Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 11(10): e1005222, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26484539

ABSTRACT

Activation and/or recruitment of the host plasmin, a fibrinolytic enzyme also active on extracellular matrix components, is a common invasive strategy of bacterial pathogens. Yersinia pestis, the bubonic plague agent, expresses the multifunctional surface protease Pla, which activates plasmin and inactivates fibrinolysis inhibitors. Pla is encoded by the pPla plasmid. Following intradermal inoculation, Y. pestis has the capacity to multiply in and cause destruction of the lymph node (LN) draining the entry site. The closely related, pPla-negative, Y. pseudotuberculosis species lacks this capacity. We hypothesized that tissue damage and bacterial multiplication occurring in the LN during bubonic plague were linked and both driven by pPla. Using a set of pPla-positive and pPla-negative Y. pestis and Y. pseudotuberculosis strains in a mouse model of intradermal injection, we found that pPla is not required for bacterial translocation to the LN. We also observed that a pPla-cured Y. pestis caused the same extensive histological lesions as the wild type strain. Furthermore, the Y. pseudotuberculosis histological pattern, characterized by infectious foci limited by inflammatory cell infiltrates with normal tissue density and follicular organization, was unchanged after introduction of pPla. However, the presence of pPla enabled Y. pseudotuberculosis to increase its bacterial load up to that of Y. pestis. Similarly, lack of pPla strongly reduced Y. pestis titers in LNs of infected mice. This pPla-mediated enhancing effect on bacterial load was directly dependent on the proteolytic activity of Pla. Immunohistochemistry of Pla-negative Y. pestis-infected LNs revealed extensive bacterial lysis, unlike the numerous, apparently intact, microorganisms seen in wild type Y. pestis-infected preparations. Therefore, our study demonstrates that tissue destruction and bacterial survival/multiplication are dissociated in the bubo and that the primary action of Pla is to protect bacteria from destruction rather than to alter the tissue environment to favor Y. pestis propagation in the host.


Subject(s)
Bacterial Proteins/metabolism , Plague/microbiology , Plague/pathology , Plasminogen Activators/metabolism , Yersinia pestis/pathogenicity , Animals , Disease Models, Animal , Immunohistochemistry , Mice , Mutagenesis, Site-Directed , Plague/enzymology , Virulence/physiology , Virulence Factors/metabolism , Yersinia pestis/enzymology , Yersinia pseudotuberculosis/enzymology , Yersinia pseudotuberculosis/pathogenicity , Yersinia pseudotuberculosis Infections/enzymology , Yersinia pseudotuberculosis Infections/microbiology , Yersinia pseudotuberculosis Infections/pathology
2.
Cell Host Microbe ; 11(4): 337-51, 2012 Apr 19.
Article in English | MEDLINE | ID: mdl-22520462

ABSTRACT

Yersinia pseudotuberculosis is an enteropathogenic bacteria that disrupts the intestinal barrier and invades its host through gut-associated lymphoid tissue and Peyer's patches (PP). We show that the Y. pseudotuberculosis effector YopJ induces intestinal barrier dysfunction by subverting signaling of the innate immune receptor Nod2, a phenotype that can be reversed by pretreating with the Nod2 ligand muramyl-dipeptide. YopJ, but not the catalytically inactive mutant YopJ(C172A), acetylates critical sites in the activation loops of the RICK and TAK1 kinases, which are central mediators of Nod2 signaling, and decreases the affinity of Nod2 for RICK. Concomitantly, Nod2 interacts with and activates caspase-1, resulting in increased levels of IL-1ß. Finally, IL-1ß within PP plays an essential role in inducing intestinal barrier dysfunction. Thus, YopJ alters intestinal permeability and promotes the dissemination of Yersinia as well as commensal bacteria by exploiting the mucosal inflammatory response.


Subject(s)
Bacterial Proteins/metabolism , Caspase 1/metabolism , Intestines/enzymology , MAP Kinase Kinase Kinases/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Yersinia pseudotuberculosis Infections/enzymology , Yersinia pseudotuberculosis/metabolism , Animals , Bacterial Proteins/genetics , Caspase 1/genetics , Cell Line , Female , Humans , Intestinal Mucosa/metabolism , Intestines/microbiology , MAP Kinase Kinase Kinases/genetics , Male , Mice , Mice, Inbred C57BL , Nod2 Signaling Adaptor Protein/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Signal Transduction , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis Infections/metabolism , Yersinia pseudotuberculosis Infections/microbiology
3.
Infect Immun ; 65(5): 1985-90, 1997 May.
Article in English | MEDLINE | ID: mdl-9125594

ABSTRACT

A chromosomal locus (ure) involved in the production of urease activity in the bacterial pathogen Yersinia pseudotuberculosis was characterized. The genetic organization of the Y. pseudotuberculosis ure locus closely resembles that of the related ureolytic Yersinia species Y. enterocolitica. This locus encompasses seven open reading frames encoding polypeptides with predicted molecular weights of 10,894 (UreA), 15,820 (UreB), 61,001 (UreC), 25,801 (UreE), 24,551 (UreF), 20,330 (UreG), and 31,308 (UreD). The polypeptides have 85 to 96% identity with the corresponding Ure polypeptides of Y. enterocolitica serotype 0:8. Restriction fragment length polymorphisms of the ure loci from 12 unrelated Y. pseudotuberculosis strains produced by HaeIII and MboI indicate a low level of genetic variability of this locus in this species. The role of urease in the pathogenicity of Y. pseudotuberculosis was studied by constructing an isogenic urease-negative mutant obtained by disruption of structural gene ureB by aphA-3', which encodes kanamycin resistance. Experimental infection of mice with this mutant demonstrates that urease is not essential for Y. pseudotuberculosis virulence. Urease might be required mostly during the saprophytic life of this pathogen.


Subject(s)
Gene Expression Regulation, Bacterial , Urease/genetics , Yersinia pseudotuberculosis Infections/enzymology , Yersinia pseudotuberculosis Infections/genetics , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/pathogenicity , Amino Acid Sequence , Animals , Chromosome Mapping , Cloning, Molecular , Female , Genetic Complementation Test , Kanamycin Resistance/genetics , Mice , Molecular Sequence Data , Mutagenesis, Insertional , Open Reading Frames , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Recombination, Genetic , Sequence Alignment , Sequence Homology, Amino Acid , Virulence/genetics , Yersinia enterocolitica/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...