Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
J Environ Sci (China) ; 147: 268-281, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003046

ABSTRACT

The study of microbial hydrocarbons removal is of great importance for the development of future bioremediation strategies. In this study, we evaluated the removal of a gaseous mixture containing toluene, m-xylene, ethylbenzene, cyclohexane, butane, pentane, hexane and heptane in aerated stirred bioreactors inoculated with Rhodococcus erythropolis and operated under non-sterile conditions. For the real-time measurement of hydrocarbons, a novel systematic approach was implemented using Selected-Ion Flow Tube Mass Spectrometry (SIFT-MS). The effect of the carbon source (∼9.5 ppmv) on (i) the bioreactors' performance (BR1: dosed with only cyclohexane as a single hydrocarbon versus BR2: dosed with a mixture of the 8 hydrocarbons) and (ii) the evolution of microbial communities over time were investigated. The results showed that cyclohexane reached a maximum removal efficiency (RE) of 53% ± 4% in BR1. In BR2, almost complete removal of toluene, m-xylene and ethylbenzene, being the most water-soluble and easy-to-degrade carbon sources, was observed. REs below 32% were obtained for the remaining compounds. By exposing the microbial consortium to only the five most recalcitrant hydrocarbons, REs between 45% ± 5% and 98% ± 1% were reached. In addition, we observed that airborne microorganisms populated the bioreactors and that the type of carbon source influenced the microbial communities developed. The abundance of species belonging to the genus Rhodococcus was below 10% in all bioreactors at the end of the experiments. This work provides fundamental insights to understand the complex behavior of gaseous hydrocarbon mixtures in bioreactors, along with a systematic approach for the development of SIFT-MS methods.


Subject(s)
Biodegradation, Environmental , Bioreactors , Hydrocarbons , Rhodococcus , Rhodococcus/metabolism , Bioreactors/microbiology , Hydrocarbons/metabolism , Carbon/metabolism , Air Pollutants/metabolism , Air Pollutants/analysis , Mass Spectrometry , Toluene/metabolism , Xylenes/metabolism , Butanes/metabolism , Benzene Derivatives , Pentanes
2.
ACS Appl Bio Mater ; 7(8): 5369-5381, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39041651

ABSTRACT

Additive manufacturing, particularly Vat photopolymerization, presents a promising technique for producing complex, tailor-made structures, making it an attractive option for generating single-use components used in biopharmaceutical manufacturing equipment or cell culture devices. However, the potential leaching of cytotoxic compounds from Vat photopolymer resins poses a significant concern, especially regarding cell growth and viability in cell culture applications. This study explores the potential of parylene C coating to enhance the inertness of a polyurethane-based photopolymer resin, aiming to prevent cytotoxicity and improve biocompatibility. The study includes an analysis of extractables from the resin and photoinitiator to evaluate the resin's composition and to define selected marker compounds for investigating the coating efficiency. The time-dependent accumulation of relevant extractable compounds over a 70-day period are assessed to address the long-term use of the coated components. The impact of irradiation on the material and the coating was evaluated, along with an accelerated aging study to address the long-term performance of the coating. Biocompatibility in terms of in vitro cell growth studies is evaluated using Chinese hamster ovary cells, a standard cell line in biopharmaceutical manufacturing. Results demonstrate that parylene C coating significantly reduces the release of cytotoxic compounds, such as the photoinitiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO). Although accelerated aging indicates a reduction in the barrier properties of the coating over time, the parylene C coating still effectively slows the release of extractables and significantly improves cell compatibility of the 3D printed parts. The findings suggest that parylene C-coated components can be safely integrated into biopharmaceutical manufacturing processes, with recommendations to minimize storage times between coating application and use to ensure optimal performance.


Subject(s)
Coated Materials, Biocompatible , Materials Testing , Polymers , Polyurethanes , Printing, Three-Dimensional , Xylenes , Polyurethanes/chemistry , Polyurethanes/pharmacology , Xylenes/chemistry , Xylenes/pharmacology , Polymers/chemistry , Polymers/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Particle Size , Cricetulus , CHO Cells , Cell Survival/drug effects , Animals , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
3.
ACS Sens ; 9(8): 4107-4118, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39046797

ABSTRACT

A Pt nanoparticle-immobilized WO3 material is a promising candidate for catalytic reactions, and the surface and electronic structure can strongly affect the performance. However, the effect of the intrinsic oxygen vacancy of WO3 on the d-band structure of Pt and the synergistic effect of Pt and the WO3 matrix on reaction performance are still ambiguous, which greatly hinders the design of advanced materials. Herein, Pt-decorated WO3 nanosheets with different electronic metal-support interactions are successfully prepared by finely tuning the oxygen vacancy structure of WO3 nanosheets. Notably, Pt-modified WO3 nanosheets annealed at 400 °C exhibit excellent benzene series (BTEX) sensing performance (S = 377.33, 365.21, 348.45, and 319.23 for 50 ppm ethylbenzene, benzene, toluene, and xylene, respectively, at 140 °C), fast response and recovery dynamics (10/7 s), excellent reliability (σ = 0.14), and sensing stability (φ = 0.08%). Detailed structural characterization and DFT results reveal that interfacial Ptδ+-Ov-W5+ sites are recognized as the active sites, and the oxygen vacancies of the WO3 matrix can significantly affect the d-band structure of Pt nanoparticles. Notably, Pt/WO3-400 with improved surface oxygen mobility and medium electronic metal-support interaction facilitates the activation and desorption of BTEX, which contributes to the highly efficient BTEX sensing performance. Our work provides a new insight for the design of high-performance surface reaction materials for advanced applications.


Subject(s)
Benzene Derivatives , Benzene , Oxides , Oxygen , Platinum , Tungsten , Tungsten/chemistry , Platinum/chemistry , Oxides/chemistry , Oxygen/chemistry , Benzene/chemistry , Benzene Derivatives/chemistry , Nanostructures/chemistry , Xylenes/chemistry , Metal Nanoparticles/chemistry , Toluene/chemistry , Electrochemical Techniques/methods , Density Functional Theory
4.
J Hazard Mater ; 476: 135160, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38991646

ABSTRACT

The heterotrophic nitrification-aerobic denitrification (HNAD) strain Exiguobacterium H1 (H1) was isolated in this study. The changes in nitrogen metabolism functions of H1 strain were discussed in presence of disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) alone and combined pollution (PCMX+BEC). The H1 strain could use NH4+-N, NO2--N and NO3--N as nitrogen sources and had good nitrogen removal performance under conditions of C/N ratio 25, pH 5-8, 25-35 oC and sodium acetate as carbon. PCMX and BEC alone exhibited hormesis effects on H1 strain which promoted the growth of H1 strain at low concentrations but inhibited it at high concentrations, and combined pollution showed synergistic inhibitory on H1 strain. H1 strain owned a full nitrogen metabolic pathway according to functional genes quantification. PCMX encouraged nitrification process of H1, while BEC and combined pollution mostly blocked nitrogen removal. PCMX, but not BEC, mainly led to the enrichment of resistance genes. These findings will aid in systematic assessment of contaminant tolerance characteristics of HNAD strain and its application prospects.


Subject(s)
Denitrification , Disinfectants , Nitrification , Nitrification/drug effects , Disinfectants/toxicity , Denitrification/drug effects , Hormesis/drug effects , Xylenes/toxicity , Aerobiosis , Drug Synergism , Water Pollutants, Chemical/toxicity , Heterotrophic Processes , Nitrogen/metabolism
5.
J Environ Manage ; 366: 121893, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39025004

ABSTRACT

This study aims to identify sources of groundwater contamination in a refinery area using integrated compound-specific stable isotope analysis (CSIA), oil fingerprinting techniques, hydrogeological data, and distillation analysis. The investigations focused on determination of the origin of benzene, toluene, ethylbenzene, and xylenes (BTEX), and aliphatic hydrocarbons as well. Groundwater and floating oil samples were collected from extraction wells for analysis. Results indicate presence of active leaks in both the northern and southern zones. In the northern zone, toluene was found to primarily originate from oil products like aviation turbine kerosene (ATK or aviation fuel), kerosene, regular gasoline, and diesel fuel. Additionally, stable isotope ratios of carbon and hydrogen for ethylbenzene, o-xylene (ortho xylene) and p-xylene (para xylene) in zone A suggested the pollution originated from gasoline within the northern zone. The origin of super gasoline (with higher octane) identified in southern zone using δ13C and δ2H values of toluene in the floating oil and groundwater samples. Further, biodegradation of toluene likely occurred in southern zone according to δ13C and δ2H. The findings underscore the critical importance of integrating CSIA and fingerprinting techniques to effectively address the challenges of source identification and relying solely on each method independently is insufficient. Accordingly, comparing the GC-MS results of floating oil samples with ATK and jet fuel (JP4) standards can be effectively utilized for source differentiation. However, this method showed no practical application to distinguish different types of diesel or gasoline. The accuracy and reliability of source identification of BTEX compounds may significantly improve when hydrogeological data incorporates with stable isotopes analysis. Additionally, the results of this study will elevate the procedures for fuel-related contaminants source identification of the polluted groundwater that is crucial to develop effective remediation strategies.


Subject(s)
Benzene , Groundwater , Toluene , Water Pollutants, Chemical , Xylenes , Groundwater/chemistry , Xylenes/analysis , Benzene/analysis , Toluene/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Benzene Derivatives/analysis
6.
ACS Sens ; 9(7): 3689-3696, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38982801

ABSTRACT

Celiac patients are required to strictly adhere to a gluten-free diet because even trace amounts of gluten can damage their small intestine and leading to serious complications. Despite increased awareness, gluten can still be present in products due to cross-contamination or hidden ingredients, making regular monitoring essential. With the goal of guaranteeing food safety for consuming labeled gluten-free products, a capacitive aptasensor was constructed to target gliadin, the main allergic gluten protein for celiac disease. The success of capacitive aptasensing was primarily realized by coating a Parylene double-layer (1000 nm Parylene C at the bottom with 400 nm Parylene AM on top) on the electrode surface to ensure both high insulation quality and abundant reactive amino functionalities. Under the optimal concentration of aptamer (5 µM) used for immobilization, a strong linear relationship exists between the amount of gliadin (0.01-1.0 mg/mL) and the corresponding ΔC response (total capacitance decrease during a 20 min monitoring period after sample introduction), with an R2 of 0.9843. The detection limit is 0.007 mg/mL (S/N > 5), equivalent to 0.014 mg/mL (14 ppm) of gluten content. Spike recovery tests identified this system is free from interferences in corn and cassava flour matrices. The analytical results of 24 commercial wheat flour samples correlated well with a gliadin ELISA assay (R2 = 0.9754). The proposed label-free and reagentless capacitive aptasensor offers advantages of simplicity, cost-effectiveness, ease of production, and speediness, making it a promising tool for verifying products labeled as gluten-free (gluten content <20 ppm).


Subject(s)
Aptamers, Nucleotide , Electrodes , Gliadin , Xylenes , Gliadin/analysis , Aptamers, Nucleotide/chemistry , Xylenes/chemistry , Carbon/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Biosensing Techniques/methods , Limit of Detection , Polymers/chemistry , Electric Capacitance , Flour/analysis
7.
Nat Commun ; 15(1): 4888, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849332

ABSTRACT

Chloroxylenol is a worldwide commonly used disinfectant. The massive consumption and relatively high chemical stability of chloroxylenol have caused eco-toxicological threats in receiving waters. We noticed that chloroxylenol has a chemical structure similar to numerous halo-phenolic disinfection byproducts. Solar detoxification of some halo-phenolic disinfection byproducts intrigued us to select a rapidly degradable chloroxylenol alternative from them. In investigating antimicrobial activities of disinfection byproducts, we found that 2,6-dichlorobenzoquinone was 9.0-22 times more efficient than chloroxylenol in inactivating the tested bacteria, fungi and viruses. Also, the developmental toxicity of 2,6-dichlorobenzoquinone to marine polychaete embryos decreased rapidly due to its rapid degradation via hydrolysis in receiving seawater, even without sunlight. Our work shows that 2,6-dichlorobenzoquinone is a promising disinfectant that well addresses human biosecurity and environmental sustainability. More importantly, our work may enlighten scientists to exploit the slightly alkaline nature of seawater and develop other industrial products that can degrade rapidly via hydrolysis in seawater.


Subject(s)
Disinfectants , Disinfection , Seawater , Disinfectants/chemistry , Disinfectants/pharmacology , Disinfection/methods , Seawater/chemistry , Animals , Hydrolysis , Polychaeta/drug effects , Fungi/drug effects , Bacteria/drug effects , Chlorophenols/chemistry , Viruses/drug effects , Humans , Xylenes
8.
PeerJ ; 12: e17452, 2024.
Article in English | MEDLINE | ID: mdl-38903883

ABSTRACT

Background: Conventional biofilters, which rely on bacterial activity, face challenges in eliminating hydrophobic compounds, such as aromatic compounds. This is due to the low solubility of these compounds in water, which makes them difficult to absorb by bacterial biofilms. Furthermore, biofilter operational stability is often hampered by acidification and drying out of the filter bed. Methods: Two bioreactors, a bacterial biofilter (B-BF) and a fungal-bacterial coupled biofilter (F&B-BF) were inoculated with activated sludge from the secondary sedimentation tank of the Sinopec Yangzi Petrochemical Company wastewater treatment plant located in Nanjing, China. For approximately 6 months of operation, a F&B-BF was more effective than a B-BF in eliminating a gas-phase mixture containing benzene, toluene, ethylbenzene, and para-xylene (BTEp-X). Results: After operating for four months, the F&B-BF showed higher removal efficiencies for toluene (T), ethylbenzene (E), benzene (B), and para-X (p-Xylene), at 96.9%, 92.6%, 83.9%, and 83.8%, respectively, compared to those of the B-BF (90.1%, 78.7%, 64.8%, and 59.3%). The degradation activity order for B-BF and F&B-BF was T > E > B > p-X. Similarly, the rates of mineralization for BTEp-X in the F&B-BF were 74.9%, 66.5%, 55.3%, and 45.1%, respectively, which were higher than those in the B-BF (56.5%, 50.8%, 43.8%, and 30.5%). Additionally, the F&B-BF (2 days) exhibited faster recovery rates than the B-BF (5 days). Conclusions: It was found that a starvation protocol was beneficial for the stable operation of both the B-BF and F&B-BF. Community structure analysis showed that the bacterial genus Pseudomonas and the fungal genus Phialophora were both important in the degradation of BTEp-X. The fungal-bacterial consortia can enhance the biofiltration removal of BTEp-X vapors.


Subject(s)
Bacteria , Benzene Derivatives , Bioreactors , Filtration , Fungi , Xylenes , Xylenes/metabolism , Xylenes/chemistry , Filtration/methods , Fungi/metabolism , Benzene Derivatives/metabolism , Bioreactors/microbiology , Bacteria/metabolism , Biodegradation, Environmental , Toluene/metabolism , Benzene/metabolism , China , Biofilms
9.
J Environ Manage ; 363: 121343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843727

ABSTRACT

This work presents a novel advanced oxidation process (AOP) for degradation of emerging organic pollutants - benzene, toluene, ethylbenzene and xylenes (BTEXs) in water. A comparative study was performed for sonocavitation assisted ozonation under 40-120 kHz and 80-200 kHz dual frequency ultrasounds (DFUS). Based on the obtained results, the combination of 40-120 kHz i.e., low-frequency US (LFDUS) with O3 exhibited excellent oxidation capacity degrading 99.37-99.69% of BTEXs in 40 min, while 86.09-91.76% of BTEX degradation was achieved after 60 min in 80-200 kHz i.e., high-frequency US (HFDUS) combined with O3. The synergistic indexes determined using degradation rate constants were found as 7.86 and 2.9 for LFDUS/O3 and HFDUS/O3 processes, respectively. The higher extend of BTEX degradation in both processes was observed at pH 6.5 and 10. Among the reactive oxygen species (ROSs), hydroxyl radicals (HO•) were found predominant according to scavenging tests, singlet oxygen also importantly contributed in degradation, while O2•- radicals had a minor contribution. Sulfate (SO42-) ions demonstrated higher inhibitory effect compared to chloride (Cl-) and carbonate (CO32-) ions in both processes. Degradation pathways of BTEX was proposed based on the intermediates identified using GC-MS technique.


Subject(s)
Benzene Derivatives , Benzene , Ozone , Water Pollutants, Chemical , Xylenes , Ozone/chemistry , Xylenes/chemistry , Benzene Derivatives/chemistry , Benzene/chemistry , Water Pollutants, Chemical/chemistry , Toluene/chemistry , Oxidation-Reduction , Water/chemistry , Reactive Oxygen Species/chemistry , Water Purification/methods
10.
Chemosphere ; 362: 142540, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851514

ABSTRACT

The rate of mass transfer of lower molecular weight hydrocarbons (naphtha) from bitumen drops in mature fine tailings of oil sand tailings ponds (OSTPs) may control their bioavailability and the associated rate of GHG production. Experiments were conducted using bitumen drops spiked with o-xylene and 1-methylnaphthalene to determine the mass transfer rate of these naphtha components from bitumen drops. The results were compared to simulations using a multi-component numerical model that accounted for transport in the drop and across the oil-water interface. The results demonstrate rate-limited mass transfer, with aqueous concentrations after 60 days of dissolution that were different than those in equilibrium with the initial drop composition (less for o-xylene and greater for 1-methylnaphthalene). The simulations suggest that mole fractions were unchanged at the center of the drop, resulting in concentration gradients out to the oil-water interface. Numerical simulations conducted using different drop sizes and bitumen viscosities also suggest the potential for persistent naphtha dissolution, where the time required to deplete 80% of the o-xylene and 1-methylnaphthalene mass from an oil drop was estimated to be on the order of months to years for mm-sized drops, and years to decades for cm-sized drops assuming instantaneous biodegradation in the aqueous phase surrounding the bitumen.


Subject(s)
Hydrocarbons , Solvents , Hydrocarbons/chemistry , Solvents/chemistry , Diffusion , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Oil and Gas Fields/chemistry , Xylenes/chemistry , Ponds/chemistry , Solubility
11.
Chemosphere ; 362: 142707, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942245

ABSTRACT

To address the issue of excessive residues of 4-chloro-3,5-dimethylphenol (PCMX) in the water environment. In a one-step solvothermal process, iron-based metal-organic frameworks (Fe-MOFs) material MIL-53(Fe) undergoes a synthetic modification strategy. 2-Nitroterephthalic acid as an organic ligand reacted with Fe3+ in a solvothermal process lasting 18 h to yield the nitro-functionalized MIL-53(Fe)-NO2(18h). The objective was to augment the abundance of Fe central unsaturated coordination sites (Fe CUCs) and expedite the Fe(III)/Fe(II) redox cycle, thereby enhancing the heterogeneous Fenton-like treatment capability of pollutants. MIL-53(Fe)-NO2(18h) has excellent hydrogen peroxide (H2O2) catalytic activity and PCMX degradation across a broad pH spectrum (4.0∼8.0). Almost complete removal of PCMX was achieved within 30 min, while pseudo-first-order kinetic rate constants (kobs) increased 4.37 times over MIL-53(Fe). The confirmation of increased Fe CUCs abundance in MIL-53(Fe)-NO2(18h) was achieved through Lewis acidity, oxygen vacancies (OVs) signals, and Fe-O coordination characterization results. Density functional theory (DFT) calculations revealed that Fe CUCs in MIL-53(Fe)-NO2(18h) exhibits heightened affinity for H2O2 adsorption, showcasing stronger charge transfer and enhanced H2O2 dissociation ability. The Fe(III)/Fe(II) redox cycle, a driving force of Fenton-like reactions, was notably improved in the nitro-modified materials. These enhancements significantly expedited the Fenton-like process, resulting in the generation of increased amounts of reactive oxygen species (ROSs), with hydroxyl radicals (OH·) being pivotal components in degradation. The MIL-53(Fe)-NO2(18h)/H2O2 system has demonstrated versatility in treating a variety of emerging contaminants, achieving removal efficiencies exceeding 99.7% for other antibiotics and endocrine disruptors within 60 min. Furthermore, MIL-53(Fe)-NO2(18h) demonstrated outstanding reusability and adaptability in actual water environments. This study introduces a straightforward and environmentally friendly strategy for remediating environmental pollution using Fe-MOF-catalysed heterogeneous Fenton-like technology.


Subject(s)
Hydrogen Peroxide , Iron , Metal-Organic Frameworks , Water Pollutants, Chemical , Metal-Organic Frameworks/chemistry , Hydrogen Peroxide/chemistry , Catalysis , Iron/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Kinetics , Xylenes/chemistry
12.
Environ Pollut ; 357: 124454, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38936035

ABSTRACT

Despite biological wastewater treatment processes (e.g., sequencing batch reactors (SBR)) being able to reduce the dissemination of antibiotic resistance genes (ARGs), the variation of ARGs under exogenous pollutant stress is an open question. This work investigated the impacts of para-chloro-meta-xylenol (PCMX, typical antibacterial contaminants) on ARGs spread in long-term SBR operation. Although the SBR process inherently decreased ARGs abundance, the presence of PCMX substantially amplified both the prevalence (mainly multidrug) and abundance of total ARGs (1.17-fold of the control). Further analysis demonstrated that PCMX disintegrated sludge structures as well as increased membrane permeability, facilitating the release of mobile genetic elements and subsequent horizontal transfer of ARGs. In addition, PCMX selectively enriched potential ARG hosts, notably Nitrospira and Candidatus Accumulibacter, which predominantly served as multidrug ARG hosts. Concurrently, the self-adaptive functions of ARGs hosts in the PCMX-exposed SBR system were activated via quorum sensing, two-component regulatory system, ATP-binding cassette transporters, and bacterial secretion system. The upregulation of these metabolic pathways also contributed to the dissemination of ARGs.


Subject(s)
Waste Disposal, Fluid , Wastewater , Wastewater/microbiology , Microbiota/drug effects , Xylenes , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Water Pollutants, Chemical/metabolism , Bioreactors , Genes, Bacterial , Bacteria/genetics , Bacteria/metabolism , Bacteria/drug effects
13.
J Ethnopharmacol ; 333: 118418, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38838926

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bronchitis is a respiratory disease characterized by a productive cough. Polygala tenuifolia Willd., commonly known as Yuan zhi, is a traditional Chinese herbal medicine used for relieving cough and removing phlegm. Despite its historical use, studies are lacking on the effectiveness of P. tenuifolia in treating bronchitis. Furthermore, the molecular mechanisms underlying the action of its bioactive compounds remain unknown. AIM OF THE STUDY: This study aims to identify the main bioactive compounds responsible for the effects of P. tenuifolia liquid extract (PLE) in treating bronchitis and to elucidate the associated molecular mechanisms. MATERIALS AND METHODS: The main chemical compounds in PLE were identified and determined using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The antitussive, expectorant and anti-inflammatory activities of PLE were evaluated in an ammonia-induced mouse cough model, a tracheal phenol red excretion mouse model, and a xylene-induced ear swelling mouse model, respectively. A network pharmacology analysis was conducted to investigate the associated gene targets, gene ontology, and KEGG pathways related to the main bioactives in PLE targeting bronchitis. PLE and its five bioactive compounds were assessed for their potential anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Western blot analysis was conducted to elucidate the associated molecular mechanisms. RESULTS: Thirty-seven compounds in PLE were identified, and twelve main compounds were further quantified in PLE using UPLC-MS/MS. PLE oral gavage administrations (0.6 and 0.12 mg/kg) for 7 days markedly reduced cough frequency, prolonged latency period of cough, reduced phlegm and inflammation in mice. The network pharmacology analysis identified 57 gene targets of PLE against bronchitis. The PI3K/AKT and MAPK signalling pathways were the top two modulated pathways. In RAW264.7 cells, PLE (12.5-50 µg/mL) significantly reduced cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α. PLE downregulated LPS-elevated protein targets in both PI3K/AKT and MAPK signaling pathways. In PLE, tenuifolin, polygalaxanthone ⅠⅠⅠ, polygalasaponin ⅩⅩⅤⅢ, tenuifoliside B, and 3,6'-Disinapoyl sucrose, were identified as the top five core components responsible for treating bronchitis. These compounds were also found to modulate the protein targets in the PI3K/AKT and MAPK signalling pathways. CONCLUSIONS: This study demonstrated the potential therapeutic effects of PLE on bronchitis by reducing cough, phlegm and inflammation. The anti-inflammatory action and molecular mechanisms of the 5 main bioactive compounds in PLE were partly validated through the in vitro assays. The findings provide valuable insights into the mechanisms underlying the traditional use of PLE for bronchitis.


Subject(s)
Anti-Inflammatory Agents , Bronchitis , Cough , Network Pharmacology , Plant Extracts , Plant Roots , Polygala , Tandem Mass Spectrometry , Animals , Polygala/chemistry , Tandem Mass Spectrometry/methods , Mice , Cough/drug therapy , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Male , Plant Roots/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Bronchitis/drug therapy , Phytochemicals/pharmacology , Phytochemicals/analysis , Antitussive Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Disease Models, Animal , Xylenes , Ammonia , Liquid Chromatography-Mass Spectrometry
14.
ACS Appl Bio Mater ; 7(7): 4442-4453, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38888242

ABSTRACT

Silicone rubber tissue expanders and breast implants are associated with chronic inflammation, leading to the formation of fibrous capsules. If the inflammation is left untreated, the fibrous capsules can become hard and brittle and lead to formation of capsular contracture. When capsular contracture occurs, implant failure and reoperation is unavoidable. Fibrous capsule formation to medical grade silicone rubber breast implants and polyisobutylene-based electrospun fiber mats attached to silicone rubber with and without an anti-inflammatory therapeutic were compared. A linear polyisobutylene (PIB)-based thermoplastic elastomer is currently applied as a polymer coating for drug release on coronary stents to reduce restenosis. Recent work has created a drug releasing electrospun fiber mat from PIB-based materials. Important to this study, poly(alloocimene-b-isobutylene-b-alloocimene) (AIBA) was electrospun with zafirlukast (ZAF). ZAF is an anti-inflammatory drug that is able to reduce capsule formation and complications to silicone breast implants. Fiber mats are advantageous for local drug delivery because of their high porosity and surface area for drug release. The chief hypothesis was that local release of ZAF from AIBA would lower inflammatory signaling and resulting capsular formation after 90 days in vivo. Electrospun AIBA mats locally released ZAF, lowering inflammation and fibrous capsule development compared to medical grade silicone rubber. Locally and orally released ZAF led to similar results, but the former had much lower concentration that highlights local delivery's therapeutic potential. Released ZAF from AIBA fiber mats mitigated inflammation and serves as an alternative to existing clinical approaches.


Subject(s)
Breast Implants , Materials Testing , Polyenes , Breast Implants/adverse effects , Polyenes/chemistry , Tosyl Compounds/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Particle Size , Female , Polymers/chemistry , Humans , Xylenes/chemistry , Indoles , Sulfonamides , Phenylcarbamates
15.
Article in English | MEDLINE | ID: mdl-38733115

ABSTRACT

Large volumes of wastewater are generated during petroleum refining processes. Petroleum refinery wastewater (PRW) can contain highly toxic compounds that can harm the environment. These toxic compounds can be a challenge in biological treatment technologies due to the effects of these compounds on microorganisms. These challenges can be overcome by using ozone (O3) as a standalone or as a pretreatment to the biological treatment. Ozone was used in this study to degrade the organic pollutants in the heavily contaminated PRW from a refinery in Mpumalanga province of South Africa. The objective was achieved by treating the raw PRW using ozone at different ozone treatment times (15, 30, 45, and 60 min) at a fixed ozone concentration of 3.53 mg/dm3. The ozone treatment was carried out in a 2-liter custom-designed plexiglass cylindrical reactor. Ozone was generated from an Eco-Lab-24 corona discharge ozone generator using clean, dry air from the Afrox air cylinder as feed. The chemical oxygen demand, gas chromatograph characterization, and pH analysis were performed on the pretreated and post-treated PRW samples to ascertain the impact of the ozone treatment. The ozone treatment was effective in reducing the benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds in the PRW. The 60-min ozone treatment of different BTEX pollutants in the PRW resulted in the following percentage reduction: benzene 95%, toluene 77%, m + p-xylene 70%, ethylbenzene 69%, and o-xylene 65%. This study has shown the success of using ozone in reducing the toxic BTEX compounds in a heavily contaminated PRW.


Subject(s)
Ozone , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Ozone/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Xylenes/chemistry , Xylenes/analysis , Petroleum/analysis , South Africa , Biological Oxygen Demand Analysis , Oil and Gas Industry , Benzene Derivatives/analysis , Toluene/analysis , Industrial Waste/analysis
16.
J Ethnopharmacol ; 331: 118330, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38740109

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chromolaenaodorata (L.) R.M. King & H. Rob, a perennial herb, has been traditionally utilized as a herbal remedy for treating leech bites, soft tissue wounds, burn wounds, skin infections, and dento-alveolitis in tropical and subtropical regions. AIM OF THE STUDY: The present study was to analyze the active fraction of C. odorata ethanol extract and investigate its hemostatic, anti-inflammatory, wound healing, and antimicrobial properties. Additionally, the safety of the active fraction as an external preparation was assessed through skin irritation and allergy tests. MATERIALS AND METHODS: The leaves and stems of C. odorata were initially extracted with ethanol, followed by purification through AB-8 macroporous adsorption resin column chromatography to yield different fractions. These fractions were then screened for hemostatic activity in mice and rabbits to identify the active fraction. Subsequently, the hemostatic effect of the active fraction was assessed through the bleeding time of the rabbit ear artery in vivo and the coagulant time of rabbit blood in vitro. The anti-inflammatory activity of the active fraction was tested on mice ear edema induced by xylene and rat paw edema induced by carrageenin. Furthermore, the active fraction's promotion effect on wound healing was evaluated using a rat skin injury model, and skin safety tests were conducted on rabbits and guinea pigs. Lastly, antimicrobial activities against two Gram-positive bacteria (G+, Staphylococcus aureus and S. epidermidis) and three Gram-negative bacteria (G-, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were determined using the plate dilution method. RESULTS: The ethanol extract of C. odorata leaves and stems was fractionated into 30%, 60%, and 90% ethanol eluate fractions. These fractions demonstrated hemostatic activity, with the 30% ethanol eluate fraction (30% EEF) showing the strongest effect, significantly reducing bleeding time (P < 0.05). A concentration of 1.0 g/mL of the 30% EEF accelerated cutaneous wound healing in rats on the 3rd, 6th, and 9th day post-operation, with the healing effect increasing over time. No irritation or allergy reactions were observed in rabbits and guinea pigs exposed to the 30% EEF. Additionally, the 30% EEF exhibited mild inhibitory effect on mice ear and rat paw edema, as well as antimicrobial activity against tested bacteria, with varying minimal inhibitory concentration (MIC) values. CONCLUSIONS: The 30% EEF demonstrated a clear hemostatic effect on rabbit bleeding time, a slight inhibitory effect on mice ear edema and rat paw edema, significant wound healing activity in rats, and no observed irritation or allergic reactions. Antibacterial activity was observed against certain clinically isolated bacteria, particularly the G- bacteria. This study lays the groundwork for the potential development and application of C. odorata in wound treatment.


Subject(s)
Anti-Inflammatory Agents , Chromolaena , Edema , Ethanol , Hemostatics , Plant Extracts , Wound Healing , Animals , Rabbits , Wound Healing/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Mice , Male , Hemostatics/pharmacology , Ethanol/chemistry , Chromolaena/chemistry , Edema/drug therapy , Edema/chemically induced , Rats , Skin/drug effects , Female , Anti-Infective Agents/pharmacology , Anti-Infective Agents/isolation & purification , Plant Leaves/chemistry , Hypersensitivity/drug therapy , Xylenes , Plant Stems/chemistry
17.
Chemosphere ; 361: 142490, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821131

ABSTRACT

Aromatic hydrocarbons like benzene, toluene, xylene, and ethylbenzene (BTEX) can escape into the environment from oil and gas operations and manufacturing industries posing significant health risks to humans and wildlife. Unlike conventional clean-up methods used, biological approaches such as bioremediation can provide a more energy and labour-efficient and environmentally friendly option for sensitive areas such as nature reserves and cities, protecting biodiversity and public health. BTEX contamination is often concentrated in the subsurface of these locations where oxygen is rapidly depleted, and biodegradation relies on anaerobic processes. Thus, it is critical to understand the anaerobic biodegradation characteristics as it has not been explored to a major extent. This review presents novel insights into the degradation mechanisms under anaerobic conditions and presents a detailed description and interconnection between them. BTEX degradation can follow four activation mechanisms: hydroxylation, carboxylation, methylation, and fumarate addition. Hydroxylation is one of the mechanisms that explains the transformation of benzene into phenol, toluene into benzyl alcohol or p-cresol, and ethylbenzene into 1-phenylethanol. Carboxylation to benzoate is thought to be the primary mechanism of degradation for benzene. Despite being poorly understood, benzene methylation has been also reported. Moreover, fumarate addition is the most widely reported mechanism, present in toluene, ethylbenzene, and xylene degradation. Further research efforts are required to better elucidate new and current alternative catabolic pathways. Likewise, a comprehensive analysis of the enzymes involved as well as the development of advance tools such as omic tools can reveal bottlenecks degradation steps and create more effective on-site strategies to address BTEX pollution.


Subject(s)
Benzene Derivatives , Benzene , Biodegradation, Environmental , Toluene , Xylenes , Anaerobiosis , Benzene Derivatives/metabolism , Benzene/metabolism , Toluene/metabolism , Xylenes/metabolism , Environmental Pollutants/metabolism , Hydrocarbons, Aromatic/metabolism
18.
J Oleo Sci ; 73(5): 813-821, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38583980

ABSTRACT

Gas chromatography-olfactory-mass spectrometry (GC-O-MS) combined with Aroma Extract Dilution Analysis (AEDA) were employed to characterize the key odor-active compounds in sesame paste (SP) and dehulled sesame paste (DSP). The AEDA results revealed the presence of 32 and 22 odor-active compounds in SP and DSP, respectively. Furthermore, 13 aroma compounds with FD ≥ 2, OAV ≥ 1, and VIP ≥ 1 were identified as key differential aroma compounds between SP and DSP. Specifically, compounds such as 3-methylbutyraldehyde (OAV = 100.70-442.57; fruity), 2-methylbutyraldehyde (OAV = 106.89-170.31; almond), m-xylene (FD = 16; salty pastry), and 2,5-dimethylpyrazine (FD = 8-16; roasted, salty pastry) played an important role in this differentiation. Additionally, the dehulling process led to increased fermented, sweet, green, and nutty aroma notes in DSP compared to the more pronounced burnt and roasted sesame aroma notes in SP. Our findings offer a theoretical foundation for the regulation of sesame paste aroma profiles.


Subject(s)
Food Handling , Gas Chromatography-Mass Spectrometry , Odorants , Sesamum , Sesamum/chemistry , Odorants/analysis , Food Handling/methods , Pyrazines/analysis , Xylenes/analysis , Aldehydes/analysis , Taste , Flavoring Agents/analysis , Volatile Organic Compounds/analysis
19.
Front Public Health ; 12: 1295758, 2024.
Article in English | MEDLINE | ID: mdl-38590813

ABSTRACT

Introduction: In Nigeria, because of increasing population, urbanization, industrialization, and auto-mobilization, petrol is the most everyday non-edible commodity, and it is the leading petroleum product traded at the proliferating Nigeria's petrol stations (NPSs). However, because of inadequate occupational health and safety (OHS) regulatory measures, working at NPSs exposes petrol station workers (PSWs) to a large amount of hazardous benzene, toluene, ethylbenzene, and xylene (BTEX) compounds. Methods: Studies on BTEX exposures among Nigerian PSWs are scarce. Thus, constraints in quantifying the health risks of BTEX limit stakeholders' ability to design practical risk assessment and risk control strategies. This paper reviews studies on the OHS of Nigerian PSWs at the NPSs. Results: Although knowledge, attitude, and practices on OHS in NPSs vary from one Nigeria's study setting to another, generally, safety practices, awareness about hazards and personal protective equipment (PPE), and the use of PPE among PSWs fell below expectations. Additionally, air quality at NPSs was poor, with a high content of BTEX and levels of carbon monoxide, hydrogen sulfide, particulate matter, and formaldehyde higher than the World Health Organization guideline limits. Discussion: Currently, regulatory bodies' effectiveness and accountability in safeguarding OHS at NPSs leave much to be desired. Understanding the OHS of NPSs would inform future initiatives, policies, and regulations that would promote the health and safety of workers at NPSs. However, further studies need to be conducted to describe the vulnerability of PSWs and other Nigerians who are occupationally exposed to BTEX pollution. More importantly, controlling air pollution from hazardous air pollutants like BTEX is an essential component of OHS and integral to attaining the Sustainable Development Goals (SDG) 3, 7, and 11.


Subject(s)
Benzene Derivatives , Benzene , Occupational Exposure , West African People , Humans , Benzene/analysis , Xylenes/analysis , Toluene/analysis , Nigeria , Occupational Exposure/analysis , Environmental Monitoring
20.
Toxicol In Vitro ; 98: 105825, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615724

ABSTRACT

Volatile organic compounds, such as BTEX, have been the subject of numerous debates due to their detrimental effects on the environment and human health. Human beings have had a significant role in the emergence of this situation. Even though US EPA, WHO, and other health-related organizations have set standard limits as unhazardous levels, it has been observed that within or even below these limits, constant exposure to these toxic chemicals results in negative consequences as well. According to these facts, various studies have been carried out all over the world - 160 of which are collected within this review article, so that experts and governors may come up with effective solutions to manage and control these toxic chemicals. The outcome of this study will serve the society to evaluate and handle the risks of being exposed to BTEX. In this review article, the attempt was to collect the most accessible studies relevant to risk assessment of BTEX in the atmosphere, and for the article to contain least bias, it was reviewed and re-evaluated by all authors, who are from different institutions and backgrounds, so that the insights of the article remain unbiased. There may be some limitations to consistency or precision in some points due to the original sources, however the attempt was to minimize them as much as possible.


Subject(s)
Air Pollutants , Benzene Derivatives , Humans , Risk Assessment/methods , Benzene Derivatives/toxicity , Benzene Derivatives/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Animals , Benzene/toxicity , Xylenes/toxicity , Xylenes/analysis , Toluene/toxicity , Toluene/analysis
SELECTION OF CITATIONS
SEARCH DETAIL