Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.998
Filter
1.
J Texture Stud ; 55(4): e12848, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952148

ABSTRACT

Foods containing bits and pieces are often less liked by children; however, there is a limited understanding of how perceptions and preferences for foods with particles change during childhood. This study aimed to investigate preferences and perceptions of particle-containing foods in children aged 5-12 years. Children (n = 485) completed a forced-choice questionnaire on drawings of six pairs of foods, each available with or without particles. Additionally, children tasted yogurts added with muesli differing in particle size (median diameter: 3.9 or 7.5 mm) and evaluated their perception of particle size in mouth and their liking. The questionnaire results showed that children had a clear preference for foods without particles. The average probability of choosing the 'with-particle' foods was 28%, significantly below the midpoint of 50% (p < .0001). Preferences for particle-containing foods were lowest at age six and increased significantly with age (p = .0007). In the taste test, muesli particle size affected oral size perception (p < .0001) but not liking (p = .60). Older children were better able to differentiate particle size than younger children. However, there was no relationship between individual preferences for particle-containing foods and oral size perception of muesli particles. The observation that children's texture preferences changed with age highlights the role of increased experience in shaping preferences for foods with particles.


Subject(s)
Food Preferences , Particle Size , Taste , Humans , Child , Female , Male , Child, Preschool , Surveys and Questionnaires , Size Perception , Mouth , Choice Behavior , Yogurt/analysis , Food , Taste Perception
2.
Mikrochim Acta ; 191(8): 460, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987355

ABSTRACT

The facile sonochemical synthesis is reported of zinc cobalt oxide (ZnCo2O4) composited with carbon nanofiber (CNF). Structural, chemical, and morphological were characterized by X-ray diffraction (XRD), X-ray photoluminescent spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmittance electron microscopy (TEM), respectively. ZnCo2O4/CNF-modified GCE was applied to the detection of bisphenol A (BPA). The modified GCE shows enhanced sensing performance towards BPA, which includes a linear range (0.2 to 120 µM L-1) alongside a low limit of detection (38.2 nM L-1), low interference, and good stability. Detection of lower concentrations of BPA enables real sample analysis in the food industries (milk, orange juice, yogurt, tap water, and baby feeding bottles). Surprisingly, the BPA was detected in milk 510 nM L-1, orange juice 340 nM L-1, yogurt 1050 nM L-1, and tap water 140 nM L-1. Moreover, an interaction mechanism between the BPA analyte and ZnCo2O4 was discussed.


Subject(s)
Benzhydryl Compounds , Carbon , Cobalt , Milk , Nanofibers , Phenols , Benzhydryl Compounds/analysis , Phenols/analysis , Phenols/chemistry , Cobalt/chemistry , Carbon/chemistry , Milk/chemistry , Nanofibers/chemistry , Food Contamination/analysis , Animals , Oxides/chemistry , Limit of Detection , Electrochemical Techniques/methods , Fruit and Vegetable Juices/analysis , Green Chemistry Technology/methods , Yogurt/analysis
3.
Food Res Int ; 190: 114604, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945616

ABSTRACT

Sheep's milk (SM) is known to differ from cow's milk (CM) in nutritional composition and physicochemical properties, which may lead to different digestion behaviours. This work aimed to investigate the impact of the species (cow vs sheep) and the structure (milk vs yogurt) on the digestion of dairy products. Using an in vitro static gastrointestinal digestion model, CM, SM, cow's milk yogurt (CY) and sheep's milk yogurt (SY) were compared on particle size evolution, microscopic observations, degree of lipolysis, degree of proteolysis, specific protein degradation and calcium bioaccessibility. Species and structure affected particle size evolution during the gastric phase resulting in smaller particles for yogurts compared to milks as well as for CM products compared to SM products. Species impacted lipid composition and lipolysis, with SM products presenting higher short/medium-chain fatty acids content and higher intestinal degree of lipolysis. Proteolysis was influenced by structure, with milks showing higher intestinal degree of proteolysis compared to yogurts. Caseins were digested faster in CM, ⍺-lactalbumin was digested faster in SM despite its higher concentration, and during gastric digestion ß-lactoglobulin was more degraded in CM products compared to SM products and more in yogurts compared to milks. Lastly, SM products released more bioaccessible calcium than CM products. In conclusion, species (cow vs sheep) impacted more the digestion compared to the structure (milk vs yogurt). In fact, SM was different from CM mainly due to a denser protein network that might slow down the accessibility of the enzyme to its substrate which induce a delay of gastric disaggregation and thus lead to slower the digestion of the nutrients.


Subject(s)
Digestion , Lipolysis , Milk , Particle Size , Proteolysis , Yogurt , Animals , Digestion/physiology , Cattle , Yogurt/analysis , Sheep , Milk/chemistry , Lactoglobulins/metabolism , Gastrointestinal Tract/metabolism , Dairy Products/analysis , Lactalbumin/metabolism , Caseins/metabolism , Caseins/analysis , Species Specificity , Milk Proteins/analysis , Milk Proteins/metabolism
4.
Dent Med Probl ; 61(3): 345-352, 2024.
Article in English | MEDLINE | ID: mdl-38860839

ABSTRACT

BACKGROUND: Salvadora persica (miswak) is known to exert antibacterial, antifungal, antioxidant, and anticariogenic effects by elevating the pH of plaque after the consumption of sucrose. OBJECTIVES: The study aimed to compare the effectiveness of S. persica and probiotic yogurt in the remineralization of tooth enamel on artificially produced enamel lesions. MATERIAL AND METHODS: A total of 40 intact human premolars were collected and each tooth was sectioned longitudinally into 2 identical halves in a buccolingual direction. The buccal halves were selected for inclusion in this study, and standardized windows (5 mm × 3 mm) were isolated on the buccal surface of the enamel. The samples were incubated in a demineralizing solution at 37°C for 96 h. Subsequently, they were randomly selected for treatment with one of the experimental remineralizing solutions (S. persica or probiotic yogurt). After treatment, the samples were examined using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and polarized light microscopy at baseline, after demineralization and after remineralization. RESULTS: The remineralizing effect of S. persica was found to be greater than that of probiotic yogurt. With regard to mineral content, S. persica exhibited the highest calcium and phosphorus levels among all groups. No significant differences were observed between the samples treated with S. persica and normal enamel. CONCLUSIONS: Salvadora persica extract has been demonstrated to effectively reduce the demineralization of enamel in experimental conditions. Furthermore, it has the potential to restore the mineral content to its original level.


Subject(s)
Dental Enamel , Probiotics , Salvadoraceae , Tooth Remineralization , Yogurt , Probiotics/therapeutic use , Humans , Yogurt/microbiology , Dental Enamel/drug effects , Microscopy, Electron, Scanning , Tooth Demineralization , Microscopy, Polarization
5.
Food Chem ; 455: 139937, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850973

ABSTRACT

Debittering of pomelo juice was conducted using 3.7 g of activated resin, resulting in a 36.8% reduction in bitterness without affecting the bioactive properties of juice. The debittered juice was then encapsulated with Moringa oleifera exudate at various ratios (1-5%), yielding a powder with a slightly rough surface. Total phenol content (TPC) increased by 46-56% compared to the debittered juice. Functional yoghurt containing encapsulates at concentrations of 1% and 2% demonstrated that the 2% concentration led to longer storage duration, resulting in increased acidity and syneresis compared to the control. TPC of the yoghurt (161.89-198.22 µg Gallic acid equivalent (GAE)/g) remained significantly higher (p < 0.05) than that of the control (47.15 µg GAE/g) and acacia gum-based yoghurt (141.89-171.37 µg GAE/g), decreasing with storage duration. Addition of encapsulates significantly altered the yoghurt's texture, resulting in lower firmness (0.57 to 0.64 N) compared to the control, while adhesiveness values remained comparable (6.33 to 6.25 g.s). The highest values of G' and G" were observed in samples containing 2% encapsulates with moringa compared to those with acacia gum. This study suggests potential avenues for further exploration in functional foods with enhanced health benefits.


Subject(s)
Fruit and Vegetable Juices , Moringa oleifera , Yogurt , Moringa oleifera/chemistry , Yogurt/analysis , Fruit and Vegetable Juices/analysis , Pomegranate/chemistry , Phenols/chemistry , Taste , Plant Exudates/chemistry , Plant Extracts/chemistry , Food Handling
6.
Nutrients ; 16(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931322

ABSTRACT

The immune system is affected by the dietary products humans intake. Immune system regulation by nutrition has uses in the clinical context, but it can also benefit healthy populations by delaying or preventing the emergence of immune-mediated chronic illnesses. In this study, the purpose was to describe and compare the modulator effects on the immune system of the routine ingestion of fresh vs. pasteurized yogurt. A unicentral, prospective, randomized, double-blind, parallel group 8-week nutritional study was carried out comparing the ingestion of 125 g of the products in healthy adults three times a day. A complete battery of in vitro tests on the activity of the immune system, processes and phenomena was performed. Exclusive immune-modulatory effects of fresh yogurt with respect to base line were found in terms of increased systemic IgM (primary immune responses), increased synthesis of IFN-gamma upon stimulation (Th1) and increased peripheral T cells (mainly "naive" CD4s). In the three interventions, we observed an increased phagocytic activity and burst test in granulocytes, together with increased secretion of IL-6, IL-1 ß and IL-8 (pro-inflammatory) and increased CD16 expression (FcR favoring phagocytosis) in granulocytes. Overall, it is concluded that regardless of bacteria being alive or thermally inactivated, yogurt has common effects on the innate system, but the presence of live bacteria is necessary to achieve a potentiating effect on the specific immune response.


Subject(s)
Yogurt , Humans , Double-Blind Method , Adult , Male , Female , Prospective Studies , Pasteurization , Phagocytosis , Cytokines/metabolism , Young Adult , Immunoglobulin M/blood , Interferon-gamma/metabolism , Middle Aged , Granulocytes/immunology , Immune System/drug effects , Receptors, IgG/metabolism
7.
Food Funct ; 15(12): 6705-6716, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38832529

ABSTRACT

Studies have confirmed that yogurt has the activity of regulating blood pressure because it is rich in probiotic-fermented food-derived active peptides. There are also studies on angiotensin-converting enzyme inhibition (ACEI) peptide milk, but the bioactive molecules in it are still unclear. Therefore, in this study, we developed a peanut yogurt with ACEI activity, analyzed 1877 differential peptides and their antihypertensive pathways before and after fermentation using peptidomics, and identified three peptides (FLPYPY, QPPPSPPPFL and APFPEVFGK) with potential antihypertensive activity using molecular docking and chemical synthesis techniques. These results first elucidated the relationship between peanut yogurt peptides and antihypertensive function, demonstrated the benefits of peanut yogurt, and provided a theoretical basis for the application of probiotic fermented plant yogurt in health care.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antihypertensive Agents , Arachis , Peptides , Yogurt , Yogurt/analysis , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Peptides/chemistry , Peptides/pharmacology , Arachis/chemistry , Molecular Docking Simulation , Humans , Fermentation , Animals , Proteomics
8.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732617

ABSTRACT

Cholesterol oxidation products (COPs) are contaminants of food of animal origin. Increased levels of these compounds in the human body are associated with an increased risk of many non-communicable diseases. Dairy products are mentioned among the main sources of these compounds in the diet. The objective of this study was to evaluate the contents of cholesterol and its oxidized derivatives in eleven groups of dairy products, willingly consumed in European countries. The levels of COPs were determined by applying the GC-TOF/MS method. In the tested products, cholesterol and its oxidation derivatives, such as 7-ketocholesterol, 7α-hydroxycholesterol, 7ß-hydroxycholesterol, 5,6ß-epoxycholesterol and 5,6α-epoxycholesterol, were determined. The studied dairy products differed in their contents and profiles of oxysterols. The highest contents of COPs were found in cheese with internal mold (13.8 ± 2.5 mg kg-1) and Cheddar (11.7 ± 3.5 mg kg-1), while the lowest levels were detected in yoghurt (0.94 ± 0.30 mg kg-1) and kefir (0.57 ± 0.11 mg kg-1). 7-ketocholesterol and 5,6ß-epoxycholesterol were the dominant oxysterols. The ratio of oxidized derivatives to total cholesterol was on average 1.7%. Our results confirmed that dairy products are an important dietary source of COPs. Their levels should be monitored in dairy products to provide the best health quality.


Subject(s)
Cholesterol , Dairy Products , Oxidation-Reduction , Dairy Products/analysis , Cholesterol/analysis , Cholesterol/analogs & derivatives , Ketocholesterols/analysis , Humans , Oxysterols/analysis , Gas Chromatography-Mass Spectrometry , Yogurt/analysis , Europe , Food Contamination/analysis
9.
Nutrients ; 16(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732641

ABSTRACT

Numerous studies have investigated the immunomodulatory effects of yogurt, but the underlying mechanism remained elusive. This study aimed to elucidate the alleviating properties of yogurt on immunosuppression and proposed the underlying mechanism was related to the metabolite D-lactate. In the healthy mice, we validated the safety of daily yogurt consumption (600 µL) or D-lactate (300 mg/kg). In immunosuppressed mice induced by cyclophosphamide (CTX), we evaluated the immune regulation of yogurt and D-lactate. The result showed that yogurt restored body weight, boosted immune organ index, repaired splenic tissue, recovered the severity of delayed-type hypersensitivity reactions and increased serum cytokines (IgA, IgG, IL-6, IFN-γ). Additionally, yogurt enhanced intestinal immune function by restoring the intestinal barrier and upregulating the abundance of Bifidobacterium and Lactobacillus. Further studies showed that D-lactate alleviated immunosuppression in mice mainly by promoting cellular immunity. D-lactate recovered body weight and organ development, elevated serum cytokines (IgA, IgG, IL-6, IFN-γ), enhanced splenic lymphocyte proliferation and increased the mRNA level of T-bet in splenic lymphocyte to bolster Th1 differentiation. Finally, CTX is a chemotherapeutic drug, thus, the application of yogurt and D-lactate in the tumor-bearing mouse model was initially explored. The results showed that both yogurt (600 µL) and D-lactate (300 mg/kg) reduced cyclophosphamide-induced immunosuppression without promoting tumor growth. Overall, this study evaluated the safety, immune efficacy and applicability of yogurt and D-lactate in regulating immunosuppression. It emphasized the potential of yogurt as a functional food for immune regulation, with D-lactate playing a crucial role in its immunomodulatory effects.


Subject(s)
Cyclophosphamide , Cytokines , Lactic Acid , Yogurt , Animals , Mice , Lactic Acid/blood , Cytokines/metabolism , Male , Immunosuppression Therapy , Spleen/drug effects , Spleen/metabolism , Spleen/immunology , Mice, Inbred BALB C , Hypersensitivity, Delayed/immunology , Gastrointestinal Microbiome/drug effects , Lactobacillus , Bifidobacterium
10.
Food Chem ; 454: 139733, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38805923

ABSTRACT

Milk phospholipids have multiple health benefits, but the deficiency of detailed phospholipid profiles in dairy products brings obstacles to intake calculation and function evaluation of dairy phospholipids. In present study, 306 phospholipid molecular species were identified and quantified among 207 milk, yogurt and cream products using a HILIC-ESI-Q-TOF MS and a HILIC-ESI-QQQ MS. The phospholipid profiles of five mammals' milk show that camel milk contains the most abundant phosphatidylethanolamine, phosphatidylserine and sphingomyelin; cow, yak and goat milk have similar phospholipidomes, while buffalo milk contains abundant phosphatidylinositol. Fewer plasmalogens but more lyso-glycerolphospholipids were found in ultra-high-temperature (UHT) sterilized milk than in pasteurized milk, and higher proportions of lyso-glycerolphospholipid/total phospholipid were observed in both cream and skimmed/semi-skimmed milk than whole milk, indicating that UHT and skimming processes improve glycerolphospholipid degradation and phospholipid nutrition loss. Meanwhile, more diacyl-glycerolphospholipids and less of their degradation products make yogurt a better phospholipid resource than whole milk.


Subject(s)
Milk , Phospholipids , Yogurt , Animals , Phospholipids/analysis , Phospholipids/chemistry , Milk/chemistry , Yogurt/analysis , Cattle , Food Handling , Goats , Dairy Products/analysis , Camelus , Buffaloes/metabolism
11.
Food Chem ; 454: 139800, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38805925

ABSTRACT

The aim of this study was to investigate the impact of different concentrations (3% and 6%) of two ingredients (paste and flour) obtained from the valorization of date fruit coproducts on the nutritional (proximate composition and mineral profile), technological (coagulation curve, pH, acidity, sugar and organic acid content and syneresis), physicochemical (color, water activity and texture), microbiological and sensory properties of goat's yogurt during 21 days of refrigerated storage. Both ingredients enhanced the growth and stability of the yogurt starter culture, thereby improving the probiotic potential of date-added yogurts. Physicochemically, the addition of date flour (at both concentrations) induces stronger modifications (texture, color and syneresis) in yogurts than the date paste. During storage, date paste reduced the syneresis and hence maintained yogurts' physical quality. Consumers preferred the yogurts with date paste (3% and 6%) rather than with date flour, because its addition led to a more brownish color and granular texture.


Subject(s)
Food Storage , Goats , Milk , Phoeniceae , Taste , Yogurt , Animals , Yogurt/analysis , Phoeniceae/chemistry , Milk/chemistry , Food, Fortified/analysis , Humans , Fruit/chemistry , Cold Temperature
12.
Microbiol Spectr ; 12(7): e0347023, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38771133

ABSTRACT

Probiotics refer to living microorganisms that exert a variety of beneficial effects on human health. On the contrary, they also can cause infection, produce toxins within the body, and transfer antibiotic-resistant genes to the other microorganisms in the digestive tract necessitating a comprehensive safety assessment. This study aimed to conduct functional genomic analysis and some relevant biochemical tests to uncover the probiotic potentials of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. The strain TY-11 was identified as Lactobacillus delbrueckii subsp. indicus, whose genome (1,916,674 bp) contained 1911 CDS, and no gene was identified for either antibiotic resistance or toxic metabolites. It carried genes for the degradation of toxic metabolites, treatment of lactose intolerance, toll-like receptor 2-dependent innate immune response, heat and cold shock, bile salts tolerance, and acidic pH tolerance. Genes were annotated for inhibiting pathogenic bacteria by inhibitory substances [bacteriocin: Helveticin-J (331 bp) and Enterolysin-A (275 bp), hydrogen peroxide, and acid]; blockage of adhesion sites; and competition for nutrients. The genes involved in its metabolic pathway were detected as suitable for digesting indigestible nutrients in the human gut. The TY-11 genome possessed an additional 37 core genes of subspecies indicus which were deficient in the core genome of the most popular subsp. bulgaricus. During the phenotypic testing, the isolate TY-11 demonstrated high antagonistic activity (inhibition zone of 21.33 ± 1.53 mm) against Escherichia coli ATCC 8739 and was not sensitive to any of the 10 tested antibiotics. This study was the first study to explore the molecular insights into probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus. IMPORTANCE: This study aimed to conduct functional genomic analysis to uncover the probiotic potential of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. In our current investigation, we revealed a number of common and unique excellences of the probiotic Lactobacillus delbrueckii subsp. indicus TY-11 that are likely to be important to illustrate its intestinal residence and probiotic roles. This is the first study to explore the molecular insights into intestinal residence and probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus.


Subject(s)
Genome, Bacterial , Genomics , Lactobacillus delbrueckii , Phylogeny , Probiotics , Lactobacillus delbrueckii/genetics , Yogurt/microbiology , Humans , Anti-Bacterial Agents/pharmacology , Bangladesh
13.
Mol Nutr Food Res ; 68(10): e2300737, 2024 May.
Article in English | MEDLINE | ID: mdl-38700077

ABSTRACT

SCOPE: Yogurt consumption is related to a decreased risk of colorectal cancer (CRC), but whether such association is causal remains unclear. Patients with familial adenomatous polyposis (FAP) are at increased risk of CRC development. Here, the study investigates the efficacy of yogurt for intestinal polyposis chemoprevention in ApcMin/+ mice, a preclinical model for human FAP. METHODS AND RESULTS: A 10-week yogurt supplementation (15 g kg-1) in ApcMin/+ mice significantly reduces the intestinal polyp number (6.50 ± 0.97 versus 1.80 ± 0.49; p < 0.001) compared to controls. 16S rRNA gene-based microbiota analysis suggests that yogurt supplementation may greatly modulate the gut microbiome composition, especially in the relative abundance of Lactobacillus and Bifidobacterium. Importantly, the fecal concentration of d-lactate (d-Lac, 0.39 ± 0.04 µmol g-1 versus 8.14 ± 0.62 µmol g-1; p < 0.001) is boosted by yogurt, while oral administration with d-Lac (125 or 250 mg kg-1) reduces the polyp number by 71.43% or 77.14% (p < 0.001), respectively. The study also observes that d-Lac does not affect cell viability and anchorage-independence in CRC cells, but it greatly suppresses epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation in preneoplastic cells. Mechanistically, it demonstrates that d-Lac may attenuate epithelial cell transformation by targeting PI3K/AKT/ß-catenin axis. CONCLUSION: Yogurt protects against intestinal polyposis in ApcMin/+ mice, and d-Lac may partially account for the chemopreventive effects above.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Yogurt , Animals , Colorectal Neoplasms/prevention & control , Gastrointestinal Microbiome/drug effects , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/prevention & control , Humans , Mice, Inbred C57BL , Mice , Male , Lactic Acid , Carcinogenesis/drug effects , Feces/microbiology , Feces/chemistry , Adenomatous Polyposis Coli Protein/genetics
14.
BMC Vet Res ; 20(1): 192, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734600

ABSTRACT

BACKGROUND: Natural antimicrobial agents such as nisin were used to control the growth of foodborne pathogens in dairy products. The current study aimed to examine the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against methicillin resistant Staphylococcus aureus (MRSA) and E.coli O157:H7 during the manufacturing and storage of yoghurt. Nisin NPs were prepared using new, natural, and safe nano-precipitation method by acetic acid. The prepared NPs were characterized using zeta-sizer and transmission electron microscopy (TEM). In addition, the cytotoxicity of nisin NPs on vero cells was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined using agar well-diffusion method. Further, fresh buffalo's milk was inoculated with MRSA or E.coli O157:H7 (1 × 106 CFU/ml) with the addition of either nisin or nisin NPs, and then the inoculated milk was used for yoghurt making. The organoleptic properties, pH and bacterial load of the obtained yoghurt were evaluated during storage in comparison to control group. RESULTS: The obtained results showed a strong antibacterial activity of nisin NPs (0.125 mg/mL) against MRSA and E.coli O157:H7 in comparison with control and pure nisin groups. Notably, complete eradication of MRSA and E.coli O157:H7 was observed in yoghurt formulated with nisin NPs after 24 h and 5th day of storage, respectively. The shelf life of yoghurt inoculated with nisin nanoparticles was extended than those manufactured without addition of such nanoparticles. CONCLUSIONS: Overall, the present study indicated that the addition of nisin NPs during processing of yoghurt could be a useful tool for food preservation against MRSA and E.coli O157:H7 in dairy industry.


Subject(s)
Anti-Bacterial Agents , Escherichia coli O157 , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Nanoparticles , Nisin , Yogurt , Nisin/pharmacology , Nisin/chemistry , Yogurt/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Escherichia coli O157/drug effects , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Preservatives/pharmacology , Vero Cells , Food Microbiology , Chlorocebus aethiops , Food Preservation/methods
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124395, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38714004

ABSTRACT

This study aims to develop a novel and selective method for the detection of natamycin (E235) in yoghurt. The suggested method adopts an application of Hantzsch reaction to turn on the fluorescence behavior of natamycin (blue fluorescence), allowing its sensitive and selective determination in yoghurt samples without any overlapping at 485 nm. The originality of the research lies in the fact that this application takes place for the first time, also the detection (LOD) and quantification (LOQ) limits were very low (0.02 and 0.06µg mL-1, respectively) with a linear concentration range of 0.1-1.0 µgmL-1. Moreover, the developed method was employed for the detection of E235 in yoghurt sample with a good recoveries (98.80 ± 1.20-99.20 ± 1.15 (%), over a concentration range of 0.5-1.0 µgmL-1, (LOD = 0.04 and LOQ = 0.12 µgmL-1). Furthermore, the specificity and convenient application of our intended method is an attempt to determine E235 in milk anddairy products with easily followable steps.


Subject(s)
Limit of Detection , Natamycin , Spectrometry, Fluorescence , Yogurt , Yogurt/analysis , Natamycin/analysis , Spectrometry, Fluorescence/methods , Milk/chemistry , Reproducibility of Results , Food Contamination/analysis
16.
Food Chem ; 452: 139473, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723564

ABSTRACT

We had previously observed that adding pectin into milk before fermentation inhibited gelation of yogurt but did not affect the pH. Thus, this work aimed to prepare such liquid yogurt and clarify its formation mechanism. It was found that liquid yogurt was obtained in the presence of 0.10%-0.20% pectin. However, at lower or higher pectin concentrations, yogurt was gelled. Confocal laser scanning microscopy analysis demonstrated that 0.10%-0.20% pectin induced milk protein aggregating into separated particles rather than a continuous network, which explained why liquid yogurt was formed. Moreover, adding 0.10%-0.20% pectin into the casein micelle suspension induced aggregation of casein micelles at pH 6.8. After pH decreased to 4.3, casein micelles showed more aggregation but they were still separated particles, which was the same in the corresponding yogurt samples. These results suggested that pectin changed the aggregation mode of casein micelles and induced formation of liquid yogurt.


Subject(s)
Pectins , Yogurt , Yogurt/analysis , Pectins/chemistry , Hydrogen-Ion Concentration , Milk/chemistry , Animals , Micelles , Caseins/chemistry , Fermentation , Milk Proteins/chemistry , Food Handling
17.
Food Res Int ; 187: 114307, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763624

ABSTRACT

Flaxseed oil coacervates were produced by complex coacervation using soluble pea protein and gum arabic as shell materials, followed by either spray or electrostatic spray drying and their incorporation to yoghurt. Three yoghurt formulations were prepared: yoghurt with spray-dried microcapsules (Y-SD); with electrospray-dried microcapsules (Y-ES); with the encapsulation ingredients added in free form (Y). The standardised semi-dynamicin vitrodigestion method (INFOGEST) was employed to study the food digestion. The structure was analysed by confocal laser scanning microscopy and particle size distribution. Protein and lipid digestion were monitored by cumulated protein/free NH2 release and cumulated free fatty acids release, respectively. Stable microcapsules were observed during gastric digestion, but there was no significant difference in protein release/hydrolysis among samples until 55 min of gastric digestion. Formulation Y showed less protein release after 74 min (40.46 %) due to the free SPP being available and positively charged at pH 2-4, resulting in interactions with other constituents of the yoghurt, which delayed its release/hydrolysis. The total release of protein and free NH2 by the end of intestinal digestions ranged between 46.56-61.15 % and 0.83-1.57 µmol/g protein, respectively. A higher release of free fatty acids from formulation Y occurred at the end of intestinal digestion, implying that coacervates promoted the delayed release of encapsulated oil. In summary, incorporating protein-polysaccharides-based coacervates in yoghurt enabled the delay of the digestion of encapsulated lipids but accelerated the digestion of protein, suggesting a promising approach for various food applications.


Subject(s)
Digestion , Gum Arabic , Linseed Oil , Particle Size , Pea Proteins , Yogurt , Yogurt/analysis , Pea Proteins/chemistry , Linseed Oil/chemistry , Gum Arabic/chemistry , Drug Compounding , Capsules , Lipid Metabolism , Spray Drying
18.
Plant Foods Hum Nutr ; 79(2): 531-538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38775982

ABSTRACT

Considering the growing popularity of functional foods, fortifying yoghurt with natural ingredients with various flavours and appearances could improve its nutritional and health potential. The current study aimed to evaluate the effect of Chlorella vulgaris (0.3 and 0.5%) and Moringa oleifera (0.3 and 0.5%) on the fermentation kinetics, apparent viscosity, antioxidant activity, microbiological, sensorial, and FTIR properties of yoghurt during storage. The results demonstrated that the incorporation of Chlorella vulgaris and Moringa oleifera into yoghurt increased acidification rate and decreased fermentation time (p < 0.05). Moringa oleifera (0.5%) improved the growth and survival of lactic acid bacteria as well as the phenolic and antioxidant properties of yoghurt. However, Chlorella vulgaris, at a concentration of 0.5% reduced the viability of lactic acid bacteria, viscosity, total phenolic, and antioxidant properties of yoghurt. In conclusion, it was found that Chlorella vulgaris, at 0.3%, and Moringa oleifera improved the phenolic, antioxidant properties, and acidification rate of yoghurt.


Subject(s)
Antioxidants , Chlorella vulgaris , Fermentation , Food, Fortified , Moringa oleifera , Yogurt , Yogurt/analysis , Yogurt/microbiology , Moringa oleifera/chemistry , Chlorella vulgaris/growth & development , Antioxidants/analysis , Antioxidants/pharmacology , Food, Fortified/analysis , Viscosity , Phenols/analysis , Phenols/pharmacology , Functional Food , Hydrogen-Ion Concentration , Powders , Lactobacillales
19.
Diabetes Metab Syndr ; 18(4): 103006, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38615571

ABSTRACT

INTRODUCTION: Over the last two decades research has grown regarding dairy intake and health. It has been reported by many that yogurt intake may be associated with reduced risk of type 2 diabetes mellitus (T2D). In this report, the United States Food and Drug Administration (FDA) decision to announce a qualified health claim for yogurt products regarding reduced risk of T2D in response to a Danone North America petition is discussed. METHODS: Relevant literature cited in the petition along with supporting evidence from PubMed and Google Scholar databases until April 1st, 2024 were used. Literature was found using relevant keywords. RESULTS: On March 1st, 2024, the United States Food and Drug Administration (FDA) announced the first ever qualified health claim, stating that eating yogurt regularly may reduce the risk of T2D according to limited scientific evidence. The enforcement discretion letter was critically reviewed and discussed regarding its future implications for people with T2M and public health. CONCLUSIONS: It is unclear how this FDA decision will affect public health and nutrition in the long-term. Limited scientific evidence suggests that at least 3 servings of yogurt per week may reduce the risk of T2D incidence for the general population. Yogurt will not cure or treat people with T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Yogurt , Humans , Diabetes Mellitus, Type 2/prevention & control , Diabetes Mellitus, Type 2/epidemiology , Risk Reduction Behavior , United States/epidemiology , United States Food and Drug Administration
20.
J Dairy Res ; 91(1): 125-135, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38646882

ABSTRACT

This study aimed to review hazard analysis and critical control points (HACCP) in the dairy industry for the production of yogurt. The food safety management system (FSMS) was implemented over the last several decades with several amendments. The need for practical and proactive procedures in the dairy industry was identified so that HACCP implementation could ensure that consumers would always have safe food. The concept of HACCP is a systemic and science-based method that can result in safe dairy products such as yogurt based on the complete analysis of manufacturing processes, recognition of hazards potentially present at all stages of production, and risk prevention. In yogurt production, raw milk receipt, pasteurization, packaging, and storage are the steps most susceptible to contamination and were considered critical control points. Further steps also need to be implemented to achieve other related control measures, and these will be discussed.


Subject(s)
Food Handling , Food Safety , Hazard Analysis and Critical Control Points , Yogurt , Animals , Food Handling/methods , Hazard Analysis and Critical Control Points/methods , Milk/chemistry , Pasteurization , Dairying/methods , Food Contamination/prevention & control , Food Contamination/analysis , Humans , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...