Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
1.
Mol Med ; 30(1): 93, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898476

ABSTRACT

BACKGROUND: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS: Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS: Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION: This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.


Subject(s)
Asthma , Autophagy , Epithelial Cells , Epithelial-Mesenchymal Transition , Wnt-5a Protein , Humans , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Asthma/metabolism , Asthma/pathology , Asthma/genetics , Epithelial Cells/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Bronchi/metabolism , Bronchi/pathology , Male , Cell Line , Female , Middle Aged , Signal Transduction , Adult
2.
Biosci Biotechnol Biochem ; 88(7): 776-783, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38714325

ABSTRACT

Atherosclerosis (AS) is the major cause of multiple cardiovascular diseases. In addition, the lipid accumulation of human vascular smooth muscle cells (HVSMCs) can cause the occurrence of AS. Secreted frizzled-related protein 5 (Sfrp5) was known to be downregulated in AS; however, the detailed function of Sfrp5 in HVSMCs remains unclear. Specifically, we found that Sfrp5 expression in oxLDL-treated HVSMCs was downregulated. Sfrp5 overexpression inhibited the viability of HVSMCs induced by oxLDL. In addition, oxLDL-induced proliferation and migration in HVSMCs were abolished by Sfrp5 overexpression. Sfrp5 overexpression reduced oxLDL-caused oxidative stress, lipid accumulation, and inflammation in HVSMCs. Meanwhile, oxLDL treatment increased the expressions of Wnt5a, c-Myc, and ß-catenin in HVSMCs, while this phenomenon was rescued by Sfrp5 overexpression. Furthermore, the inhibitory effect of Sfrp5 upregulation on the viability and migration of HVSMCs was reversed by R-spondin 1. These results indicate that Sfrp5 overexpression could reverse oxLDL-induced lipid accumulation in HVSMCs through inactivating Wnt5a/ß-catenin signaling pathway.


Subject(s)
Cell Movement , Lipid Metabolism , Lipoproteins, LDL , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Wnt-5a Protein , Humans , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Cell Movement/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Oxidative Stress , beta Catenin/metabolism , beta Catenin/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Signal Transduction
4.
J Clin Invest ; 134(10)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38747285

ABSTRACT

Transforming growth factor ß (TGF-ß) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-ß remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-ß in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-ß. The activation of latent TGF-ß requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-ß, rebalanced TGF-ß signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-ß in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.


Subject(s)
Fibroblasts , Fibrosis , Transforming Growth Factor beta , Wnt-5a Protein , rho-Associated Kinases , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Animals , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Mice , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Scleroderma, Systemic/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/genetics , Mice, Knockout , Wnt Proteins/metabolism , Wnt Proteins/genetics , MAP Kinase Signaling System , Myofibroblasts/metabolism , Myofibroblasts/pathology , Signal Transduction , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/genetics
5.
Development ; 151(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38814743

ABSTRACT

Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral to calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. Time-lapse light-sheet imaging of mouse embryos revealed calvarial progenitors intercalate in 3D in the CM above the eye, and exhibit protrusive and crawling activity more apically. CM cells express non-canonical Wnt/planar cell polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand Wnt5a-/- mutants have less dynamic cell rearrangements and protrusive activity. Loss of CM-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of Osx+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.


Subject(s)
Mesoderm , Morphogenesis , Osteoblasts , Skull , Wnt Proteins , Animals , Osteoblasts/metabolism , Osteoblasts/cytology , Skull/embryology , Mice , Mesoderm/cytology , Mesoderm/metabolism , Wnt Proteins/metabolism , Wnt Proteins/genetics , Cell Polarity , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Cell Movement , Cell Proliferation
6.
Acta Neuropathol Commun ; 12(1): 78, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769536

ABSTRACT

Neurologic Rosai-Dorfman disease (RDD) is a rare type of non-Langerhans cell histiocytosis that affects the central nervous system. Most neurologic RDDs grow like meningiomas, have clear boundaries, and can be completely resected. However, a few RDDs are invasive and aggressive, and no effective treatment options are available because the molecular mechanisms involved remain unknown. Here, we report a case of deadly and glucocorticoid-resistant neurologic RDD and explore its possible pathogenic mechanisms via single-cell RNA sequencing. First, we identified two distinct but evolutionarily related histiocyte subpopulations (the C1Q+ and SPP1+ histiocytes) that accumulated in the biopsy sample. The expression of genes in the KRAS signaling pathway was upregulated, indicating gain-of-function of KRAS mutations. The C1Q+ and SPP1+ histiocytes were highly differentiated and arrested in the G1 phase, excluding the idea that RDD is a lympho-histio-proliferative disorder. Second, although C1Q+ histiocytes were the primary RDD cell type, SPP1+ histiocytes highly expressed several severe inflammation-related and invasive factors, such as WNT5A, IL-6, and MMP12, suggesting that SPP1+ histiocytes plays a central role in driving the progression of this disease. Third, oligodendrocytes were found to be the prominent cell type that initiates RDD via MIF and may resist glucocorticoid treatment via the MDK and PTN signaling pathways. In summary, in this case, we report a rare presentation of neurologic RDD and provided new insight into the pathogenic mechanisms of progressive neurologic RDD. This study will also offer evidence for developing precision therapies targeting this complex disease.


Subject(s)
Histiocytosis, Sinus , Single-Cell Analysis , Humans , Male , Histiocytes/pathology , Histiocytosis, Sinus/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Middle Aged
7.
Circ Res ; 135(1): 76-92, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38747146

ABSTRACT

BACKGROUND: Hypoxia and oxidative stress contribute to the development of pulmonary hypertension (PH). tRNA-derived fragments play important roles in RNA interference and cell proliferation, but their epitranscriptional roles in PH development have not been investigated. We aimed to gain insight into the mechanistic contribution of oxidative stress-induced 8-oxoguanine in pulmonary vascular remodeling. METHODS: Through small RNA modification array analysis and quantitative polymerase chain reaction, a significant upregulation of the 8-oxoguanine -modified tRF-1-AspGTC was found in the lung tissues and the serum of patients with PH. RESULTS: This modification occurs at the position 5 of the tRF-1-AspGTC (5o8G tRF). Inhibition of the 5o8G tRF reversed hypoxia-induced proliferation and apoptosis resistance in pulmonary artery smooth muscle cells. Further investigation unveiled that the 5o8G tRF retargeted mRNA of WNT5A (Wingless-type MMTV integration site family, member 5A) and CASP3 (Caspase3) and inhibited their expression. Ultimately, BMPR2 (Bone morphogenetic protein receptor 2) -reactive oxygen species/5o8G tRF/WNT5A signaling pathway exacerbated the progression of PH. CONCLUSIONS: Our study highlights the role of site-specific 8-oxoguanine-modified tRF in promoting the development of PH. Our findings present a promising therapeutic avenue for managing PH and propose 5o8G tRF as a potential innovative marker for diagnosing this disease.


Subject(s)
Biomarkers , Bone Morphogenetic Protein Receptors, Type II , Hypertension, Pulmonary , Pulmonary Artery , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/etiology , Humans , Bone Morphogenetic Protein Receptors, Type II/metabolism , Bone Morphogenetic Protein Receptors, Type II/genetics , Animals , Biomarkers/metabolism , Biomarkers/blood , Pulmonary Artery/metabolism , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Guanine/analogs & derivatives , Guanine/metabolism , Male , Oxidative Stress , Caspase 3/metabolism , Myocytes, Smooth Muscle/metabolism , Cell Proliferation , Apoptosis , Cells, Cultured , Vascular Remodeling , Female , Rats , Reactive Oxygen Species/metabolism , Muscle, Smooth, Vascular/metabolism
8.
Pathol Res Pract ; 259: 155369, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820928

ABSTRACT

Bladder cancer is a common malignancy with a poor prognosis worldwide. Positive cofactor 4 (PC4) is widely reported to promote malignant phenotypes in various tumors. Nonetheless, the biological function and mechanism of PC4 in bladder cancer remain unclear. Here, for the first time, we report that PC4 is elevated in bladder cancer and is associated with patient survival. Moreover, PC4 deficiency obviously inhibited bladder cancer cell proliferation and metastasis by reducing the expression of genes related to cancer stemness (CD44, CD47, KLF4 and c-Myc). Through RNA-seq and experimental verification, we found that activation of the Wnt5a/ß-catenin pathway is involved in the malignant function of PC4. Mechanistically, PC4 directly interacts with Sp1 to promote Wnt5a transcription. Thus, our study furthers our understanding of the role of PC4 in cancer stemness regulation and provides a promising strategy for bladder cancer therapy.


Subject(s)
Gene Expression Regulation, Neoplastic , Kruppel-Like Factor 4 , Neoplastic Stem Cells , Urinary Bladder Neoplasms , Wnt-5a Protein , Animals , Humans , Mice , beta Catenin/metabolism , beta Catenin/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Kruppel-Like Factor 4/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Wnt Signaling Pathway/physiology , Wnt Signaling Pathway/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics
9.
Cancer Med ; 13(7): e7148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558536

ABSTRACT

BACKGROUND: Non-canonical WNT family (WNT5A pathway) signaling via WNT5A through ROR1 and its partner, ROR2, or Frizzled2 (FZD2) is linked to processes driving tumorigenesis and therapy resistance. We utilized a large dataset of urothelial carcinoma (UC) tumors to characterize non-canonical WNT signaling through WNT5A, ROR1, ROR2, or FZD2 expression. METHODS: NextGen Sequencing of DNA (592 genes or WES)/RNA (WTS) was performed for 4125 UC tumors submitted to Caris Life Sciences. High and low expression of WNT5A, ROR1, ROR2, and FZD2 was defined as ≥ top and

Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism
10.
Cell Signal ; 119: 111171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604345

ABSTRACT

BACKGROUND: Psoriasis is a chronic, inflammatory skin disease. MicroRNAs (miRNAs) are an abundant class of non-coding RNA molecules. Recent studies have shown that multiple miRNAs are abnormally expressed in patients with psoriasis. The upregulation of miR-374a-5p has been associated with psoriasis severity. However, the specific role of miR-374a-5p in the pathogenesis of psoriasis remain unclear. METHODS: qRT-PCR was employed to validate the expression of miR-374a-5p in psoriatic lesions and in a psoriasis-like cell model constructed using a mixture of M5 (IL-17A, IL-22, OSM, IL-1α, and TNF-α). HaCaT cells were transfected with miR-374a-5p mimic/inhibitor, and assays including EdU, CCK-8, and flow cytometry were conducted to evaluate the effect of miR-374a-5p on cell proliferation. The expression of inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α was verified by qRT-PCR. Bioinformatics analysis and dual-luciferase reporter gene assay were performed to detect the downstream target genes and upstream transcription factors of miR-374a-5p, followed by validation of their expression through qRT-PCR and Western blotting. A psoriasis-like mouse model was established using imiquimod cream topical application. The psoriasis area and severity index scoring, hematoxylin-eosin histology staining, and Ki67 immunohistochemistry were employed to validate the effect of miR-374a-5p on the psoriatic inflammation phenotype after intradermal injection of miR-374a-5p agomir/NC. Additionally, the expression of pathway-related molecules and inflammatory factors such as IL-1ß, IL-17a, and TNF-α was verified by immunohistochemistry. RESULTS: Upregulation of miR-374a-5p was observed in psoriatic lesions and the psoriasis-like cell model. In vitro experiments demonstrated that miR-374a-5p not only promoted the proliferation of HaCaT cells but also upregulated the expression of inflammatory cytokines, including IL-1ß, IL-6, IL-8, and TNF-α. Furthermore, miR-374a-5p promoted skin inflammation and epidermal thickening in the Imiquimod-induced psoriasis-like mouse model. Mechanistic studies revealed that miR-374a-5p led to downregulation of WIF1, thereby activating the Wnt5a/NF-κB signaling pathway. The transcription factor p65 encoded by RELA, as a subunit of NF-κB, further upregulated the expression of miR-374a-5p upon activation. This positive feedback loop promoted keratinocyte proliferation and abnormal inflammation, thereby facilitating the development of psoriasis. CONCLUSION: Our findings elucidate the role of miR-374a-5p upregulation in the pathogenesis of psoriasis through inhibition of WIF1 and activation of the Wnt5a/NF-κB pathway, providing new potential therapeutic targets for psoriasis.


Subject(s)
Adaptor Proteins, Signal Transducing , MicroRNAs , NF-kappa B , Psoriasis , Wnt-5a Protein , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation , Down-Regulation , HaCaT Cells , Imiquimod , MicroRNAs/metabolism , MicroRNAs/genetics , NF-kappa B/metabolism , Psoriasis/genetics , Psoriasis/pathology , Psoriasis/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Up-Regulation , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics
11.
Dev Cell ; 59(10): 1302-1316.e5, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38569553

ABSTRACT

The planar cell polarity (PCP) complex is speculated to function in murine lung development, where branching morphogenesis generates an epithelial tree whose distal tips expand dramatically during sacculation. Here, we show that PCP is dispensable in the airway epithelium for sacculation. Rather, we find a Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme: loss of Vangl1/2 inhibits mesenchymal thinning and expansion of the saccular epithelium. Further, loss of mesenchymal Wnt5a mimics sacculation defects observed in Vangl2-mutant lungs, implicating mesenchymal Wnt5a/Vangl signaling as a key regulator of late lung morphogenesis. A computational model predicts that sacculation requires a fluid mesenchymal compartment. Lineage-tracing and cell-shape analyses are consistent with the mesenchyme acting as a fluid tissue, suggesting that loss of Vangl1/2 impacts the ability of mesenchymal cells to exchange neighbors. Our data thus identify an explicit function for Vangl and the pulmonary mesenchyme in actively shaping the saccular epithelium.


Subject(s)
Cell Polarity , Lung , Mesoderm , Morphogenesis , Nerve Tissue Proteins , Animals , Mesoderm/metabolism , Mice , Lung/metabolism , Lung/pathology , Lung/embryology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Signal Transduction , Organogenesis/genetics , Receptors, G-Protein-Coupled
12.
In Vitro Cell Dev Biol Anim ; 60(5): 489-501, 2024 May.
Article in English | MEDLINE | ID: mdl-38587578

ABSTRACT

Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the ß-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.


Subject(s)
Receptor Tyrosine Kinase-like Orphan Receptors , Wnt-5a Protein , Humans , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Animals , Wnt Signaling Pathway , Signal Transduction , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology
13.
Genes Cells ; 29(6): 503-511, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531660

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory cancers with the worst prognosis. Although several molecules are known to be associated with the progression of PDAC, the molecular mechanisms underlying the progression of PDAC remain largely elusive. The Ror-family receptors, Ror1 and Ror2, which act as a receptor(s) for Wnt-family ligands, particularly Wnt5a, are involved in the progression of various types of cancers. Here, we show that higher expression of Ror1 and Wnt5b, but not Ror2, are associated with poorer prognosis of PDAC patients, and that Ror1 and Wnt5b are expressed highly in a type of PDAC cell lines, PANC-1 cells. Knockdown of either Ror1 or Wnt5b in PANC-1 cells inhibited their proliferation significantly in vitro, and knockout of Ror1 in PANC-1 cells resulted in a significant inhibition of tumor growth in vivo. Furthermore, we show that Wnt5b-Ror1 signaling in PANC-1 cells promotes their proliferation in a cell-autonomous manner by modulating our experimental setting in vitro. Collectively, these findings indicate that Wnt5b-Ror1 signaling might play an important role in the progression of some if not all of PDAC by promoting proliferation.


Subject(s)
Carcinoma, Pancreatic Ductal , Cell Proliferation , Pancreatic Neoplasms , Receptor Tyrosine Kinase-like Orphan Receptors , Wnt-5a Protein , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mice, Nude , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Signal Transduction , Wnt Proteins/metabolism , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics
14.
Histol Histopathol ; 39(6): 715-727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38445662

ABSTRACT

Wnt ligands belong to a family of secreted glycoproteins in which binding to a range of receptors/co-receptors activates several intracellular pathways. WNT5A, a member of the Wnt family, is classified as a non-canonical Wnt whose activation triggers planar cell polarity (PCP) and Ca+2 downstream pathways. Aberrant expression of WNT5A has been shown to play both protective and harmful roles in an array of conditions, such as inflammatory disease and cancer. In the present study, using histological, immunohistochemical, and molecular methods, we investigated the expression of two isoforms of WNT5A, WNT5A-Short (WNT5A-S) and WNT5A-Long (WNT5A-L) in bladder urothelial carcinoma (UC). Three UC cell lines (RT4, J82, and T24), as well as a normal urothelial cell line, and formalin-fixed, paraffin-embedded (FFPE) transurethral resection (TUR) tissue samples from 17 patients diagnosed with UC were included in the study. WNT5A-L was the predominantly expressed isoform in urothelial cells, although WNT5A-S was also detectable. Further, although no statistically significant difference was found between the percentage of WNT5A-S transcripts in low-grade versus high-grade tumors, we did find a difference between the percentage of WNT5A-S transcripts found in non-invasion versus invasion of the lamina propria, subgroups of non-muscle-invasive tumors. In conclusion, both WNT5A-S and WNT5A-L isoforms are expressed in UC, and the percentage of their expression levels suggests that a higher proportion of WNT5A-S transcription may be associated with lamina propria invasion, a process preceding muscle invasion.


Subject(s)
Carcinoma, Transitional Cell , Protein Isoforms , Urinary Bladder Neoplasms , Wnt-5a Protein , Humans , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Protein Isoforms/metabolism , Aged , Male , Female , Middle Aged , Cell Line, Tumor , Carcinoma, Transitional Cell/pathology , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/genetics , Urothelium/pathology , Urothelium/metabolism , Immunohistochemistry , Aged, 80 and over , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
15.
J Appl Oral Sci ; 32: e20230353, 2024.
Article in English | MEDLINE | ID: mdl-38359266

ABSTRACT

BACKGROUND: Associations between the WNT5A rs566926 variant and non-syndromic orofacial cleft (NSOC) have been reported in different populations. OBJECTIVE: This study aimed to investigate the role of the rs566926 single nucleotide polymorphism (SNP) in WNT5A and its interactions with SNPs in BMP4, FGFR1, GREM1, MMP2, and WNT3 in the occurrence of NSOC in a Brazilian population. METHODOLOGY: A case-control genetic association study was carried out involving participants from four regions of Brazil, totaling 801 patients with non-syndromic cleft lip with or without cleft palate (NSCL±P), 273 patients with cleft palate only (NSCPO), and 881 health volunteers without any congenital condition (control). Applying TaqMan allelic discrimination assays, we evaluated WNT5A rs566926 in an ancestry-structured multiple logistic regression analysis, considering sex and genomic ancestry as covariates. Interactions between rs566926 and variants in genes involved in the WNT5A signaling pathway (BMP4, FGFR1, GREM1, MMP2, and WNT3) were also explored. RESULTS: WNT5A rs566926 was significantly associated with an increased risk of NSCL±P, particularly due to a strong association with non-syndromic cleft lip only (NSCLO), in which the C allele increased the risk by 32% (OR: 1.32, 95% CI: 1.04-1.67, p=0.01). According to the proportions of European and African genomic ancestry, the association of rs566926 reached significant levels only in patients with European ancestry. Multiple interactions were detected between WNT5A rs566926 and BMP4 rs2071047, GREM1 rs16969681 and rs16969862, and FGFR1 rs7829058. CONCLUSION: The WNT5A rs566926 polymorphism was associated with NSCL±P, particularly in individuals with NSCLO and high European ancestry. Epistatic interactions involving WNT5A rs566926 and variants in BMP4, GREM1, and FGFR1 may contribute to the risk of NSCL±P in the Brazilian population.


Subject(s)
Cleft Lip , Cleft Palate , Humans , Cleft Lip/genetics , Cleft Palate/genetics , Genotype , Brazil , Matrix Metalloproteinase 2 , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , Wnt-5a Protein/genetics
16.
Cell Mol Life Sci ; 81(1): 93, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367191

ABSTRACT

Stem Leydig cells (SLCs) are essential for maintaining normal spermatogenesis as the significant component of testis microenvironment and gonadal aging. Although progress has been achieved in the regulation of male germ cells in mammals and humans, it remains unknown about the genes and signaling pathways of human SLCs. Here we have demonstrated, for the first time, that WNT5A (Wnt family member 5a) mediates the proliferation, apoptosis, and stemness of human SLCs, namely NGFR+ Leydig cells. We revealed that NGFR+ Leydig cells expressed NGFR, PDGFRA, NES, NR2F2, and THY1, hallmarks for SLCs. RNA-sequencing showed that WNT5A was expressed at a higher level in human SLCs than non-SLCs, while immunohistochemistry and Western blots further illustrated that WNT5A was predominantly expressed in human SLCs. Notably, CCK-8, EdU and Western blots displayed that WNT5A enhanced the proliferation and DNA synthesis and retained stemness of human SLCs, whereas flow cytometry and TUNEL analyses demonstrated that WNT5A inhibited the apoptosis of these cells. WNT5A knockdown caused an increase in LC lineage differentiation of human SLCs and reversed the effect of WNT5A overexpression on fate decisions of human SLCs. In addition, WNT5A silencing  resulted in the decreases in nuclear translocation of ß-catenin and expression levels of c-Myc, CD44, and Cyclin D1. Collectively, these results implicate that WNT5A regulates the proliferation, apoptosis and stemness of human SLCs through the activation of the ß-catenin signaling pathway. This study thus provides a novel molecular mechanism underlying the fate determinations of human SLCs, and it offers a new insight into the niche regulation of human testis.


Subject(s)
Leydig Cells , beta Catenin , Animals , Humans , Male , Leydig Cells/metabolism , beta Catenin/metabolism , Testis/metabolism , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , Signal Transduction , Apoptosis , Cell Proliferation , Wnt Signaling Pathway/genetics , Mammals/metabolism
17.
Mol Cancer Res ; 22(5): 495-507, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38334461

ABSTRACT

Adhesion to and clearance of the mesothelial monolayer are key early events in metastatic seeding of ovarian cancer. ROR2 is a receptor tyrosine kinase that interacts with Wnt5a ligand to activate noncanonical Wnt signaling and has been previously shown to be upregulated in ovarian cancer tissue. However, no prior study has evaluated the mechanistic role of ROR2 in ovarian cancer. Through a cellular high-throughput genetic screen, we independently identified ROR2 as a driver of ovarian tumor cell adhesion and invasion. ROR2 expression in ovarian tumor cells serves to drive directed cell migration preferentially toward areas of high Wnt5a ligand, such as the mesothelial lined omentum. In addition, ROR2 promotes ovarian tumor cell adhesion and clearance of a mesothelial monolayer. Depletion of ROR2, in tumor cells, reduces metastatic tumor burden in a syngeneic model of ovarian cancer. These findings support the role of ROR2 in ovarian tumor cells as a critical factor contributing to the early steps of metastasis. Therapeutic targeting of the ROR2/Wnt5a signaling axis could provide a means of improving treatment for patients with advanced ovarian cancer. IMPLICATIONS: This study demonstrates that ROR2 in ovarian cancer cells is important for directed migration to the metastatic niche and provides a potential signaling axis of interest for therapeutic targeting in ovarian cancer.


Subject(s)
Cell Movement , Neoplasm Invasiveness , Ovarian Neoplasms , Receptor Tyrosine Kinase-like Orphan Receptors , Wnt-5a Protein , Female , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Humans , Mice , Animals , Cell Line, Tumor , Wnt Signaling Pathway , Signal Transduction
18.
Nat Commun ; 15(1): 36, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167296

ABSTRACT

While canonical Wnt signaling is well recognized for its crucial regulatory functions in cell fate decisions, the role of non-canonical Wnt signaling in adult stem cells remains elusive and contradictory. Here, we identified Mcam, a potential member of the non-canonical Wnt signaling, as an important negative regulator of mammary gland epithelial cells (MECs) by genome-scale CRISPR-Cas9 knockout (GeCKO) library screening. Loss of Mcam increases the clonogenicity and regenerative capacity of MECs, and promotes the proliferation, differentiation, and ductal morphogenesis of mammary epithelial in knockout mice. Mechanically, Mcam knockout recruits and polarizes macrophages through the Il4-Stat6 axis, thereby promoting secretion of the non-canonical Wnt ligand Wnt5a and its binding to the non-canonical Wnt signaling receptor Ryk to induce the above phenotypes. These findings reveal Mcam roles in mammary gland development by orchestrating communications between MECs and macrophages via a Wnt5a/Ryk axis, providing evidences for non-canonical Wnt signaling in mammary development.


Subject(s)
Wnt Proteins , Wnt Signaling Pathway , Mice , Animals , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , Cell Differentiation , Morphogenesis , Mice, Knockout , Macrophages/metabolism , Receptor Protein-Tyrosine Kinases/metabolism
19.
J Invest Dermatol ; 144(7): 1568-1578.e5, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38246584

ABSTRACT

Prurigo nodularis (PN) is an intensely pruritic, inflammatory skin disease with a poorly understood pathogenesis. We performed single-cell transcriptomic profiling of 28,695 lesional and nonlesional PN cells. Lesional PN has increased dysregulated fibroblasts (FBs) and myofibroblasts. FBs in lesional PN were shifted toward a cancer-associated FB-like phenotype, with POSTN+WNT5A+ cancer-associated FBs increased in PN and similarly so in squamous cell carcinoma. A multicenter cohort study revealed an increased risk of squamous cell carcinoma and cancer-associated FB-associated malignancies (breast and colorectal) in patients with PN. Systemic fibroproliferative diseases (renal sclerosis and idiopathic pulmonary fibrosis) were upregulated in patients with PN. Ligand-receptor analyses demonstrated an FB neuronal axis with FB-derived WNT5A and periostin interactions with neuronal receptors melanoma cell adhesion molecule and ITGAV. These findings identify a pathogenic and targetable POSTN+WNT5A+ FB subpopulation that may predispose cancer-associated FB-associated malignancies in patients with PN.


Subject(s)
Cell Adhesion Molecules , Fibroblasts , Prurigo , Single-Cell Analysis , Wnt-5a Protein , Humans , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Prurigo/pathology , Prurigo/metabolism , Prurigo/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Female , Male , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Middle Aged , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Gene Expression Profiling , Sequence Analysis, RNA , Adult
20.
BMC Infect Dis ; 23(1): 860, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062395

ABSTRACT

BACKGROUND: Aberrant Wnt5a expression contributes to immunity, inflammation and tissue damage. However, it remains unknown whether Wnt5a is associated with liver injury in chronic hepatitis B virus (HBV) infection. We aimed to explore the potential role of Wnt5a expression in liver injury caused by chronic HBV infection. METHODS: Wnt5a mRNA levels in peripheral blood mononuclear cells (PBMCs) were analyzed in 31 acute-on-chronic hepatitis B liver failure (ACHBLF) patients, 82 chronic hepatitis B (CHB) patients, and 20 healthy controls using quantitative real-time polymerase chain reaction. Intrahepatic Wnt5a protein expression from 32 chronic HBV infection patients and 6 normal controls was evaluated by immunohistochemical staining. RESULTS: Wnt5a mRNA expression was increased in CHB patients and ACHBLF patients compared to healthy controls and correlated positively with liver injury markers. Additionally, there was a significant correlation between Wnt5a mRNA expression and HBV DNA load in all patients and CHB patients but not in ACHBLF patients. Furthermore, intrahepatic Wnt5a protein expression was elevated in chronic HBV infection patients compared to that in normal controls. Moreover, chronic HBV infection patients with higher hepatic inflammatory grades had increased intrahepatic Wnt5a protein expression compared with lower hepatic inflammatory grades. In addition, the cut-off value of 12.59 for Wnt5a mRNA level was a strong indicator in predicting ACHBLF in CHB patients. CONCLUSIONS: We found that Wnt5a expression was associated with liver injury in chronic HBV infection patients. Wnt5a might be involved in exacerbation of chronic HBV infection.


Subject(s)
Acute-On-Chronic Liver Failure , Hepatitis B, Chronic , Hepatitis B , Humans , Acute-On-Chronic Liver Failure/complications , Hepatitis B/complications , Hepatitis B virus/genetics , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/genetics , Leukocytes, Mononuclear/metabolism , RNA, Messenger/genetics , Wnt-5a Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...