Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.081
1.
Nat Commun ; 15(1): 4781, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839766

Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.


Sex Determination Processes , X Chromosome , Y Chromosome , Animals , Male , Female , Sex Determination Processes/genetics , Y Chromosome/genetics , X Chromosome/genetics , Amphibians/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , RNA, Untranslated/genetics , Genome , Evolution, Molecular
2.
Cell Death Dis ; 15(6): 396, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839795

Klinefelter syndrome (47,XXY) causes infertility with a testicular histology comprising two types of Sertoli cell-only tubules, representing mature and immature-like Sertoli cells, and occasionally focal spermatogenesis. Here, we show that the immature-like Sertoli cells highly expressed XIST and had two X-chromosomes, while the mature Sertoli cells lacked XIST expression and had only one X-chromosome. Sertoli cells supporting focal spermatogenesis also lacked XIST expression and the additional X-chromosome, while the spermatogonia expressed XIST despite having only one X-chromosome. XIST was expressed in Sertoli cells until puberty, where a gradual loss was observed. Our results suggest that a micro-mosaic loss of the additional X-chromosome is needed for Sertoli cells to mature and to allow focal spermatogenesis.


Klinefelter Syndrome , RNA, Long Noncoding , Sertoli Cells , Spermatogenesis , Klinefelter Syndrome/genetics , Klinefelter Syndrome/pathology , Klinefelter Syndrome/metabolism , Male , Sertoli Cells/metabolism , Sertoli Cells/pathology , Spermatogenesis/genetics , Animals , Humans , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Chromosomes, Human, X/genetics , X Chromosome/genetics
3.
Nat Commun ; 15(1): 4983, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38862555

Engineered sex ratio distorters (SRDs) have been proposed as a powerful component of genetic control strategies designed to suppress harmful insect pests. Two types of CRISPR-based SRD mechanisms have been proposed: X-shredding, which eliminates X-bearing sperm, and X-poisoning, which eliminates females inheriting disrupted X-chromosomes. These differences can have a profound impact on the population dynamics of SRDs when linked to the Y-chromosome: an X-shredder is invasive, constituting a classical meiotic Y-drive, whereas X-poisoning is self-limiting, unable to invade but also insulated from selection. Here, we establish X-poisoning strains in the malaria vector Anopheles gambiae targeting three X-linked genes during spermatogenesis, resulting in male bias. We find that sex distortion is primarily driven by a loss of X-bearing sperm, with limited evidence for postzygotic lethality of female progeny. By leveraging a Drosophila melanogaster model, we show unambiguously that engineered SRD traits can operate differently in these two insects. Unlike X-shredding, X-poisoning could theoretically operate at early stages of spermatogenesis. We therefore explore premeiotic Cas9 expression to target the mosquito X-chromosome. We find that, by pre-empting the onset of meiotic sex chromosome inactivation, this approach may enable the development of Y-linked SRDs if mutagenesis of spermatogenesis-essential genes is functionally balanced.


Anopheles , Drosophila melanogaster , Gene Drive Technology , Sex Ratio , Spermatogenesis , X Chromosome , Animals , Male , Female , Anopheles/genetics , X Chromosome/genetics , Drosophila melanogaster/genetics , Gene Drive Technology/methods , Spermatogenesis/genetics , Mosquito Vectors/genetics , Genes, X-Linked , CRISPR-Cas Systems , Spermatozoa/metabolism , Animals, Genetically Modified
4.
Mol Cell ; 84(10): 1870-1885.e9, 2024 May 16.
Article En | MEDLINE | ID: mdl-38759625

How Polycomb repressive complex 2 (PRC2) is regulated by RNA remains an unsolved problem. Although PRC2 binds G-tracts with the potential to form RNA G-quadruplexes (rG4s), whether rG4s fold extensively in vivo and whether PRC2 binds folded or unfolded rG4 are unknown. Using the X-inactivation model in mouse embryonic stem cells, here we identify multiple folded rG4s in Xist RNA and demonstrate that PRC2 preferentially binds folded rG4s. High-affinity rG4 binding inhibits PRC2's histone methyltransferase activity, and stabilizing rG4 in vivo antagonizes H3 at lysine 27 (H3K27me3) enrichment on the inactive X chromosome. Surprisingly, mutagenizing the rG4 does not affect PRC2 recruitment but promotes its release and catalytic activation on chromatin. H3K27me3 marks are misplaced, however, and gene silencing is compromised. Xist-PRC2 complexes become entrapped in the S1 chromosome compartment, precluding the required translocation into the S2 compartment. Thus, Xist rG4 folding controls PRC2 activity, H3K27me3 enrichment, and the stepwise regulation of chromosome-wide gene silencing.


G-Quadruplexes , Histones , Polycomb Repressive Complex 2 , RNA, Long Noncoding , X Chromosome Inactivation , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Histones/metabolism , Histones/genetics , Mouse Embryonic Stem Cells/metabolism , Chromatin/metabolism , Chromatin/genetics , X Chromosome/genetics , X Chromosome/metabolism , Gene Silencing , RNA Folding , Protein Binding
5.
Anim Biotechnol ; 35(1): 2323592, 2024 Nov.
Article En | MEDLINE | ID: mdl-38770771

Nucleic acid aptamers have been used in the past for the development of diagnostic methods against a number of targets such as bacteria, pesticides, cancer cells etc. In the present study, six rounds of Cell-SELEX were performed on a ssDNA aptamer library against X-enriched sperm cells from Sahiwal breed cattle. Sequencing was used to examine the aptamer sequences that shown affinity for sperm carrying the X chromosome in order to find any possible X-sperm-specific sequences. Out of 35 identified sequences, 14 were selected based on bioinformatics analysis like G-Score and Mfold structures. Further validation of their specificity was done via fluorescence microscopy. The interaction of biotinylated-aptamer with sperm was also determined by visualizing the binding of streptavidin coated magnetic beads on the head region of the sperm under bright field microscopy. Finally, a real-time experiment was designed for the validation of X-sperm enrichment by synthesized aptamer sequences. Among the studied sequences, aptamer 29a exhibited a higher affinity for X sperm compared to Y sperm in a mixed population of sperm cells. By using aptamer sequence 29a, we obtained an enrichment of 70% for X chromosome bearing sperm cells.


Aptamers, Nucleotide , SELEX Aptamer Technique , Spermatozoa , X Chromosome , Male , Animals , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Spermatozoa/chemistry , Cattle , X Chromosome/genetics , SELEX Aptamer Technique/methods
6.
Methods Mol Biol ; 2802: 247-265, 2024.
Article En | MEDLINE | ID: mdl-38819563

Reconstructing ancestral gene orders from the genome data of extant species is an important problem in comparative and evolutionary genomics. In a phylogenomics setting that accounts for gene family evolution through gene duplication and gene loss, the reconstruction of ancestral gene orders involves several steps, including multiple sequence alignment, the inference of reconciled gene trees, and the inference of ancestral syntenies and gene adjacencies. For each of the steps of such a process, several methods can be used and implemented using a growing corpus of, often parameterized, tools; in practice, interfacing such tools into an ancestral gene order reconstruction pipeline is far from trivial. This chapter introduces AGO, a Python-based framework aimed at creating ancestral gene order reconstruction pipelines allowing to interface and parameterize different bioinformatics tools. The authors illustrate the features of AGO by reconstructing ancestral gene orders for the X chromosome of three ancestral Anopheles species using three different pipelines. AGO is freely available at https://github.com/cchauve/AGO-pipeline .


Evolution, Molecular , Gene Order , Genomics , Phylogeny , Software , Animals , Genomics/methods , Computational Biology/methods , Synteny/genetics , Anopheles/genetics , X Chromosome/genetics , Sequence Alignment/methods
7.
Elife ; 132024 May 08.
Article En | MEDLINE | ID: mdl-38717135

Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity biotinylation method targeting the RNA and proteins constituents. The method that we termed antibody-mediated proximity labelling coupled to mass spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X chromosome in Drosophila. This analysis identified a number of known RNA-binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.


Chromatin , Mass Spectrometry , RNA , Animals , Chromatin/metabolism , Chromatin/chemistry , RNA/metabolism , RNA/chemistry , Mass Spectrometry/methods , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Biotinylation , Centromere/metabolism , Antibodies/metabolism , Antibodies/chemistry , X Chromosome/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , Staining and Labeling/methods
8.
PLoS Biol ; 22(4): e3002605, 2024 Apr.
Article En | MEDLINE | ID: mdl-38687805

Although sex chromosomes have evolved from autosomes, they often have unusual regulatory regimes that are sex- and cell-type-specific such as dosage compensation (DC) and meiotic sex chromosome inactivation (MSCI). The molecular mechanisms and evolutionary forces driving these unique transcriptional programs are critical for genome evolution but have been, in the case of MSCI in Drosophila, subject to continuous debate. Here, we take advantage of the younger sex chromosomes in D. miranda (XR and the neo-X) to infer how former autosomes acquire sex-chromosome-specific regulatory programs using single-cell and bulk RNA sequencing and ribosome profiling, in a comparative evolutionary context. We show that contrary to mammals and worms, the X down-regulation through germline progression is most consistent with the shutdown of DC instead of MSCI, resulting in half gene dosage at the end of meiosis for all 3 X's. Moreover, lowly expressed germline and meiotic genes on the neo-X are ancestrally lowly expressed, instead of acquired suppression after sex linkage. For the young neo-X, DC is incomplete across all tissue and cell types and this dosage imbalance is rescued by contributions from Y-linked gametologs which produce transcripts that are translated to compensate both gene and protein dosage. We find an excess of previously autosomal testis genes becoming Y-specific, showing that the neo-Y and its masculinization likely resolve sexual antagonism. Multicopy neo-sex genes are predominantly expressed during meiotic stages of spermatogenesis, consistent with their amplification being driven to interfere with mendelian segregation. Altogether, this study reveals germline regulation of evolving sex chromosomes and elucidates the consequences these unique regulatory mechanisms have on the evolution of sex chromosome architecture.


Drosophila , Germ Cells , Meiosis , RNA-Seq , Sex Chromosomes , Single-Cell Analysis , Testis , Animals , Male , Testis/metabolism , Sex Chromosomes/genetics , Single-Cell Analysis/methods , Germ Cells/metabolism , Drosophila/genetics , Drosophila/metabolism , RNA-Seq/methods , Meiosis/genetics , Dosage Compensation, Genetic , Evolution, Molecular , Female , X Chromosome/genetics , Single-Cell Gene Expression Analysis
9.
EMBO Rep ; 25(5): 2258-2277, 2024 May.
Article En | MEDLINE | ID: mdl-38654121

X chromosome inactivation (XCI) in mammals is mediated by Xist RNA which functions in cis to silence genes on a single X chromosome in XX female cells, thereby equalising levels of X-linked gene expression relative to XY males. XCI progresses over a period of several days, with some X-linked genes silencing faster than others. The chromosomal location of a gene is an important determinant of silencing rate, but uncharacterised gene-intrinsic features also mediate resistance or susceptibility to silencing. In this study, we examine mouse embryonic stem cell lines with an inducible Xist allele (iXist-ChrX mESCs) and integrate allele-specific data of gene silencing and decreasing inactive X (Xi) chromatin accessibility over time courses of Xist induction with cellular differentiation. Our analysis reveals that motifs bound by the transcription factor YY1 are associated with persistently accessible regulatory elements, including many promoters and enhancers of slow-silencing genes. We further show that YY1 is evicted relatively slowly from target sites on Xi, and that silencing of X-linked genes is increased upon YY1 degradation. Together our results suggest that YY1 acts as a barrier to Xist-mediated silencing until the late stages of the XCI process.


Gene Silencing , RNA, Long Noncoding , X Chromosome Inactivation , YY1 Transcription Factor , Animals , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , X Chromosome Inactivation/genetics , Mouse Embryonic Stem Cells/metabolism , Female , Male , Protein Binding , Cell Differentiation/genetics , Chromatin/metabolism , Chromatin/genetics , Promoter Regions, Genetic , Cell Line , X Chromosome/genetics , X Chromosome/metabolism , Alleles
10.
Curr Opin Genet Dev ; 86: 102198, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663040

Genomes are organised through hierarchical structures, ranging from local kilobase-scale cis-regulatory contacts to large chromosome territories. Most notably, (sub)-compartments partition chromosomes according to transcriptional activity, while topologically associating domains (TADs) define cis-regulatory landscapes. The inactive X chromosome in mammals has provided unique insights into the regulation and function of the three-dimensional (3D) genome. Concurrent with silencing of the majority of genes and major alterations of its chromatin state, the X chromosome undergoes profound spatial rearrangements at multiple scales. These include the emergence of megadomains, alterations of the compartment structure and loss of the majority of TADs. Moreover, the Xist locus, which orchestrates X-chromosome inactivation, has provided key insights into regulation and function of regulatory domains. This review provides an overview of recent insights into the control of these structural rearrangements and contextualises them within a broader understanding of 3D genome organisation.


Chromatin , X Chromosome Inactivation , X Chromosome Inactivation/genetics , Animals , Humans , Chromatin/genetics , X Chromosome/genetics , Genome/genetics , RNA, Long Noncoding/genetics
11.
Genome Biol Evol ; 16(3)2024 Mar 02.
Article En | MEDLINE | ID: mdl-38478711

It has been predicted that the highly degenerate mammalian Y chromosome will be lost eventually. Indeed, Y was lost in the Ryukyu spiny rat Tokudaia osimensis, but the fate of the formerly Y-linked genes is not completely known. We looked for all 12 ancestrally Y-linked genes in a draft T. osimensis genome sequence. Zfy1, Zfy2, Kdm5d, Eif2s3y, Usp9y, Uty, and Ddx3y are putatively functional and are now located on the X chromosome, whereas Rbmy, Uba1y, Ssty1, Ssty2, and Sry are missing or pseudogenized. Tissue expressions of the mouse orthologs of the retained genes are significantly broader/higher than those of the lost genes, suggesting that the destinies of the formerly Y-linked genes are related to their original expressions. Interestingly, patterns of gene retention/loss are significantly more similar than by chance across four rodent lineages where Y has been independently lost, indicating a level of certainty in the fate of Y-linked genes even when the chromosome is gone.


Genes, Y-Linked , Y Chromosome , Humans , Mice , Rats , Animals , Y Chromosome/genetics , Murinae/genetics , X Chromosome/genetics , Genome , Chromosomes, Human, Y , DNA-Binding Proteins/genetics , Transcription Factors/genetics
12.
Genome Biol Evol ; 16(3)2024 Mar 02.
Article En | MEDLINE | ID: mdl-38482698

Chromosomal inversions may play a central role in speciation given their ability to locally reduce recombination and therefore genetic exchange between diverging populations. We analyzed long- and short-read whole-genome data from sympatric and allopatric populations of 2 Drosophila virilis group species, Drosophila montana and Drosophila flavomontana, to understand if inversions have contributed to their divergence. We identified 3 large alternatively fixed inversions on the X chromosome and one on each of the autosomes 4 and 5. A comparison of demographic models estimated for inverted and noninverted (colinear) chromosomal regions suggests that these inversions arose before the time of the species split. We detected a low rate of interspecific gene flow (introgression) from D. montana to D. flavomontana, which was further reduced inside inversions and was lower in allopatric than in sympatric populations. Together, these results suggest that the inversions were already present in the common ancestral population and that gene exchange between the sister taxa was reduced within inversions both before and after the onset of species divergence. Such ancestrally polymorphic inversions may foster speciation by allowing the accumulation of genetic divergence in loci involved in adaptation and reproductive isolation inside inversions early in the speciation process, while gene exchange at colinear regions continues until the evolving reproductive barriers complete speciation. The overlapping X inversions are particularly good candidates for driving the speciation process of D. montana and D. flavomontana, since they harbor strong genetic incompatibilities that were detected in a recent study of experimental introgression.


Chromosome Inversion , Drosophila , Animals , Drosophila/genetics , Montana , X Chromosome/genetics , Demography , Genetic Speciation
13.
Mol Cell ; 84(8): 1442-1459.e7, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38458200

In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.


RNA, Long Noncoding , X Chromosome Inactivation , Female , Mice , Male , Animals , X Chromosome Inactivation/genetics , Genomic Imprinting , Germ Cells , Epigenesis, Genetic , Embryo, Mammalian , RNA, Long Noncoding/genetics , X Chromosome/genetics , Mammals/genetics
14.
Genetics ; 227(1)2024 May 07.
Article En | MEDLINE | ID: mdl-38431281

Auanema freiburgense is a nematode with males, females, and selfing hermaphrodites. When XO males mate with XX females, they typically produce a low proportion of XO offspring because they eliminate nullo-X spermatids. This process ensures that most sperm carry an X chromosome, increasing the likelihood of X chromosome transmission compared to random segregation. This occurs because of an unequal distribution of essential cellular organelles during sperm formation, likely dependent on the X chromosome. Some sperm components are selectively segregated into the X chromosome's daughter cell, while others are discarded with the nullo-X daughter cell. Intriguingly, the interbreeding of 2 A. freiburgense strains results in hybrid males capable of producing viable nullo-X sperm. Consequently, when these hybrid males mate with females, they yield a high percentage of male offspring. To uncover the genetic basis of nullo-spermatid elimination and X chromosome drive, we generated a genome assembly for A. freiburgense and genotyped the intercrossed lines. This analysis identified a quantitative trait locus spanning several X chromosome genes linked to the non-Mendelian inheritance patterns observed in A. freiburgense. This finding provides valuable clues to the underlying factors involved in asymmetric organelle partitioning during male meiotic division and thus non-Mendelian transmission of the X chromosome and sex ratios.


Chromosome Segregation , Quantitative Trait Loci , X Chromosome , Animals , X Chromosome/genetics , Male , Female , Nematoda/genetics
15.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Article En | MEDLINE | ID: mdl-38491905

Drosophila melanogaster males have one X chromosome while females have two. This creates an imbalance in X:A gene dosage between the sexes. This imbalance is corrected by increasing transcription from male X-linked genes approximately 2-fold. This process involves the Male-Specific Lethal (MSL) complex, which is recruited to Chromatin Entry Sites (CES) and transcribed X-linked genes, where it modifies chromatin to increase expression. Repetitive sequences strikingly enriched in X euchromatin, the 1.688X satellite repeats, also promote recruitment of the MSL complex to nearby genes. Unlike CES, the 1.688X repeats do not recruit the MSL complex directly. The genetic architecture of recruitment by these DNA elements remains speculative. To facilitate dissection of the mechanism of recruitment, we developed a luciferase reporter system for recruitment of compensation to an autosome. The system was validated by knock down of genes known to participate in compensation. Knock down of factors genetically linked to X recognition reveals that 1.688X repeats recruit through a different mechanism than the CES. Our findings suggest that 1.688X repeats play a larger role during embryogenesis, whereas the contribution of 1.688X repeats and CES is equivalent later in development. Our studies also reveal unexpected complexity and potential interdependence of recruiting elements.


Chromatin , Drosophila Proteins , Drosophila melanogaster , X Chromosome , Animals , Drosophila melanogaster/genetics , X Chromosome/genetics , Chromatin/metabolism , Chromatin/genetics , Male , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Genes, X-Linked , Dosage Compensation, Genetic
16.
Cell Mol Life Sci ; 81(1): 156, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38551746

X chromosome inactivation (XCI) is a process that equalizes the expression of X-linked genes between males and females. It relies on Xist, continuously expressed in somatic cells during XCI maintenance. However, how Xist impacts XCI maintenance and its functional motifs remain unclear. In this study, we conducted a comprehensive analysis of Xist, using rabbits as an ideal non-primate model. Homozygous knockout of exon 1, exon 6, and repeat A in female rabbits resulted in embryonic lethality. However, X∆ReAX females, with intact X chromosome expressing Xist, showed no abnormalities. Interestingly, there were no significant differences between females with homozygous knockout of exons 2-5 and wild-type rabbits, suggesting that exons 2, 3, 4, and 5 are less important for XCI. These findings provide evolutionary insights into Xist function.


RNA, Long Noncoding , X Chromosome Inactivation , Humans , Male , Animals , Rabbits , Female , X Chromosome Inactivation/genetics , RNA, Long Noncoding/genetics , Chromosomes, Human, X , X Chromosome/genetics , Exons/genetics
17.
Genetics ; 226(4)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38366786

The X chromosome, being hemizygous in males, is exposed one-third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across 6 commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.


Drosophila melanogaster , Drosophila , Humans , Male , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Evolution, Molecular , X Chromosome/genetics , Selection, Genetic , Chromosomes, Human, X
18.
FASEB J ; 38(4): e23492, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38363564

Lineage specification and X chromosome dosage compensation are two crucial biological processes that occur during preimplantation embryonic development. Although extensively studied in mice, the timing and regulation of these processes remain elusive in other species, including humans. Previous studies have suggested conserved principles of human and bovine early development. This study aims to provide fundamental insights into these programs and the regulation using a bovine embryo model by employing single-cell transcriptomics and genome editing approaches. The study analyzes the transcriptomes of 286 individual cells and reveals that bovine trophectoderm/inner cell mass transcriptomes diverge at the early blastocyst stage, after cavitation but before blastocyst expansion. The study also identifies transcriptomic markers and provides the timing of lineage specification events in the bovine embryo. Importantly, we find that SOX2 is required for the first cell decision program in bovine embryos. Moreover, the study shows the occurrence of X chromosome dosage compensation from morula to late blastocyst and reveals that this compensation results from downregulation of X-linked genes in female embryonic cells. The transcriptional atlas generated by this study is expected to be widely useful in improving our understanding of mammalian early embryo development.


Blastocyst , Single-Cell Gene Expression Analysis , Pregnancy , Cattle , Animals , Female , Humans , Mice , Embryo, Mammalian , Embryonic Development/genetics , X Chromosome/genetics , Gene Expression Regulation, Developmental , Cell Lineage/genetics , Mammals
19.
G3 (Bethesda) ; 14(4)2024 04 03.
Article En | MEDLINE | ID: mdl-38306583

A synthetic gene drive that targets haplolethal genes on the X chromosome can skew the sex ratio toward males. Like an "X-shredder," it does not involve "homing," and that has advantages including the reduction of gene drive resistance allele formation. We examine this "X-poisoning" strategy by targeting 4 of the 11 known X-linked haplolethal/haplosterile genes of Drosophila melanogaster with CRISPR/Cas9. We find that targeting the wupA gene during spermatogenesis skews the sex ratio so fewer than 14% of progeny are daughters. That is unless we cross the mutagenic males to X^XY female flies that bear attached-X chromosomes, which reverses the inheritance of the poisoned X chromosome so that sons inherit it from their father, in which case only 2% of the progeny are sons. These sex ratio biases suggest that most of the CRISPR/Cas9 mutants we induced in the wupA gene are haplolethal but some are recessive lethal. The males generating wupA mutants do not suffer from reduced fertility; rather, the haplolethal mutants arrest development in the late stages of embryogenesis well after fertilized eggs have been laid. This provides a distinct advantage over genetic manipulation strategies involving sterility which can be countered by the remating of females. We also find that wupA mutants that destroy the nuclear localization signal of shorter isoforms are not haplolethal as long as the open reading frame remains intact. Like D. melanogaster, wupA orthologs of Drosophila suzukii and Anopheles mosquitos are found on X chromosomes making wupA a viable X-poisoning target in multiple species.


Drosophila Proteins , Gene Drive Technology , Animals , Female , Male , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Gene Drive Technology/methods , Troponin I/genetics , X Chromosome/genetics
20.
Cell ; 187(3): 733-749.e16, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38306984

Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation. Here, we show that the Xist ribonucleoprotein (RNP) complex comprising numerous autoantigenic components is an important driver of sex-biased autoimmunity. Inducible transgenic expression of a non-silencing form of Xist in male mice introduced Xist RNP complexes and sufficed to produce autoantibodies. Male SJL/J mice expressing transgenic Xist developed more severe multi-organ pathology in a pristane-induced lupus model than wild-type males. Xist expression in males reprogrammed T and B cell populations and chromatin states to more resemble wild-type females. Human patients with autoimmune diseases displayed significant autoantibodies to multiple components of XIST RNP. Thus, a sex-specific lncRNA scaffolds ubiquitous RNP components to drive sex-biased immunity.


Autoantibodies , Autoimmune Diseases , RNA, Long Noncoding , Animals , Female , Humans , Male , Mice , Autoantibodies/genetics , Autoimmune Diseases/genetics , Autoimmunity/genetics , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , X Chromosome/genetics , X Chromosome/metabolism , X Chromosome Inactivation , Sex Characteristics
...