosensor. The results indicate that the use of the magnetosome-based biosensor is a sensitive, specific, and rapid way to detect WSSV in seafood samples.


Subject(s)
Biosensing Techniques/veterinary , Magnetosomes , Seafood/virology , White spot syndrome virus 1/isolation & purification , Animals , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Aquaculture , Cross Reactions , Dielectric Spectroscopy , Enzyme-Linked Immunosorbent Assay , Food Microbiology , Magnetosomes/chemistry , Magnetosomes/immunology , Penaeidae/virology , Reproducibility of Results , Viral Envelope Proteins/analysis , Viral Envelope Proteins/immunology , White spot syndrome virus 1/immunology
7.
Dev Comp Immunol ; 121: 104101, 2021 08.
Article in English | MEDLINE | ID: mdl-33862098

ABSTRACT

The cGAS-STING pathway plays essential roles in detecting cytosolic dsDNA and initiating antiviral and antibacterial responses in vertebrates. However, knowledge about its function in antiviral response of invertebrates is very limited. In the present study, a gene encoding a Mab21-containing protein, a cGAS homologue, was identified from a decapod crustacean Litopenaeus vannamei and designated as LvMab21cp. LvMab21cp was mainly distributed in intestine and hepatopancreas, showing similar expression profile with other genes in the cGAS-STING pathway, such as LvSTING and LvIRF. The expression levels of LvMab21cp, LvSTING and LvIRF were up-regulated in intestine and hepatopancreas of shrimp after white spot syndrome virus (WSSV) infection. Knockdown of LvMab21cp by dsRNA-mediated RNA interference could decrease the expression levels of its putative downstream genes, including LvSTING, LvIRF, LvVago4 and LvVago5, and enhance the in vivo propagation of WSSV in shrimp. Overexpression of LvMab21cp and LvSTING in HEK 293T cells activated the expression of mammalian IFNs upon simulation with interferon stimulatory DNA (ISD). These data suggest that LvMab21cp was a cGAS homologue, a member of the shrimp cGAS-STING pathway, and play an important role during WSSV infection. To our knowledge, this is the first report to show the role of the cGAS-STING pathway in the antiviral response of invertebrates, which will provide new insights into the innate immunity of invertebrates.


Subject(s)
Arthropod Proteins/metabolism , Immunity, Innate , Interferons/metabolism , Penaeidae/immunology , White spot syndrome virus 1/immunology , Animals , Arthropod Proteins/genetics , Gene Knockdown Techniques , HEK293 Cells , Hepatopancreas/immunology , Hepatopancreas/metabolism , Humans , Penaeidae/genetics , Penaeidae/virology , Signal Transduction/immunology
8.
Int J Biol Macromol ; 183: 707-717, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33930448

ABSTRACT

Akirin is a highly conserved nuclear factor among different species. It is closely related to skeletal muscle development, innate immune response, and tumorigenesis in a variety of animals. In invertebrates, Akirin is mainly involved in gene transcription and NF-κB dependent natural immune response. In the present study, a nuclear factor Akirin was identified from Procambarus clarkii. The Akirin protein of crayfish consists of 204 amino acids and is conserved among its family members, especially the nuclear localization signal peptide motif (KRRR). PcAkirin was highly expressed in stomach, intestines, and hepatopancreas. After A. hydrophila challenge, the transcription level of Akirin significantly increased in hemocyte and hepatopancreas. In addition, the recombinant Akirin protein was produced successfully and helpful to resist WSSV infection by increasing the expression level of some immune related genes. On the contrary, after interfering with Akirin gene by dsRNA, the crayfish increased the sensitivity to A. hydrophila and WSSV infections. The results are more obvious in the accumulated mortality of P. clarkii infected with A. hydrophila and WSSV. All these results suggested that Akirin played a significant role in innate immune responses and protected it from WSSV and bacterial infection in crayfish.


Subject(s)
Astacoidea/virology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pore Forming Cytotoxic Proteins/genetics , White spot syndrome virus 1/pathogenicity , Amino Acid Sequence , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Astacoidea/immunology , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation , Immunity, Innate , Tissue Distribution , White spot syndrome virus 1/immunology
9.
Fish Shellfish Immunol ; 113: 89-95, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33823247

ABSTRACT

Accumulative evidence of using double stranded (ds) RNA encapsulated into virus like particle (VLP) nanocarrier has open feasibility to fight against shrimp viral infection in aquaculture field. In this study, we co-encapsulated VP37 and VP28 dsRNA into hypodermal and hematopoietic necrosis virus (IHHNV) like particle and investigated its protection against white spot syndrome virus (WSSV). Five micrograms of each dsRNA were used as starting materials to load into VLP, while the loading efficiency was slightly different, i.e, VP37 dsRNA had somewhat a better load into VLP's cavity. It was apparent that co-encapsulation of dual dsRNA showed a superior WSSV silencing ability than the single dsRNA counterpart as evidence by the lower WSSV gene expression and its copy number in the gill tissues. Besides, we also demonstrated that co-encapsulated dual dsRNA into IHHNV-VLP stimulated the increased number of hemocytes and the corresponding PO activity as well as up-regulated proPO gene expression in hemocytes to resist viral invasion after an acute stage of WSSV infection. This synergistic action of dual dsRNA encapsulated into IHHNV-VLPs could thus act to delay time of shrimp death and reduced shrimp cumulative mortality greater than the single, naked dsRNA treatment and positive control groups. The obtaining results would encourage the feasibility to use it as a new weapon to fight WSSV infection in shrimp aquaculture.


Subject(s)
Densovirinae/physiology , Penaeidae/immunology , RNA, Double-Stranded/administration & dosage , RNA, Viral/administration & dosage , Vaccines, Virus-Like Particle/administration & dosage , Viral Envelope Proteins/chemistry , White spot syndrome virus 1/immunology , Animals , Penaeidae/virology , RNA Interference
10.
Dev Comp Immunol ; 119: 104041, 2021 06.
Article in English | MEDLINE | ID: mdl-33577842

ABSTRACT

As a downstream interactor of ß-catenin, Pangolin which is the homologous protein of the T cell factor/lymphoid enhancer factor (TCF/LEF) in vertebrates is less understood in the research field of immunity. In this study, two isoforms of Litopenaeus vannamei Pangolin (LvPangolin1 and LvPangolin2) were identified. Phylogenetic tree analysis revealed that all of the Pangolin proteins from invertebrates were represented the same lineage. The mRNA expression profiles of the LvPangolin1 and LvPangolin2 genes differed across different tissues. The expression of LvPangolin1 and the amount of LvPangolin1and LvPangolin2 combined (LvPangolinComb) were significantly increased in the haemocyte, intestine and gill but reduced in the hepatopancreas after white spot syndrome virus (WSSV) challenge. The inhibition of LvPangolin1 but not LvPangolinComb significantly reduced the survival rates of L. vannamei after WSSV infection, while significantly higher WSSV viral loads in both LvPangolin1-inhibited and LvPangolinComb-inhibited L. vannamei were observed. Knockdown of LvPangolin by RNAi could distinctly decrease the expression of antimicrobial peptide (AMP) genes and their related transcription factors. All of these results indicate that LvPangolin plays a positive role in the response to WSSV infection and that this may be mediated through regulating the immune signalling pathways which control the expression of AMPs with antiviral abilities.


Subject(s)
Arthropod Proteins/immunology , Immunity, Innate/immunology , Penaeidae/immunology , TCF Transcription Factors/immunology , White spot syndrome virus 1/immunology , Amino Acid Sequence , Animals , Arthropod Proteins/genetics , Base Sequence , Cloning, Molecular , Hemocytes/immunology , Hemocytes/metabolism , Hemocytes/virology , Hepatopancreas/immunology , Hepatopancreas/metabolism , Hepatopancreas/virology , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Penaeidae/genetics , Penaeidae/virology , Phylogeny , Protein Isoforms/genetics , Protein Isoforms/immunology , Sequence Analysis, DNA , Survival Analysis , TCF Transcription Factors/classification , TCF Transcription Factors/genetics , Transcriptome/immunology , White spot syndrome virus 1/physiology
11.
Dev Comp Immunol ; 120: 103999, 2021 07.
Article in English | MEDLINE | ID: mdl-33444644

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) is a serious bacterial disease caused by V. parahaemolyticus strains which contain a virulent plasmid that encodes a binary pore-forming Pir toxin. Typically, these AHPND-causing bacteria first colonize in the shrimp stomach and then later cross to the hepatopancreas. To do this, they must pass through structural barriers which include the pliant cuticular lining of the stomach lumen. A previous transcriptomic study of shrimp challenged with the virulent 5HP strain of V. parahaemolyticus found significant upregulation of a contig associated with the cuticular proteins LvDD9A and LvDD9B. Here, we confirmed that the mRNA levels of these two genes were significantly upregulated not only in 5HP-infected shrimp, but also in the stomach of shrimp challenged with the white spot syndrome virus (WSSV). Using dsRNA-mediated gene silencing, we found that AHPND-causing bacteria migrated to the hepatopancreas within 3 h of AHPND infection in LvDD9A/B-silenced shrimp. Shrimp shell hardness of LvDD9A/B-silenced shrimp was also significantly decreased. Conversely, we found that silencing of LvDD9A/B significantly inhibited both WSSV gene expression and genome replication. Taken together, our data suggests that LvDD9A and LvDD9B are involved in both AHPND and WSSV infection. However, in AHPND, these cuticular proteins help to prevent bacterial migration from the stomach to the hepatopancreas, whereas in WSSV infection, they facilitate viral gene expression and genome replication.


Subject(s)
Carrier Proteins/metabolism , Penaeidae/immunology , Vibrio parahaemolyticus/immunology , White spot syndrome virus 1/immunology , Animals , Chitin/metabolism , Hepatopancreas/immunology , Hepatopancreas/microbiology , Host-Pathogen Interactions/immunology , Penaeidae/microbiology , Up-Regulation/immunology
12.
Dev Comp Immunol ; 117: 103966, 2021 04.
Article in English | MEDLINE | ID: mdl-33338519

ABSTRACT

Some members of genus Macrobrachium are important economically prawns and valuable objects for studying the innate immune defense mechanism of crustaceans. Studies have focused on immune responses against bacterial and fungal infections and have expanded to include antiviral immunity over the past two decades. Similar to all living organisms, prawns are exposed to viruses, including white spot syndrome virus, Macrobrachium rosenbergii nodavirus, and Decapod iridescent virus 1 and develop effective defense mechanisms. Here, we review current understanding of the antiviral host defense in two species of Macrobrachium. The main antiviral defense of Macrobrachium is the activation of intracellular signaling cascades, leading to the activation of cellular responses (apoptosis) and humoral responses (immune-related signaling pathways, antimicrobial and antiviral peptides, lectins, and prophenoloxidase-activating system).


Subject(s)
Arthropod Proteins/immunology , Immunity, Innate/immunology , Iridoviridae/immunology , Nodaviridae/immunology , Palaemonidae/immunology , White spot syndrome virus 1/immunology , Animals , Apoptosis/immunology , Arthropod Proteins/metabolism , Host-Pathogen Interactions/immunology , Iridoviridae/physiology , Nodaviridae/physiology , Palaemonidae/metabolism , Palaemonidae/virology , Signal Transduction/immunology , White spot syndrome virus 1/physiology
13.
Dev Comp Immunol ; 116: 103913, 2021 03.
Article in English | MEDLINE | ID: mdl-33137394

ABSTRACT

Protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase, a highly conserved enzyme widely expressed in eukaryotic cells, which accounts for a majority of the serine/threonine phosphatase activity in cells implicated in regulation of immune signaling pathways and antiviral response. However, most of studies about PP2A have been conducted in mammals but few in crustaceans. In this study, two subunits of PP2A (named as CqPP2Ab and CqPP2Ac) were characterized to be involved in white spot syndrome virus (WSSV) infection in the haematopoietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus. The open reading frame (ORF) of CqPP2Ab was 1341 bp encoding 446 amino acids with seven WD40 domains, and the ORF of CqPP2Ac was 930 bp encoding 309 amino acids with a PP2Ac domain. Tissue distribution analysis showed that the mRNA transcript of CqPP2Ab and CqPP2Ac were both widely expressed in all the tested tissues with the highest expression in hemocyte, followed by high expression in Hpt. The gene expressions of CqPP2Ab and CqPP2Ac were both significantly down-regulated at 6 h post WSSV infection (6 hpi) in Hpt cells. Importantly, the expression of viral immediate early gene IE1 and late viral gene envelope protein VP28 were both significantly increased post WSSV infection after gene silencing of CqPP2Ab or CqPP2Ac in Hpt cells, suggesting that CqPP2Ab and CqPP2Ac could inhibit WSSV infection in Hpt cells, probably by increasing the antimicrobial substances expression in consideration to the significantly reduced expression of anti-lipopolysaccharide factor, crustin, and lysozyme after gene silencing of CqPP2Ab or CqPP2Ac, respectively. These findings provide a new light on the mechanism of WSSV infection and the antiviral response in crustaceans.


Subject(s)
Antimicrobial Peptides/immunology , Arthropod Proteins/immunology , Astacoidea/immunology , Gene Expression Regulation/immunology , Protein Phosphatase 2/immunology , White spot syndrome virus 1/immunology , Amino Acid Sequence , Animals , Antimicrobial Peptides/genetics , Antimicrobial Peptides/metabolism , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Astacoidea/genetics , Astacoidea/virology , Base Sequence , Gene Expression Profiling/methods , Hematopoietic System/cytology , Hematopoietic System/immunology , Hematopoietic System/metabolism , Hemocytes/cytology , Hemocytes/immunology , Hemocytes/metabolism , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Protein Subunits/genetics , Protein Subunits/immunology , Protein Subunits/metabolism , Sequence Analysis, DNA/methods , Sequence Homology, Amino Acid , White spot syndrome virus 1/physiology
14.
Dev Comp Immunol ; 115: 103878, 2021 02.
Article in English | MEDLINE | ID: mdl-33007335

ABSTRACT

The Toll family of receptors are a group of conserved pattern recognition receptors (PRRs) essentially controlling the initiation of innate immune responses. The white spot syndrome virus (WSSV) and Vibrio parahaemolyticus are major pathogens of aquaculture shrimp. Previous study has suggested that expression of the Toll2 receptor in Pacific white shrimp Penaeus vannamei was up-regulated by white spot syndrome virus (WSSV) infection but did not significantly changed upon infection with the bacterial pathogen Vibrio parahaemolyticus. The current study intends to investigate the role of P. vannamei Toll2 in antibacterial and antiviral immunity. We demonstrated that compared with the control, the Toll2-silenced shrimp was more susceptible to V. parahaemolyticus infection, suggesting that Toll2 may play a positive role in antibacterial immunity. However, silencing of Toll2 significantly enhanced survivorship of shrimp infected with WSSV and reduced the viral load in shrimp tissues. The expression of WSSV structural protein VP28 was also inhibited in Toll2-silenced shrimp. Histologic pathology analysis further showed that the WSSV infection was attenuated in stomach tissues from Toll2-silenced shrimp. These suggested that Toll2 could promote WSSV infection in shrimp. In Toll2-silenced shrimp, expression of antimicrobial peptides ALFs and PENs was significantly changed, which may contribute to the role of Toll2 in antibacterial immunity and WSSV infection.


Subject(s)
Arthropod Proteins/metabolism , Penaeidae/immunology , Toll-Like Receptor 2/metabolism , Vibrio parahaemolyticus/immunology , White spot syndrome virus 1/immunology , Animals , Arthropod Proteins/genetics , Disease Susceptibility , Gene Knockdown Techniques , Penaeidae/metabolism , Penaeidae/microbiology , Toll-Like Receptor 2/genetics
15.
Mol Immunol ; 126: 14-24, 2020 10.
Article in English | MEDLINE | ID: mdl-32739720

ABSTRACT

Leucine-rich repeat-containing G-protein-coupled receptors (LGRs) form a subfamily of the large superfamily of G-protein-coupled receptors. LGRs can be divided into three groups. LGR2 from Drosophila melanogaster is involved in cuticle tanning (melanization and sclerotization). In this study, one LGR2 (MnLGR2) was identified from Macrobrachium nipponense. MnLGR2 has an open reading frame of 4515 bp encoding a protein with 1504 amino acids. MnLGR2 is comprised of a 7-transmembrane domain, 12 leucine-rich repeats, and 5 low-complexity regions. The highest expression level of MnLGR2 was observed in gills. The expression levels of MnLGR2 in gills and stomach could be regulated by bacterial challenge. Knockdown of MnLGR2 upregulated the expression of anti-microbial peptide (AMP) genes. Further study indicated that inhibition of AMP expression by MnLGR2 was through inhibition of relish-mediated AMP expression. In addition to the negative regulation of AMP expression, MnLGR2 participated in positive regulation of phenol oxidase (PO) activity and expression of proPO activating pathway-related genes (proPO-activating factor and proPO-activating enzymes). Therefore, MnLGR2 plays an important role in prawn innate immunity.


Subject(s)
Arthropod Proteins/metabolism , Palaemonidae/physiology , Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/immunology , Animals , Antimicrobial Cationic Peptides/immunology , Antimicrobial Cationic Peptides/metabolism , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Gastric Mucosa/metabolism , Gene Knockdown Techniques , Gills/metabolism , Host Microbial Interactions/immunology , Immunity, Innate , Leucine-Rich Repeat Proteins , Molting/physiology , Monophenol Monooxygenase/metabolism , Palaemonidae/microbiology , Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Staphylococcus aureus/immunology , Transcription Factors , Up-Regulation/immunology , Vibrio parahaemolyticus/immunology , White spot syndrome virus 1/immunology
16.
Genes (Basel) ; 11(7)2020 07 16.
Article in English | MEDLINE | ID: mdl-32708590

ABSTRACT

White Spot Syndrome Virus (WSSV) is one of the main threats to farming Litopenaeus vannamei, the most important crustacean commercialized in aquaculture worldwide. Here, we performed RNA-seq analyses in hepatopancreas and muscle from WSSV-negative (healthy) and WSSV-positive (unhealthy) L. vannamei, previously exposed to the virus, to obtain new insights about the molecular basis of resistance to WSSV. We detected 71% of our reads mapped against the recently described L. vannamei genome. This is the first report mapping RNA-seq transcripts from shrimps exposed to WSSV against the species reference genome. Differentially expressed gene (DEG) analyses were performed for four independent comparisons, and 13,338 DEGs were identified. When the redundancies and isoforms were disregarded, we observed 8351 and 6514 DEGs, respectively. Interestingly, after crossing the data, we detected a common set of DEGs for hepatopancreas and healthy shrimps, as well as another one for muscle and unhealthy shrimps. Our findings indicate that genes related to apoptosis, melanization, and the Imd pathway are likely to be involved in response to WSSV, offering knowledge about WSSV defense in shrimps exposed to the virus but not infected. These data present potential to be applied in further genetic studies in penaeids and other farmed shrimp species.


Subject(s)
Hepatopancreas/immunology , Immunity, Innate , Muscles/immunology , Penaeidae , White spot syndrome virus 1/physiology , Animals , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Profiling , Gene Expression Regulation/immunology , Hepatopancreas/metabolism , Immunity, Innate/genetics , Muscles/metabolism , Penaeidae/genetics , Penaeidae/immunology , Penaeidae/virology , RNA-Seq , Sequence Analysis, DNA , Transcriptome , White spot syndrome virus 1/immunology
17.
Mol Immunol ; 126: 1-7, 2020 10.
Article in English | MEDLINE | ID: mdl-32712503

ABSTRACT

Rel/nuclear factor (NF)-κB family of transcription factors paly vital roles in innate immunity response to bacterial and viral infection. Here, we cloned and identified a dorsal homologue (named as MnDorsal) from Macrobrachium nipponense. The full-length cDNA of MnDorsal is 2573 bp with a 1986 bp open reading frame that encodes 661 amino acids. Predicted MnDorsal protein contained a RHD (Rel homology domain), an IPT (Iglike, plexins, and transcriptions factors) domain, and two low complexity regions. Phylogenetic analysis showed that MnDorsal has a closer genetic distance with dorsal homologues from invertebrates. MnDorsal was widely expressed in a variety of tissues, including hemocytes, heart, hepatopancreas, gills, stomach, and intestine. Expression patterns analysis showed that the transcriptional level of MnDorsal in the gills was evidently up-regulated after Staphylococcus aureus, Vibrio parahaemolyticus, white spot syndrome virus, or polyinosinic-polycytidylic acid challenge, suggesting that MnDorsal participates in the immune defenses against pathogens and stimulant challenges. Additionally, the dsRNA-mediated RNA interference analysis showed that knockdown of MnDorsal can significantly inhibit the expression of anti-lipopolysaccharide factor (ALF) and crustin. Further studies revealed that the up-regulated expression of ALFs (MnALF2, MnALF3, and MnALF4) and crustins (MnCrustin3 and MnCrustin4) caused by S. aureus infection were obviously decreased after silencing MnDorsal. These findings suggest that MnDorsal positively regulate the expression of antibacterial peptides (AMPs) during S. aureus infection. Our study will promote to better understand the role of Toll-Dorsal-AMPs pathway in innate immunity response to gram-positive bacterial infection in crustacean.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Arthropod Proteins/metabolism , Immunity, Innate/genetics , Palaemonidae/immunology , Transcription Factors/metabolism , Animals , Antimicrobial Cationic Peptides/immunology , Aquaculture , Arthropod Proteins/genetics , Gene Expression Regulation/immunology , Gene Knockdown Techniques , Palaemonidae/genetics , Palaemonidae/metabolism , Palaemonidae/microbiology , Poly I-C/immunology , Staphylococcus aureus/immunology , Transcription Factors/genetics , Vibrio parahaemolyticus/immunology , White spot syndrome virus 1/immunology
18.
Dev Comp Immunol ; 109: 103708, 2020 08.
Article in English | MEDLINE | ID: mdl-32305304

ABSTRACT

C-type lectins (CTLs) are key recognition proteins in shrimp immunity. A few years ago we reviewed sequence information, ligand specificity, expression profiles and specific functions of the shrimp CTLs. Since then, multiple integrated studies that implemented biochemical approaches using both the native and recombinant proteins, functional genetic approaches using RNA interference, and mechanistic studies by analyzing protein-protein interactions were carried out. Results from these rigorous studies revealed the functions and mechanisms of action of selected members of the shrimp CTL family. This review focuses on this new knowledge, that includes unique structural aspects, functions, and mechanisms in host-pathogen interactions, the functional relevance of regions other than the C-type lectin domain, and the regulation of transcription of shrimp CTLs. Thus, this review aims to provide a detailed update of recent studies that have contributed to our better understanding of the shrimp immune events that involve CTL functions.


Subject(s)
Arthropod Proteins/immunology , Gene Expression/immunology , Lectins, C-Type/immunology , Penaeidae/immunology , White spot syndrome virus 1/immunology , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Endosomes/immunology , Endosomes/metabolism , Endosomes/virology , Hemocytes/immunology , Hemocytes/metabolism , Hemocytes/virology , Host-Pathogen Interactions/immunology , Immunity, Innate/immunology , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Penaeidae/genetics , Penaeidae/virology , White spot syndrome virus 1/physiology
19.
Fish Shellfish Immunol ; 101: 152-158, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32234560

ABSTRACT

White spot syndrome virus (WSSV) is known as one of the most lethal pathogenic viruses in shrimp causing massive damage to shrimp aquaculture industries. To date, no effective treatment or prevention has been found. In this study, five recombinant viral proteins VP15, VP19, VP24, VP26, and VP28 were expressed and purified in E. coli, which were employed as candidates against WSSV in Kuruma shrimp Marsupenaeus japonicus. In vivo antiviral assay in this study newly revealed that VP15 of major nucleocapsid protein, being known as a DNA-binding protein provided the substantial protection against the viral infection when pre-injected into shrimps. Furthermore, we also verified the immunogenic effects of purified VP15 and VP19 proteins produced in a silkworm-bacmid expression system. Taken together, our study identified VP15 as an effective candidate against WSSV infection in the Kuruma shrimp. It is interesting to uncover why and how VP15 is involved in the immune memory in shrimp in the future study.


Subject(s)
Nucleocapsid Proteins/immunology , Penaeidae/immunology , White spot syndrome virus 1/immunology , Animals , Bombyx/growth & development , Bombyx/physiology , Bombyx/virology , Escherichia coli/genetics , Host-Pathogen Interactions , Larva/growth & development , Larva/physiology , Larva/virology , Penaeidae/virology , Protective Agents
20.
Dev Comp Immunol ; 108: 103667, 2020 07.
Article in English | MEDLINE | ID: mdl-32147468

ABSTRACT

Viral glycoproteins are expressed by many viruses, and during infection they usually play very important roles, such as receptor attachment or membrane fusion. The mature virion of the white spot syndrome virus (WSSV) is unusual in that it contains no glycosylated proteins, and there are currently no reports of any glycosylation mechanisms in the pathogenesis of this virus. In this study, we cloned a glycosylase, mannosyl-glycoprotein endo-ß-N-acetylglucosaminidase (ENGase, EC 3.2.1.96), from Penaeus monodon and found that it was significantly up-regulated in WSSV-infected shrimp. A yeast two-hybrid assay showed that PmENGase interacted with both structural and non-structural proteins, and GST-pull down and co-immunoprecipitation (Co-IP) assays confirmed its interaction with the envelope protein VP41B. In the WSSV challenge tests, the cumulative mortality and viral copy number were significantly decreased in the PmEngase-silenced shrimp, from which we conclude that shrimp glycosylase interacts with WSSV in a way that benefits the virus. Lastly, we speculate that the deglycosylation activity of PmENGase might account for the absence of glycosylated proteins in the WSSV virion.


Subject(s)
Arthropod Proteins/metabolism , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Penaeidae/virology , Viral Envelope Proteins/metabolism , White spot syndrome virus 1/pathogenicity , Animals , Aquaculture , Arthropod Proteins/genetics , Arthropod Proteins/isolation & purification , Cell Line , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/genetics , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/isolation & purification , Penaeidae/immunology , Protein Binding/immunology , RNA Interference , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Ribonucleases/metabolism , Two-Hybrid System Techniques , Up-Regulation/immunology , White spot syndrome virus 1/immunology , White spot syndrome virus 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...