Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 703
Filter
1.
BMC Res Notes ; 17(1): 175, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915023

ABSTRACT

OBJECTIVE: New characterized carbohydrate-active enzymes are needed for use as tools to discriminate complex carbohydrate structural features. Fungal glycoside hydrolase family 3 (GH3) ß-xylosidases have been shown to be useful for the structural elucidation of glucuronic acid (GlcA) and arabinofuranose (Araf) substituted oligoxylosides. A homolog of these GH3 fungal enzymes from the bacterium Segatella baroniae (basonym Prevotella bryantii), Xyl3C, has been previously characterized, but those studies did not address important functional specificity features. In an interest to utilize this enzyme for laboratory methods intended to discriminate the structure of the non-reducing terminus of substituted xylooligosaccharides, we have further characterized this GH3 xylosidase. RESULTS: In addition to verification of basic functional characteristics of this xylosidase we have determined its mode of action as it relates to non-reducing end xylose release from GlcA and Araf substituted oligoxylosides. Xyl3C cleaves xylose from the non-reducing terminus of ß-1,4-xylan until occurrence of a penultimate substituted xylose. If this substitution is O2 linked, then Xyl3C removes the non-reducing xylose to leave the substituted xylose as the new non-reducing terminus. However, if the substitution is O3 linked, Xyl3C does not hydrolyze, thus leaving the substitution one-xylose (penultimate) from the non-reducing terminus. Hence, Xyl3C enables discrimination between O2 and O3 linked substitutions on the xylose penultimate to the non-reducing end. These findings are contrasted using a homologous enzyme also from S. baroniae, Xyl3B, which is found to yield a penultimate substituted nonreducing terminus regardless of which GlcA or Araf substitution exists.


Subject(s)
Xylans , Xylose , Xylosidases , Xylosidases/metabolism , Xylosidases/genetics , Xylosidases/chemistry , Xylans/metabolism , Xylose/metabolism , Substrate Specificity , Prevotella/enzymology , Prevotella/genetics , Oligosaccharides/metabolism , Oligosaccharides/chemistry , Glucuronates/metabolism , Arabinose/analogs & derivatives
2.
Biosci Biotechnol Biochem ; 88(7): 816-823, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38621718

ABSTRACT

In this study, we investigated a deleterious mutation in the ß-xylosidase gene, xylA (AkxylA), in Aspergillus luchuensis mut. kawachii IFO 4308 by constructing an AkxylA disruptant and complementation strains of AkxylA and xylA derived from A. luchuensis RIB2604 (AlxylA), which does not harbor the mutation in xylA. Only the AlxylA complementation strain exhibited significantly higher growth and substantial ß-xylosidase activity in medium containing xylan, accompanied by an increase in XylA expression. This resulted in lower xylobiose and higher xylose concentrations in the mash of barley shochu. These findings suggest that the mutation in xylA affects xylose levels during the fermentation process. Because the mutation in xylA was identified not only in the genome of strain IFO 4308 but also the genomes of other industrial strains of A. luchuensis and A. luchuensis mut. kawachii, these findings enhance our understanding of the genetic factors that affect the fermentation characteristics.


Subject(s)
Aspergillus , Fermentation , Mutation , Xylose , Xylosidases , Xylosidases/genetics , Xylosidases/metabolism , Aspergillus/genetics , Aspergillus/enzymology , Xylose/metabolism , Xylans/metabolism , Disaccharides/metabolism , Hordeum/microbiology , Hordeum/genetics
3.
Metab Eng ; 83: 193-205, 2024 May.
Article in English | MEDLINE | ID: mdl-38631458

ABSTRACT

Consolidated bioprocessing (CBP) of lignocellulosic biomass holds promise to realize economic production of second-generation biofuels/chemicals, and Clostridium thermocellum is a leading candidate for CBP due to it being one of the fastest degraders of crystalline cellulose and lignocellulosic biomass. However, CBP by C. thermocellum is approached with co-cultures, because C. thermocellum does not utilize hemicellulose. When compared with a single-species fermentation, the co-culture system introduces unnecessary process complexity that may compromise process robustness. In this study, we engineered C. thermocellum to co-utilize hemicellulose without the need for co-culture. By evolving our previously engineered xylose-utilizing strain in xylose, an evolved clonal isolate (KJC19-9) was obtained and showed improved specific growth rate on xylose by ∼3-fold and displayed comparable growth to a minimally engineered strain grown on the bacteria's naturally preferred substrate, cellobiose. To enable full xylan deconstruction to xylose, we recombinantly expressed three different ß-xylosidase enzymes originating from Thermoanaerobacterium saccharolyticum into KJC19-9 and demonstrated growth on xylan with one of the enzymes. This recombinant strain was capable of co-utilizing cellulose and xylan simultaneously, and we integrated the ß-xylosidase gene into the KJC19-9 genome, creating the KJCBXint strain. The strain, KJC19-9, consumed monomeric xylose but accumulated xylobiose when grown on pretreated corn stover, whereas the final KJCBXint strain showed significantly greater deconstruction of xylan and xylobiose. This is the first reported C. thermocellum strain capable of degrading and assimilating hemicellulose polysaccharide while retaining its cellulolytic capabilities, unlocking significant potential for CBP in advancing the bioeconomy.


Subject(s)
Clostridium thermocellum , Metabolic Engineering , Polysaccharides , Clostridium thermocellum/metabolism , Clostridium thermocellum/genetics , Polysaccharides/metabolism , Polysaccharides/genetics , Xylose/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cellulose/metabolism , Xylosidases/metabolism , Xylosidases/genetics
4.
Int J Biol Macromol ; 266(Pt 1): 131275, 2024 May.
Article in English | MEDLINE | ID: mdl-38556222

ABSTRACT

Carbohydrate-binding module (CBM) family 91 is a novel module primarily associated with glycoside hydrolase (GH) family 43 enzymes. However, our current understanding of its function remains limited. PphXyl43B is a ß-xylosidase/α-L-arabinofuranosidase bifunctional enzyme from physcomitrellae patens XB belonging to the GH43_11 subfamily and containing CBM91 at its C terminus. To fully elucidate the contributions of the CBM91 module, the truncated proteins consisting only the GH43_11 catalytic module (rPphXyl43B-dCBM91) and only the CBM91 module (rCBM91) of PphXyl43B were constructed, respectively. The result showed that rPphXyl43B-dCBM91 completely lost hydrolysis activity against both p-nitrophenyl-ß-D-xylopyranoside and p-nitrophenyl-α-L-arabinofuranoside; it also exhibited significantly reduced activity towards xylobiose, xylotriose, oat spelt xylan and corncob xylan compared to the control. Thus, the CBM91 module is crucial for the ß-xylosidase/α-L-arabinofuranosidase activities in PphXyl43B. However, rCBM91 did not exhibit any binding capability towards corncob xylan. Structural analysis indicated that CBM91 of PphXyl43B might adopt a loop conformation (residues 496-511: ILSDDYVVQSYGGFFT) to actively contribute to the catalytic pocket formation rather than substrate binding capability. This study provides important insights into understanding the function of CBM91 and can be used as a reference for analyzing the action mechanism of GH43_11 enzymes and their application in biomass energy conversion.


Subject(s)
Catalytic Domain , Glycoside Hydrolases , Paenibacillus , Xylosidases , Xylosidases/chemistry , Xylosidases/metabolism , Xylosidases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Paenibacillus/enzymology , Substrate Specificity , Hydrolysis , Models, Molecular , Protein Conformation , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Arabinose/metabolism , Arabinose/analogs & derivatives
5.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4593-4607, 2023 Nov 25.
Article in Chinese | MEDLINE | ID: mdl-38013186

ABSTRACT

The hydrolysis of xylo-oligosaccharides catalyzed by ß-xylosidase plays an important role in the degradation of lignocellulose. However, the enzyme is easily inhibited by its catalytic product xylose, which severely limits its application. Based on molecular docking, this paper studied the xylose affinity of Aspergillus niger ß-xylosidase An-xyl, which was significantly differentially expressed in the fermentation medium of tea stalks, through cloning, expression and characterization. The synergistic degradation effect of this enzyme and cellulase on lignocellulose in tea stems was investigated. Molecular docking showed that the affinity of An-xyl to xylose was lower than that of Aspergillus oryzae ß-xylosidase with poor xylose tolerance. The Ki value of xylose inhibition constant of recombinant-expressed An-xyl was 433.2 mmol/L, higher than that of most ß-xylosidases of the GH3 family. The Km and Vmax towards pNPX were 3.6 mmol/L and 10 000 µmol/(min·mL), respectively. The optimum temperature of An-xyl was 65 ℃, the optimum pH was 4.0, 61% of the An-xyl activity could be retained upon treatment at 65 ℃ for 300 min, and 80% of the An-xyl activity could be retained upon treatment at pH 2.0-8.0 for 24 h. The hydrolysis of tea stem by An-xyl and cellulase produced 19.3% and 38.6% higher reducing sugar content at 2 h and 4 h, respectively, than that of using cellulase alone. This study showed that the An-xyl mined from differential expression exhibited high xylose tolerance and higher catalytic activity and stability, and could hydrolyze tea stem lignocellulose synergistically, which enriched the resource of ß-xylosidase with high xylose tolerance, thus may facilitate the advanced experimental research and its application.


Subject(s)
Cellulases , Xylosidases , Aspergillus niger/genetics , Xylose/metabolism , Molecular Docking Simulation , Xylosidases/genetics , Tea , Hydrogen-Ion Concentration , Substrate Specificity
6.
Arch Microbiol ; 206(1): 2, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989968

ABSTRACT

Genus Niallia has recently been separated taxonomic group from the Bacillus based on conserved signature indels in the genome. Unlike bioremediation, its role in plant biomass hydrolysis has not garnered considerable attention. The present study investigates the genomic potential of a novel Niallia sp. CRN 25 for applications in lignocellulose hydrolysis, significant enzyme production, and bioremediation. The CRN 25 strain exhibits xylosidase, cellobiosidase, α-arabinosidase, and α-D-galactosidase activity as 0.03 U/ml whereas ß-D-glucosidase and glucuronidase as 0.06 U/ml and 0.01 U/ml, respectively. Further genome sequencing reveals nine copies of GH43 gene coding for hemicellulose-specific xylanase enzyme attached to the CBM 6 domain for increased processivity. The presence of ß-glucosidase and ß-galactosidase indicates the possible application of CRN 25 in facilitating the valorization of plant biomass into value-added products. Apart from this, genes of FMN-dependent NADH-azoreductase, cytochrome P450, and nitrate reductase, playing a crucial role in bioremediation processes, were annotated. Biosynthetic gene clusters (BGCs), responsible for synthesizing specialized metabolites of terpenes and lasso peptides, were also found in the genome. Conclusively genomic sketch of Niallia sp. CRN 25 reveals versatile metabolic potential for diverse environmental applications.


Subject(s)
Xylosidases , Hydrolysis , Biodegradation, Environmental , Xylosidases/genetics , Lignin/metabolism , Genomics
7.
Bioorg Chem ; 132: 106364, 2023 03.
Article in English | MEDLINE | ID: mdl-36706530

ABSTRACT

Among the flavonoids of epimedium, epimedin B, epimedin C, and icariin are considered to be representative components and their structures are quite similar. Besides sharing the same backbone, the main difference is the sugar groups attached at the positions of C-3 and C-7. Despite their structural similarities, their potencies differ significantly, and only icariin is currently included in the Chinese Pharmacopoeia as a quality marker (Q-marker) for epimedium flavonoids. Furthermore, icariin has the functions of anti-aging, anti-inflammation, antioxidation, anti-osteoporosis, and ameliorating fibrosis. We used bioinformatics to look for the GH43 family ß-xylosidase genes BbXyl from Bifidobacterium breve K-110, which has a length of 1347 bp and codes for 448 amino acids. This will allow us to convert epimedin B and epimedin C into icariin in a specific way. The expression level of recombinant BbXyl in TB medium containing 1 % inulin as carbon source, with an inducer concentration of 0.05 mmol/L and a temperature of 28 °C, was 86.4 U/mL. Previous studies found that the α-l-rhamnosidase BtRha could convert epoetin C to produce icariin, so we combined BbXyl and BtRha to catalyze the conversion of epimedium total flavonoids in vitro and in vivo to obtain the product icariin. Under optimal conditions, in vitro hydrolysis of 5 g/L of total flavonoids of epimedium eventually yielded a concentration of icariin of 678.1 µmol/L. To explore the conversion of total flavonoids of epimedium in vivo. Under the optimal conditions, the yield of icariin reached 97.27 µmol/L when the total flavonoid concentration of epimedium was 1 g/L. This study is the first to screen xylosidases for the targeted conversion of epimedin B to produce icariin, and the first to report that epimedin B and epimedin C in the raw epimedium flavonoids can convert efficiently to icariin by a collaborative of ß-xylosidase and α-l-rhamnosidase.


Subject(s)
Bifidobacterium breve , Epimedium , Xylosidases , Epimedium/chemistry , Bifidobacterium breve/metabolism , Flavonoids/chemistry , Xylosidases/genetics , Xylosidases/metabolism , Biotransformation
8.
Chinese Journal of Biotechnology ; (12): 4593-4607, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008044

ABSTRACT

The hydrolysis of xylo-oligosaccharides catalyzed by β-xylosidase plays an important role in the degradation of lignocellulose. However, the enzyme is easily inhibited by its catalytic product xylose, which severely limits its application. Based on molecular docking, this paper studied the xylose affinity of Aspergillus niger β-xylosidase An-xyl, which was significantly differentially expressed in the fermentation medium of tea stalks, through cloning, expression and characterization. The synergistic degradation effect of this enzyme and cellulase on lignocellulose in tea stems was investigated. Molecular docking showed that the affinity of An-xyl to xylose was lower than that of Aspergillus oryzae β-xylosidase with poor xylose tolerance. The Ki value of xylose inhibition constant of recombinant-expressed An-xyl was 433.2 mmol/L, higher than that of most β-xylosidases of the GH3 family. The Km and Vmax towards pNPX were 3.6 mmol/L and 10 000 μmol/(min·mL), respectively. The optimum temperature of An-xyl was 65 ℃, the optimum pH was 4.0, 61% of the An-xyl activity could be retained upon treatment at 65 ℃ for 300 min, and 80% of the An-xyl activity could be retained upon treatment at pH 2.0-8.0 for 24 h. The hydrolysis of tea stem by An-xyl and cellulase produced 19.3% and 38.6% higher reducing sugar content at 2 h and 4 h, respectively, than that of using cellulase alone. This study showed that the An-xyl mined from differential expression exhibited high xylose tolerance and higher catalytic activity and stability, and could hydrolyze tea stem lignocellulose synergistically, which enriched the resource of β-xylosidase with high xylose tolerance, thus may facilitate the advanced experimental research and its application.


Subject(s)
Aspergillus niger/genetics , Xylose/metabolism , Molecular Docking Simulation , Xylosidases/genetics , Cellulases , Tea , Hydrogen-Ion Concentration , Substrate Specificity
9.
Plant Physiol ; 189(3): 1794-1813, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35485198

ABSTRACT

Plant cell walls constitute physical barriers that restrict access of microbial pathogens to the contents of plant cells. The primary cell wall of multicellular plants predominantly consists of cellulose, hemicellulose, and pectin, and its composition can change upon stress. BETA-XYLOSIDASE4 (BXL4) belongs to a seven-member gene family in Arabidopsis (Arabidopsis thaliana), one of which encodes a protein (BXL1) involved in cell wall remodeling. We assayed the influence of BXL4 on plant immunity and investigated the subcellular localization and enzymatic activity of BXL4, making use of mutant and overexpression lines. BXL4 localized to the apoplast and was induced upon infection with the necrotrophic fungal pathogen Botrytis cinerea in a jasmonoyl isoleucine-dependent manner. The bxl4 mutants showed a reduced resistance to B. cinerea, while resistance was increased in conditional overexpression lines. Ectopic expression of BXL4 in Arabidopsis seed coat epidermal cells rescued a bxl1 mutant phenotype, suggesting that, like BXL1, BXL4 has both xylosidase and arabinosidase activity. We conclude that BXL4 is a xylosidase/arabinosidase that is secreted to the apoplast and its expression is upregulated under pathogen attack, contributing to immunity against B. cinerea, possibly by removal of arabinose and xylose side-chains of polysaccharides in the primary cell wall.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Xylosidases , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Botrytis/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Xylosidases/genetics , Xylosidases/metabolism
10.
J Biol Chem ; 298(3): 101670, 2022 03.
Article in English | MEDLINE | ID: mdl-35120929

ABSTRACT

Xylan is the most common hemicellulose in plant cell walls, though the structure of xylan polymers differs between plant species. Here, to gain a better understanding of fungal xylan degradation systems, which can enhance enzymatic saccharification of plant cell walls in industrial processes, we conducted a comparative study of two glycoside hydrolase family 3 (GH3) ß-xylosidases (Bxls), one from the basidiomycete Phanerochaete chrysosporium (PcBxl3), and the other from the ascomycete Trichoderma reesei (TrXyl3A). A comparison of the crystal structures of the two enzymes, both with saccharide bound at the catalytic center, provided insight into the basis of substrate binding at each subsite. PcBxl3 has a substrate-binding pocket at subsite -1, while TrXyl3A has an extra loop that contains additional binding subsites. Furthermore, kinetic experiments revealed that PcBxl3 degraded xylooligosaccharides faster than TrXyl3A, while the KM values of TrXyl3A were lower than those of PcBxl3. The relationship between substrate specificity and degree of polymerization of substrates suggested that PcBxl3 preferentially degrades xylobiose (X2), while TrXyl3A degrades longer xylooligosaccharides. Moreover, docking simulation supported the existence of extended positive subsites of TrXyl3A in the extra loop located at the N-terminus of the protein. Finally, phylogenetic analysis suggests that wood-decaying basidiomycetes use Bxls such as PcBxl3 that act efficiently on xylan structures from woody plants, whereas molds use instead Bxls that efficiently degrade xylan from grass. Our results provide added insights into fungal efficient xylan degradation systems.


Subject(s)
Ascomycota , Phanerochaete , Xylans , Xylosidases , Ascomycota/enzymology , Ascomycota/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Phanerochaete/enzymology , Phanerochaete/genetics , Phylogeny , Substrate Specificity , Xylans/metabolism , Xylosidases/chemistry , Xylosidases/genetics , Xylosidases/metabolism
11.
Sci Rep ; 12(1): 405, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013392

ABSTRACT

The carbohydrate-hydrolyzing enzymes play a crucial role in increasing the phenolic content and nutritional properties of polysaccharides substrate, essential for cost-effective industrial applications. Also, improving the feed efficiency of poultry is essential to achieve significant economic benefits. The current study introduced a novel thermostable metagenome-derived xylanase named PersiXyn8 and investigated its synergistic effect with previously reported α-amylase (PersiAmy3) to enhance poultry feed utilization. The potential of the enzyme cocktail in the degradation of poultry feed was analyzed and showed 346.73 mg/g poultry feed reducing sugar after 72 h of hydrolysis. Next, the impact of solid-state fermentation on corn quality was investigated in the presence and absence of enzymes. The phenolic content increased from 36.60 mg/g GAE in control sample to 68.23 mg/g in the presence of enzymes. In addition, the enzyme-treated sample showed the highest reducing power OD 700 of 0.217 and the most potent radical scavenging activity against ABTS (40.36%) and DPPH (45.21%) radicals. Moreover, the protein and ash contents of the fermented corn increased by 4.88% and 6.46%, respectively. These results confirmed the potential of the carbohydrate-hydrolyzing enzymes cocktail as a low-cost treatment for improving the phenolic content, antioxidant activity, and nutritional values of corn for supplementation of corn-based poultry feed.


Subject(s)
Animal Feed , Food Handling , Nutritive Value , Poultry , Xylosidases/metabolism , Zea mays/metabolism , alpha-Amylases/metabolism , Animals , Fermentation , Hydrolysis , Phenols/metabolism , Saccharomyces cerevisiae/enzymology , Substrate Specificity , Sugars/metabolism , Xylosidases/genetics , Zea mays/microbiology
12.
Mol Biotechnol ; 64(1): 75-89, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34542815

ABSTRACT

Xylooligosaccharides having various degrees of polymerization such as xylobiose, xylotriose, and xylotetraose positively affect human health by interacting with gut proteins. The present study aimed to identify proteins present in gut microflora, such as xylosidase, xylulokinase, etc., with the help of retrieved whole-genome annotations and find out the mechanistic interactions of those with the above substrates. The 3D structures of proteins, namely Endo-1,4-beta-xylanase B (XynB) from Lactobacillus brevis and beta-D-xylosidase (Xyl3) from Bifidobacterium adolescentis, were computationally predicted and validated with the help of various bioinformatics tools. Molecular docking studies identified the effectual binding of these proteins to the xylooligosaccharides, and the stabilities of the best-docked complexes were analyzed by molecular dynamic simulation. The present study demonstrated that XynB and Xyl3 showed better effectual binding toward Xylobiose with the binding energies of - 5.96 kcal/mol and - 4.2 kcal/mol, respectively. The interactions were stabilized by several hydrogen bonding having desolvation energy (- 6.59 and - 7.91). The conformational stabilities of the docked complexes were observed in the four selected complexes of XynB-xylotriose, XynB-xylotetraose, Xyl3-xylobiose, and Xyn3-xylotriose by MD simulations. This study showed that the interactions of these four complexes are stable, which means they have complex metabolic activities among each other. Extending these studies of understanding, the interaction between specific probiotics enzymes and their ligands can explore the detailed design of synbiotics in the future.


Subject(s)
Bifidobacterium adolescentis/metabolism , Glucuronates/metabolism , Levilactobacillus brevis/metabolism , Oligosaccharides/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bifidobacterium adolescentis/genetics , Computational Biology , Disaccharides/chemistry , Disaccharides/metabolism , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/genetics , Genome, Bacterial/genetics , Glucuronates/chemistry , Humans , Levilactobacillus brevis/genetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Oligosaccharides/chemistry , Probiotics/metabolism , Trisaccharides/chemistry , Trisaccharides/metabolism , Xylosidases/chemistry , Xylosidases/genetics
13.
Appl Microbiol Biotechnol ; 106(2): 675-687, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34971412

ABSTRACT

α-Xylosidases release the α-D-xylopyranosyl side chain from di- and oligosaccharides derived from xyloglucans and are involved in xyloglucan degradation. In this study, an extracellular α-xylosidase, named AxyB, is identified and characterized in Aspergillus oryzae. AxyB belongs to the glycoside hydrolase family 31 and releases D-xylose from isoprimeverose (α-D-xylopyranosyl-(1 → 6)-D-glucopyranose) and xyloglucan oligosaccharides. In the hydrolysis of xyloglucan oligosaccharides (XLLG, Glc4Xyl3Gal2 nonasaccharide; XLXG/XXLG, Glc4Xyl3Gal1 octasaccharide; and XXXG, Glc4Xyl3 heptasaccharide), AxyB releases one molecule of the xylopyranosyl side chain attached to the non-reducing end of the ß-1,4-glucan main chain of these xyloglucan oligosaccharides to yield GLLG (Glc4Xyl2Gal2), GLXG/GXLG (Glc4Xyl2Gal1), and GXXG (Glc4Xyl2). A. oryzae has both extracellular and intracellular α-xylosidase, suggesting that xyloglucan oligosaccharides are degraded by a combination of isoprimeverose-producing oligoxyloglucan hydrolase and intracellular α-xylosidase and a combination of extracellular α-xylosidase and ß-glucosidase(s) in A. oryzae. KEY POINTS: • An extracellular α-xylosidase, AxyB, is identified in Aspergillus oryzae. • AxyB releases the xylopyranosyl side chain from xyloglucan oligosaccharides. • Different sets of glycosidases degrade xyloglucan oligosaccharides in A. oryzae.


Subject(s)
Aspergillus oryzae , Xylosidases , Aspergillus oryzae/metabolism , Glucans , Oligosaccharides , Substrate Specificity , Xylans , Xylosidases/genetics , Xylosidases/metabolism
14.
BMC Biotechnol ; 21(1): 61, 2021 10 24.
Article in English | MEDLINE | ID: mdl-34689773

ABSTRACT

BACKGROUND: There is a continued need for improved enzymes for industry. ß-xylosidases are enzymes employed in a variety of industries and although many wild-type and engineered variants have been described, enzymes that are highly tolerant of the products produced by catalysis are not readily available and the fundamental mechanisms of tolerance are not well understood. RESULTS: Screening of a metagenomic library constructed of mDNA isolated from horse manure compost for ß-xylosidase activity identified 26 positive hits. The fosmid clones were sequenced and bioinformatic analysis performed to identity putative ß-xylosidases. Based on the novelty of its amino acid sequence and potential thermostability one enzyme (XylP81) was selected for expression and further characterization. XylP81 belongs to the family 39 ß-xylosidases, a comparatively rarely found and characterized GH family. The enzyme displayed biochemical characteristics (KM-5.3 mM; Vmax-122 U/mg; kcat-107; Topt-50 °C; pHopt-6) comparable to previously characterized glycoside hydrolase family 39 (GH39) ß-xylosidases and despite nucleotide identity to thermophilic species, the enzyme displayed only moderate thermostability with a half-life of 32 min at 60 °C. Apart from acting on substrates predicted for ß-xylosidase (xylobiose and 4-nitrophenyl-ß-D-xylopyranoside) the enzyme also displayed measurable α-L-arabainofuranosidase, ß-galactosidase and ß-glucosidase activity. A remarkable feature of this enzyme is its ability to tolerate high concentrations of xylose with a Ki of 1.33 M, a feature that is highly desirable for commercial applications. CONCLUSIONS: Here we describe a novel ß-xylosidase from a poorly studied glycosyl hydrolase family (GH39) which despite having overall kinetic properties similar to other bacterial GH39 ß-xylosidases, displays unusually high product tolerance. This trait is shared with only one other member of the GH39 family, the recently described ß-xylosidases from Dictyoglomus thermophilum. This feature should allow its use as starting material for engineering of an enzyme that may prove useful to industry and should assist in the fundamental understanding of the mechanism by which glycosyl hydrolases evolve product tolerance.


Subject(s)
Composting , Xylosidases , Animals , Horses , Hydrogen-Ion Concentration , Manure , Substrate Specificity , Temperature , Xylose , Xylosidases/genetics , Xylosidases/metabolism
15.
Enzyme Microb Technol ; 151: 109921, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649692

ABSTRACT

ß-Xylosidases are often inhibited by its reaction product xylose or inactivated by high temperature environment, which limited its application in hemicellulosic biomass conversion to fuel and food processing. Remarkably, some ß-xylosidases from GH39 family are tolerant to xylose. Therefore, it is of great significance to elucidate the effect mechanism of xylose on GH39 ß-xylosidases to improve their application. In this paper, based on the homologous model and prediction of protein active pocket constructed by I-TASSA and PyMOL, two putative xylose tolerance relevant sites (283 and 284) were mutated at the bottom of the protein active pocket, where xylose sensitivity and thermostability of Dictyoglomus thermophilum ß-xylosidase Xln-DT were improved by site-directed mutagenesis. The Xln-DT mutant Xln-DT-284ASP and Xln-DT-284ALA showed high xylose tolerance, with the Ki values of 4602 mM and 3708 mM, respectively, which increased by 9-35% compared with the wildtype Xln-DT. The thermostability of mutant Xln-DT-284ASP was significantly improved at 75 and 85 °C, while the activity of the wild enzyme Xln-DT decreased to 40-20%, the activity of the mutant enzyme still remained 100%. The mutant Xln-DT-284ALA showed excellent stability at pH 4.0-7.0, but Xln-DT-284ASP showed slightly decreased activity. Furthermore, in order to explore the key sites and mechanism of xylose's effect on ß-xylosidase activity, the interaction between xylose and enzyme was simulated by molecular docking. Besides binding to the active sites at the bottom of the substrate channel, xylose can also bind to sites in the middle or entrance of the channel with different affinities, which may determine the xylose inhibition of ß-xylosidase. In conclusion, the improved xylose tolerance of mutant enzyme could be more advantageous in the degradation of hemicellulose and the biotransformation of other natural active substances containing xylose. This study supplies new insights into general mechanism of xylose effect on the activity of GH 39 ß-xylosidases as well as related enzymes that modulate their activity via feedback control mechanism.


Subject(s)
Xylose , Xylosidases , Bacteria , Molecular Docking Simulation , Mutagenesis, Site-Directed , Substrate Specificity , Xylosidases/genetics , Xylosidases/metabolism
16.
Carbohydr Polym ; 273: 118553, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34560965

ABSTRACT

Fungal xylanases belonging to family GH30_7, initially categorized as endo-glucuronoxylanases, are now known to differ both in terms of substrate specificity, as well as mode of action. Recently, TtXyn30A, a GH30_7 xylanase from Thermothelomyces thermophila, was shown to possess dual activity, acting on the xylan backbone in both an endo- and an exo- manner. Here, in an effort to identify the structural characteristics that append these functional properties to the enzyme, we present the biochemical characterization of various TtXyn30A mutants as well as its crystal structure, alone, and in complex with the reaction product. An auxiliary catalytic amino acid has been identified, while it is also shown that glucuronic acid recognition is not mediated by a conserved arginine residue, as shown by previously determined GH30 structures.


Subject(s)
Sordariales/chemistry , Xylans/chemistry , Xylosidases/chemistry , Catalysis , Crystallography, X-Ray/methods , Fungal Proteins/chemistry , Glucuronates/metabolism , Glucuronic Acid/metabolism , Molecular Structure , Mutation , Oligosaccharides/metabolism , Substrate Specificity , Xylosidases/genetics , Xylosidases/ultrastructure
17.
Biosci Biotechnol Biochem ; 85(8): 1853-1860, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34077498

ABSTRACT

XynR is a thermophilic and alkaline GH10 xylanase, identified in the culture broth of alkaliphilic and thermophilic Bacillus sp. strain TAR-1. We previously selected S92E as a thermostable variant from a site saturation mutagenesis library. Here, we attempted to select the alkaliphilic XynR variant from the library and isolated T315N. In the hydrolysis of beechwood xylan, T315N and S92E/T315N exhibited a broader bell-shaped pH-dependent activity than the wild-type (WT) XynR and S92E. The optimal pH values of T315N and S92E/T315N were 6.5-9.5 while those of WT and S92E were 6.5-8.5. On the other hand, T315N and S92E/T315N exhibited a narrower bell-shaped pH dependence of stability: the pHs at which the activity was stable after the incubation at 37 °C for 24 h were 6.0-8.5 for T315N and S92E/T315N, but 6.0-10.0 for WT and S92E. These results indicated that the mutation of Thr315 to Asn increased the alkaliphily but decreased the alkaline resistance.


Subject(s)
Alkalies/metabolism , Asparagine/chemistry , Threonine/chemistry , Xylosidases/metabolism , Amino Acid Substitution , Catalysis , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Temperature , Xylosidases/chemistry , Xylosidases/genetics
18.
Plant Sci ; 308: 110792, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34034860

ABSTRACT

Arabinoxylans are cell wall polysaccharides whose re-modelling and degradation during plant development are mediated by several classes of xylanolytic enzymes. Here, we present the identification and new annotation of twelve putative (1,4)-ß-xylanase and six ß-xylosidase genes, and their spatio-temporal expression patterns during vegetative and reproductive growth of barley (Hordeum vulgare cv. Navigator). The encoded xylanase proteins are all predicted to contain a conserved carbohydrate-binding module (CBM) and a catalytic glycoside hydrolase (GH) 10 domain. Additional domains in some xylanases define three discrete phylogenetic clades: one clade contains proteins with an additional N-terminal signal sequence, while another clade contains proteins with multiple CBMs. Homology modelling revealed that all fifteen xylanases likely contain a third domain, a ß-sandwich folded from two non-contiguous sequence segments that bracket the catalytic GH domain, which may explain why the full length protein is required for correct folding of the active enzyme. Similarly, predicted xylosidase proteins share a highly conserved domain structure, each with an N-terminal signal peptide, a split GH 3 domain, and a C-terminal fibronectin-like domain. Several genes appear to be ubiquitously expressed during barley growth and development, while four newly annotated xylanase and xylosidase genes are expressed at extremely high levels, which may be of broader interest for industrial applications where cell wall degradation is necessary.


Subject(s)
Endo-1,4-beta Xylanases/genetics , Genes, Plant , Hordeum/genetics , Plant Proteins/genetics , Xylosidases/genetics , Amino Acid Sequence , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Gene Expression Profiling , Hordeum/enzymology , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment , Spatio-Temporal Analysis , Xylosidases/chemistry , Xylosidases/metabolism
19.
Appl Environ Microbiol ; 87(14): e0052421, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33990300

ABSTRACT

Caldicellulosiruptor species are hyperthermophilic, Gram-positive anaerobes and the most thermophilic cellulolytic bacteria so far described. They have been engineered to convert switchgrass to ethanol without pretreatment and represent a promising platform for the production of fuels, chemicals, and materials from plant biomass. Xylooligomers, such as xylobiose and xylotriose, that result from the breakdown of plant biomass more strongly inhibit cellulase activity than do glucose or cellobiose. High concentrations of xylobiose and xylotriose are present in C. bescii fermentations after 90 h of incubation, and removal or breakdown of these types of xylooligomers is crucial to achieving high conversion of plant biomass to product. In previous studies, the addition of exogenous ß-d-xylosidase substantially improved the performance of glucanases and xylanases in vitro. ß-d-Xylosidases are, in fact, essential enzymes in commercial preparations for efficient deconstruction of plant biomass. In addition, the combination of xylanase and ß-d-xylosidase is known to exhibit synergistic action on xylan degradation. In spite of its ability to grow efficiently on xylan substrates, no extracellular ß-d-xylosidase was identified in the C. bescii genome. Here, we report that the coexpression of a thermal stable ß-d-xylosidase from Thermotoga maritima and a xylanase from Acidothermus cellulolyticus in a C. bescii strain containing the A. cellulolyticus E1 endoglucanase significantly increased the activity of the exoproteome as well as growth on xylan substrates. The combination of these enzymes also resulted in increased growth on crystalline cellulose in the presence of exogenous xylan. IMPORTANCECaldicellulosiruptor species are bacteria that grow at extremely high temperature, more than 75°C, and are the most thermophilic bacteria so far described that are capable of growth on plant biomass. This native ability allows the use of unpretreated biomass as a growth substrate, eliminating the prohibitive cost of preprocessing/pretreatment of the biomass. They only grow under strictly anaerobic conditions, and the combination of high temperature and the lack of oxygen reduces the cost of fermentation and contamination by other microbes. They have been genetically engineered to convert switchgrass to ethanol without pretreatment and represent a promising platform for the production of fuels, chemicals, and materials from plant biomass. In this study, we introduced genes from other cellulolytic bacteria and identified a combination of enzymes that improves growth on plant biomass. An important feature of this study is that it measures growth, validating predictions made from adding enzyme mixtures to biomass.


Subject(s)
Actinobacteria/enzymology , Caldicellulosiruptor/metabolism , Proteome/metabolism , Thermotoga maritima/enzymology , Xylans/metabolism , Xylosidases/metabolism , Actinobacteria/genetics , Cellobiose/metabolism , Escherichia coli/genetics , Thermotoga maritima/genetics , Xylosidases/genetics
20.
Int J Mol Sci ; 22(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921693

ABSTRACT

Plants lack a circulating adaptive immune system to protect themselves against pathogens. Therefore, they have evolved an innate immune system based upon complicated and efficient defense mechanisms, either constitutive or inducible. Plant defense responses are triggered by elicitors such as microbe-associated molecular patterns (MAMPs). These components are recognized by pattern recognition receptors (PRRs) which include plant cell surface receptors. Upon recognition, PRRs trigger pattern-triggered immunity (PTI). Ethylene Inducing Xylanase (EIX) is a fungal MAMP protein from the plant-growth-promoting fungi (PGPF)-Trichoderma. It elicits plant defense responses in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum), making it an excellent tool in the studies of plant immunity. Xylanases such as EIX are hydrolytic enzymes that act on xylan in hemicellulose. There are two types of xylanases: the endo-1, 4-ß-xylanases that hydrolyze within the xylan structure, and the ß-d-xylosidases that hydrolyze the ends of the xylan chain. Xylanases are mainly synthesized by fungi and bacteria. Filamentous fungi produce xylanases in high amounts and secrete them in liquid cultures, making them an ideal system for xylanase purification. Here, we describe a method for cost- and yield-effective xylanase production from Trichoderma using wheat bran as a growth substrate. Xylanase produced by this method possessed xylanase activity and immunogenic activity, effectively inducing a hypersensitive response, ethylene biosynthesis, and ROS burst.


Subject(s)
Fungal Proteins/metabolism , Trichoderma/enzymology , Trichoderma/metabolism , Xylosidases/metabolism , Ethylenes/metabolism , Fungal Proteins/genetics , Solanum lycopersicum/immunology , Solanum lycopersicum/metabolism , Plant Immunity/genetics , Plant Immunity/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/immunology , Nicotiana/metabolism , Xylosidases/genetics , Xylosidases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...