Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
1.
Nutrients ; 16(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064639

ABSTRACT

Upper respiratory tract infections (URTI) account for more than 80% of wheezing episodes in children with a high incidence of hospitalization in preschool age. Most children with symptoms of wheezing during an URTI are usually non-atopic. As the majority of wheezing episodes resulting from URTI are attributed to viral triggers, several studies have suggested the potential anti-inflammatory and antiviral properties of resveratrol. This study aims to identify the effect of resveratrol for pediatric non-atopic patients with recurrent wheezing triggered by URTIs. We conducted a prospective single-blind study to assess the effectiveness of a short course of nasal solutions incorporating resveratrol and carboxymethyl-ß-glucan, administered for 7 days at the onset of URTIs, compared to standard nasal lavage with 0.9% saline solution. A total of 19 patients entered the active group, 20 patients were assigned to the placebo group. The comparison of overall wheezing days (p < 0.001), mean wheezing days per month (p < 0.01), and wheezing episodes per patient (p < 0.001) in the two groups showed a significant reduction in the group receiving resveratrol compared with the placebo group, with less hospital access (p < 0.001) and oral corticosteroid administration (p < 0.01). Our findings seem to suggest that, in non-atopic children with recurrent wheezing secondary to URTIs, nasal resveratrol could be effective to prevent or reduce the occurrence of wheezing, when started from the onset of upper airway symptoms.


Subject(s)
Respiratory Sounds , Respiratory Tract Infections , Resveratrol , beta-Glucans , Humans , Resveratrol/administration & dosage , Resveratrol/pharmacology , Child, Preschool , Female , Male , Respiratory Sounds/drug effects , beta-Glucans/administration & dosage , beta-Glucans/therapeutic use , Single-Blind Method , Prospective Studies , Respiratory Tract Infections/drug therapy , Administration, Intranasal , Nasal Lavage , Treatment Outcome
2.
Animal ; 18(6): 101185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843664

ABSTRACT

Although anticoccidials effectively control coccidiosis, a needed reduction in the reliance on antimicrobials in animal production leads to the exploration of alternative compounds. The present study aimed to test five different dietary treatments to counteract the negative impact of coccidiosis on broiler chickens' health and performance. 1-day-old male Ross 308 broilers (n = 960) were randomly assigned to one of eight treatments, with six cages per treatment (20 birds/cage). To the diet of the broiler chickens of treatments (Trt) 1-5, a synbiotic was added from d0-10. From d10-28, birds of Trt1 and Trt2 were fed synbiotics, whereas birds of Trt3 were fed diets with glutamine, and birds of Trt4 and Trt5 were fed diets with a combination of ß-glucans and betaine. From d28-35 onwards, birds of Trt1 were fed a diet with a synbiotic, whereas birds of Trt2-4 received diets with glutamine, and birds of Trt5 were fed a non-supplemented diet. Birds of the positive control group (PC; Trt6) were fed a standard diet supplemented with an anticoccidial (Decoquinate). The challenged negative control (NCchall; Trt7) and non-challenged negative control (NC) Trt8 were fed a standard diet without anticoccidial or other dietary treatment. At 7 days (d) of age, all birds were inoculated with 1 023, 115, and 512 sporulated oocysts of E. acervulina, E. maxima, and E. tenella, respectively, except for Trt8. Body weight gain (BWG), feed intake, and feed conversion ratio were assessed for each feeding phase (d0-10, d10-28 and d28-35) and overall experimental period (d0-35). Oocyst shedding, Eimeria lesion scores, cecal length, and relative weight were assessed at d13, d22, d28 and d35. Additionally, oocyst shedding was determined at d9 and d17. Litter quality was evaluated at d27 and d34, and footpad lesions at d34. During the starter (d0-10) and finisher (d28-35) periods, performance did not differ between the treatments. During the grower period (d10-28), Trt6 (PC) and Trt8 (NC) chickens had the highest BWG of all treatments (P < 0.001). Dietary treatment had no effect on litter quality and severity of footpad lesions. In the PC group (Trt6), low oocyst excretion and lesion scores were found. When comparing Trt1-5 with NCchall (Trt7), none of the treatments significantly reduced oocyst output or lesion scores. In conclusion, in this experiment, none of the dietary treatments performed similar or better compared to the PC group (Trt6) regarding performance or reducing Eimeria oocyst shedding or lesion scores.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet , Eimeria , Oocysts , Poultry Diseases , Animals , Coccidiosis/veterinary , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Poultry Diseases/drug therapy , Male , Animal Feed/analysis , Eimeria/physiology , Diet/veterinary , Dietary Supplements/analysis , Synbiotics/administration & dosage , Random Allocation , Betaine/administration & dosage , Betaine/pharmacology , Glutamine/pharmacology , Glutamine/administration & dosage , beta-Glucans/pharmacology , beta-Glucans/administration & dosage , beta-Glucans/therapeutic use
3.
J Immunol Res ; 2024: 6876247, 2024.
Article in English | MEDLINE | ID: mdl-38939744

ABSTRACT

Sepsis treatment is a challenging condition due to its complexity, which involves host inflammatory responses to a severe and potentially fatal infection, associated with organ dysfunction. The aim of this study was to analyze the scientific literature on the immunomodulatory effects of glucans in a murine model of systemic infection induced by cecal ligation and puncture. This study comprises an integrative literature review based on systematic steps, with searches carried out in the PubMed, ScienceDirect, Scopus, Web of Science, and Embase databases. In most studies, the main type of glucan investigated was ß-glucan, at 50 mg/kg, and a reduction of inflammatory responses was identified, minimizing the occurrence of tissue damage leading to increased animal survival. Based on the data obtained and discussed in this review, glucans represent a promising biotechnological alternative to modulate the immune response and could potentially be used in the clinical management of septic individuals.


Subject(s)
Disease Models, Animal , Sepsis , Animals , Sepsis/drug therapy , Sepsis/immunology , Sepsis/therapy , Humans , Mice , Glucans/therapeutic use , Glucans/pharmacology , beta-Glucans/therapeutic use , Immunomodulation/drug effects
4.
Int Immunopharmacol ; 132: 111985, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38603862

ABSTRACT

BACKGROUND: Bronchial asthma is a severe respiratory condition characterized by airway inflammation, remodeling, and oxidative stress. ß-Glucan (BG) is a polysaccharide found in fungal cell walls with powerful immunomodulatory properties. This study examined and clarified the mechanisms behind BG's ameliorativeactivitiesin an allergic asthma animal model. METHOD: BG was extracted from Chaga mushroom and characterized using FT-IR, UV-visible, zeta potential, and 1H NMR analysis. The mice were divided into five groups, including control, untreated asthmatic, dexamethasone (Dexa)-treated (1 mg/kg), and BG (30 and 100 mg/kg)-treated groups. RESULTS: BG treatment reduced nasal scratching behavior, airway-infiltrating inflammatory cells, and serum levels of IgE significantly. Additionally, BG attenuated oxidative stress biomarkers by lowering malonaldehyde (MDA) concentrations and increasing the levels of reduced glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT). Immunohistochemical and flow cytometric analyses have confirmed the suppressive effect of BG on the percentage of airway-infiltrating cytotoxic CD8+ T cells. CONCLUSION: The findings revealed the role of CD8+ T cells in the pathogenesis of asthma and the role of BG as a potential therapeutic agent for asthma management through the suppression of airway inflammation and oxidative stress.


Subject(s)
Asthma , CD8-Positive T-Lymphocytes , Mice, Inbred BALB C , Ovalbumin , Oxidative Stress , beta-Glucans , Animals , Oxidative Stress/drug effects , beta-Glucans/pharmacology , beta-Glucans/therapeutic use , beta-Glucans/chemistry , Asthma/drug therapy , Asthma/immunology , Asthma/chemically induced , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Ovalbumin/immunology , Mice , Disease Models, Animal , Immunoglobulin E/blood , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Lung/pathology , Lung/drug effects , Lung/immunology , Female , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use
5.
Nutrition ; 120: 112355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38341907

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the impact of an enhanced ONS (enriched in EPA, DHA, leucine, and beta-glucans) on the dietary intake of cancer patients. METHODS: A randomized, double-blind, parallel, controlled, and multicenter clinical trial was conducted in patients with cancer and malnutrition. The trial compared prescribed dietary advice and two packs per day, for 8 weeks, of a hypercaloric (400 kcal/pack) and hyperproteic ONS (20 g/pack) with fiber and specific ingredients (leucine, EPA and DHA, and beta-glucans) (enhanced-ONS) versus an isocaloric and isoproteic formula (standard-ONS) without specific ingredients. Food intake was assessed with a 3-day dietary survey, and adherence to the supplement with a patient self-completed diary. RESULTS: Thirty-seven patients completed the intervention period. The combined intervention of dietary advice and ONS managed to increase the energy intake of the overall cohort by 792.55 (378.57) kcal/day, protein by 40.72 (19.56) g/day. Increases in energy and nutrient intakes were observed in both groups, both in dietary intake and associated exclusively with the supplement. The group that received the enhanced-ONS ingested a greater volume of product when there was a greater severity of malnutrition; a tumor location in the head, neck, upper digestive area, liver, or pancreas; more advanced stages of the tumor; or the receipt of more than one antineoplastic treatment. CONCLUSION: The use of an enhanced-ONS helps meet the nutritional requirements of cancer patients, especially those who have a more compromised clinical condition, with high adherence, good tolerance, and acceptance.


Subject(s)
Dietary Supplements , Malnutrition , Neoplasms , Humans , beta-Glucans/therapeutic use , Leucine , Malnutrition/therapy , Neoplasms/complications , Nutritional Status , Double-Blind Method , Medication Adherence
6.
Carbohydr Polym ; 327: 121662, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171680

ABSTRACT

The cell surface of fungus contains a large number of ß-glucans, which exhibit various biological activities such as immunomodulatory, anti-inflammatory, and antioxidation. Fungal ß-glucans with highly branched structure show great potential as wound healing reagents, because they can stimulate the expression of many immune- and inflammatory-related factors beneficial to wound healing. Recently, the wound healing ability of many fungal ß-glucans have been investigated in animals and clinical trials. Studies have proved that fungal ß-glucans can promote fibroblasts proliferation, collagen deposition, angiogenesis, and macrophage infiltration during the wound healing process. However, the development of fungal ß-glucans as wound healing reagents is not systematically reviewed till now. This review discusses the wound healing studies of ß-glucans obtained from different fungal species. The structure characteristics, extraction methods, and biological functions of fungal ß-glucans with wound healing ability are summarized. Researches about fungal ß-glucan-containing biomaterials and structurally modified ß-glucans for wound healing are also involved.


Subject(s)
beta-Glucans , Animals , beta-Glucans/pharmacology , beta-Glucans/therapeutic use , beta-Glucans/metabolism , Wound Healing , Collagen/metabolism , Macrophages/metabolism , Fungi/chemistry
7.
Int Immunopharmacol ; 128: 111512, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38199195

ABSTRACT

Acute lung injury (ALI) is a severe clinical condition with high mortality, characterized by rapid onset and limited treatment options. The pathogenesis of ALI involves inflammation and oxidative stress. The polysaccharide salecan, a water-soluble ß-(1,3)-D-glucan, has been found to possess numerous pharmaceutical effects, including anti-inflammatory properties, inhibition of oxidative stress, and anti-fatigue effects. This study aims to investigate the protective effect and underlying mechanism of salecan against LPS-induced ALI in mice. Using an in vivo LPS-induced ALI mouse model and an in vitro RAW264.7 cell system, we investigated the role of salecan in ALI with various experimental approaches, including histological staining, quantitative real-time PCR, flow cytometry, western blot analysis, and other relevant assays. Pre-treatment with salecan effectively attenuated LPS-induced ALI in vivo, reducing the severity of pulmonary edema, inflammation, and oxidative stress. NMR-based metabolomic profiling analysis revealed that salecan attenuated LPS-induced metabolic imbalances associated with ALI. Furthermore, salecan downregulated Keap1 and upregulated Nrf2 and HO-1 protein levels, indicating its modulation of the Keap1-Nrf2/HO-1 signaling pathway as a potential mechanism underlying its protective effects against ALI. In vitro studies on RAW264.7 cells revealed that salecan exhibited binding affinity towards macrophages, thereby alleviating LPS-induced apoptosis and inflammation, which underpin its therapeutic potential against ALI. Our study suggests that salecan can alleviate LPS-induced ALI by modulating oxidative stress, inflammatory response, and apoptosis through the activation of the Keap1-Nrf2/HO-1 pathway. These findings provide novel insights into the potential therapeutic use of salecan for the treatment of ALI.


Subject(s)
Acute Lung Injury , beta-Glucans , Animals , Mice , Acute Lung Injury/drug therapy , beta-Glucans/therapeutic use , Inflammation/drug therapy , Kelch-Like ECH-Associated Protein 1/metabolism , Lipopolysaccharides/pharmacology , Lung/pathology , NF-E2-Related Factor 2/metabolism , Oxidative Stress
8.
Biosci Rep ; 44(1)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38088444

ABSTRACT

ß-Glucans are valuable functional polysaccharides distributed in nature, especially in the cell walls of fungi, yeasts, bacteria, and cereals. The unique features of ß-glucans, such as water solubility, viscosity, molecular weight, and so on, have rendered them to be broadly applied in various food systems as well as in medicine to improve human health. Moreover, inhibition of cancer development could be achieved by an increase in immune system activity via ß-glucans. ß-glucans, which are part of a class of naturally occurring substances known as biological response modifiers (BRMs), have also shown evidence of being anti-tumorogenic, anti-cytotoxic, and anti-mutagenic. These properties make them attractive candidates for use as pharmaceutical health promoters. Along these lines, they could activate particular proteins or receptors, like lactosylceramide (LacCer), Dickin-1, complement receptor 3 (CR3), scavenge receptors (SR), and the toll-like receptor (TLR). This would cause the release of cytokines, which would then activate other antitumor immune cells, like macrophages stimulating neutrophils and monocytes. These cells are biased toward pro-inflammatory cytokine synthesis and phagocytosis enhancing the elicited immunological responses. So, to consider the importance of ß-glucans, the present review introduces the structure characteristics, biological activity, and antitumor functions of fungal ß-glucans, as well as their application.


Subject(s)
beta-Glucans , Humans , beta-Glucans/therapeutic use , Phagocytosis , Neutrophils , Macrophages/metabolism , Cytokines/metabolism
9.
Neurochem Res ; 49(2): 519-531, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37962706

ABSTRACT

In recent years, the decline of microglia in the hippocampus has been shown to play a role in the development of depression, and its reversal shows marked antidepressant-like effects. ß-glucan is a polysaccharide from Saccharomyces cerevisiae and has numerous beneficial effects on the nervous system, including improving axon regeneration and cognition. Considering its immuno-stimulatory activities in cultured microglia and brain tissues, we hypothesize that ß-glucan may be a potential candidate to correct the functional deficiency of microglia and thereby alleviate depression-like behaviors in chronically stressed animals. An expected, our results showed that a single injection of ß-glucan 5 h before behavioral tests at a dose of 10 or 20 mg/kg, but not at a dose of 5 mg/kg, reversed the depression-like behavior induced by chronic stress in mice in the tail suspension test, forced swimming test, and sucrose preference test. The effect of ß-glucan (20 mg/kg) also showed time-dependent properties that were statistically significant 5 and 8, but not 3, hours after drug injection and persisted for at least 7 days. Fourteen days after ß-glucan injection, no antidepressant-like effect was observed anymore. However, this effect was overcome by a second ß-glucan injection (20 mg/kg) 14 days after the first ß-glucan injection. Stimulation of microglia appeared to mediate the antidepressant-like effect of ß-glucan, because both inhibition of microglia and their depletion prevented the antidepressant-like effect of ß-glucan. Based on these effects of ß-glucan, ß-glucan administration could be developed as a new strategy for the treatment of depression.


Subject(s)
Depression , beta-Glucans , Animals , Mice , Depression/drug therapy , Depression/etiology , Microglia , beta-Glucans/pharmacology , beta-Glucans/therapeutic use , Axons , Nerve Regeneration , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Hippocampus , Stress, Psychological/drug therapy , Disease Models, Animal
10.
Eur J Pharmacol ; 964: 176288, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38142848

ABSTRACT

Our previous studies have reported that pre-stimulation of microglia before stress stimulation is a possible strategy to prevent depression-like phenotypes; however, the molecular mechanisms underlying this effect are still unclear. Here, we used ß-glucan, a polysaccharide from Saccharomyces cerevisiae with immunomodulatory activities that cannot elicit pro-inflammatory responses in microglia, to address this issue. Our results showed that a single injection of ß-glucan one day before stress exposure dose-dependently prevented the depression-like behaviors triggered by chronic unpredictable stress (CUS), which peaked at 20 mg/kg and prevented the impairment of hippocampal brain-derived neurotrophic factor (BDNF) signaling, a pathological process critical for the progression of depression-like phenotypes. Inhibition of BDNF signaling by infusion of an anti-BDNF antibody into the hippocampus, knock-in of the mutant BDNF Val68Met allele, or blockade of the BDNF receptor in the hippocampus abolished the preventive effect of ß-glucan on CUS-induced depression-like behaviors. Further analysis showed that cAMP-response element binding protein (CREB)-mediated increase of BDNF expression in the hippocampus was essential for the prevention of depression-like phenotypes by ß-glucan. Pretreatment with minocycline or PLX3397 before ß-glucan injection to suppress microglia abolished the preventive effect of ß-glucan on impaired CREB-BDNF signaling in the hippocampus and depression-like behaviors in CUS mice. These results suggest that an increase in hippocampal BDNF following CREB activation triggered by ß-glucan-induced microglia stimulation and subsequent TrkB signaling mediates the preventive effect of ß-glucan on depression. ß-Glucan may be a more suitable immunostimulant for the prevention of depression due to its inability to promote pro-inflammatory responses in microglia.


Subject(s)
Depression , beta-Glucans , Animals , Mice , beta-Glucans/pharmacology , beta-Glucans/therapeutic use , beta-Glucans/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Depression/etiology , Depression/metabolism , Depression/prevention & control , Disease Models, Animal , Hippocampus , Microglia/metabolism , Stress, Psychological/complications , Stress, Psychological/metabolism
11.
Int Immunopharmacol ; 127: 111405, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38118316

ABSTRACT

Pre-stimulation of the innate immune response is an effective strategy to prevent depression-like phenotypes in animals. However, the use of conventional immunostimulants may cause adverse effects. Therefore, the search for agents that stimulate the innate immune response but do not induce a pro-inflammatory response could be a new research direction for the prevention of depression. ß-glucan is a polysaccharide from Saccharomyces cerevisiae with unique immunomodulatory activity in microglia without eliciting a pro-inflammatory response that could lead to tissue damage. This suggests that ß-glucan may be a suitable drug that can be used to prevent depression-like phenotypes. Our results showed that a single injection of ß-glucan 1 day before stress exposure at a dose of 10 or 20 mg/kg, but notat a dose of 5 mg/kg, prevented depression-like behavior in mice treated with chronic unpredictable stress (CUS). This effect of ß-glucan disappeared when the time interval between ß-glucan and stress was extended from 1 day or 5 days to 10 days, which was rescued by a second injection 10 days after the first injection or by a repeated injection (4×, once daily) 10 days before stress exposure. A single ß-glucan injection (20 mg/kg) 1 day before stress exposure prevented the CUS-induced increase in brain pro-inflammatory cytokines, and inhibition of the innate immune response by minocycline (40 mg/kg) abolished the preventive effect of ß-glucan on CUS-induced depression-like behaviors and neuroinflammatory responses. These results suggest that ß-glucan may prevent chronic stress-induced depression-like phenotypes and neuroinflammatory responses by stimulating the innate immune response.


Subject(s)
Adjuvants, Immunologic , beta-Glucans , Animals , Mice , beta-Glucans/pharmacology , beta-Glucans/therapeutic use , Depression/drug therapy , Depression/prevention & control , Immunity, Innate , Cytokines/metabolism , Saccharomyces cerevisiae/metabolism
12.
Nutrients ; 15(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37960157

ABSTRACT

This research aimed to examine the potential alleviative effects of beta-glucan administration on fatigue, unrefreshing sleep, anxiety/depression symptoms and health-related quality of life in ME/CFS. A 36-week unicenter, randomized, double-blind, placebo-controlled trial was conducted in 65 ME/CFS patients, who were randomly allocated to one of two arms to receive four capsules each one of 250 mg beta-glucan, 3.75 µg vitamin D3, 1.05 mg vitamin B6, and 7.5 mg zinc (n = 35), or matching placebo including only microcrystalline cellulose as an excipient (n = 30) once daily. The findings showed that the beta-glucan supplementation significantly improved cognitive fatigue (assessed with FIS-40 scores) after the 36-week treatment compared to the baseline (p = 0.0338). Taken together, this study presents the novel finding that yeast-derived beta-glucan may alleviate cognitive fatigue symptoms in ME/CFS. Thus, it offers valuable scientific insights into the potential use of yeast beta-glucan as a nutritional supplement and/or functional food to prevent or reduce cognitive dysfunction in patients with ME/CFS. Further interventions are warranted to validate these findings and also to delve deeper into the possible immunometabolic pathomechanisms of beta-glucans in ME/CFS.


Subject(s)
Cognitive Dysfunction , Fatigue Syndrome, Chronic , beta-Glucans , Humans , Fatigue Syndrome, Chronic/drug therapy , Fatigue Syndrome, Chronic/diagnosis , Saccharomyces cerevisiae , Quality of Life , Dietary Supplements , beta-Glucans/therapeutic use
13.
Sci Rep ; 13(1): 17008, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813938

ABSTRACT

Recent advances in the management of Duchenne muscular dystrophy (DMD), such as exon skipping and gene therapy, though have reached a clinical stage, the outcome at its best is still considered suboptimal. In this study, we evaluated a novel N-163 strain of Aureobasidium pullulans produced ß-glucan (Neu-REFIX) for its potential as an adjuvant to slow down the progression of the disease by anti-inflammatory and anti-fibrotic effects. In this study, 45 mice in the three groups, 15 each in a group; Gr. 1 normal mice, Gr.2 mdx mice as vehicle, and Gr.3 mdx mice administered the N-163 ß-glucan for 45 days. The N-163 ß-glucan group showed a significant decrease in the plasma ALT, AST, and LDH levels (126 ± 69 U/l, 634 ± 371 U/l, 3335 ± 1258 U/l) compared with the vehicle group (177 ± 27 U/l, 912 ± 126 U/l, 4186 ± 398 U/l). Plasma TGF-ß levels increased, and plasma IL-13 levels decreased in the N-163 group. The inflammation score of HE-stained muscle sections in the N-163 group (1.5 ± 0.8) was lower than that in the vehicle group (2.0 ± 0.8). The N-163 strain ß-glucan group (24.22 ± 4.80) showed a significant decrease in the fibrosis area (Masson's Trichrome-positive area) compared with the vehicle group (36.78 ± 5.74). The percentage of centrally nucleated fibres evaluated by Masson's trichrome staining was 0 in the normal group, while it increased to 80% in the vehicle group but remained at 76.8% in the N-163 group. The N-163 ß-glucan group showed a significant decrease in the fibrosis area. Considering their safety and easy oral consumption, Neu-REFIX ß-glucan could be worth large multicentre clinical studies as adjuvant in slowing down the progress of DMD.


Subject(s)
Muscular Dystrophy, Duchenne , beta-Glucans , Animals , Mice , Mice, Inbred mdx , beta-Glucans/therapeutic use , Muscular Dystrophy, Duchenne/genetics , Fibrosis , Muscle, Skeletal
14.
Carbohydr Polym ; 322: 121329, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37839841

ABSTRACT

ß-Glucans, which are naturally present in cereals, yeast, and mushrooms, have gained attention as a potential natural source for functional foods and pharmaceuticals. Due to the availability of ß-glucans from several sources, different extraction methods can be employed to obtain high purity extracts that can be further modified to enhance their solubility or other biological properties. Apart from their known ability to interact with the immune system, ß-glucans possess specific properties that could benefit overall skin health and prevent age-related signs, including soothing and antioxidant activities. As a result, the use of ß-glucans to mitigate damage caused by environmental stressors or skin-related issues that accelerate skin aging or trigger chronic inflammation may represent a promising, natural, eco-friendly, and cost-effective approach to maintaining skin homeostasis balance. This review outlines ß-glucan extraction methodologies, molecular structure, functionalization approaches, and explores skin-related benefits of ß-glucans, along with an overview of related products in the market.


Subject(s)
Agaricales , beta-Glucans , beta-Glucans/therapeutic use , beta-Glucans/chemistry , Agaricales/chemistry , Skin , Antioxidants/pharmacology , Antioxidants/therapeutic use , Solubility
15.
Parasitol Res ; 122(12): 2807-2818, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37737322

ABSTRACT

Trichinellosis is a cosmopolitan zoonosis that is caused mainly by Trichinella spiralis infection. The human disease ranges from mild to severe and fatality may occur. The treatment of trichinellosis still presents a challenge for physicians. Anti-inflammatory drugs are usually added to antiparasitic agents to alleviate untoward immuno-inflammatory responses and possible tissue damage but they are not without adverse effects. Thus, there is a need for the discovery of safe and effective compounds with anti-inflammatory properties. This study aimed to evaluate the activity of ß-glucan during enteral and muscular phases of experimental T. spiralis infection as well as its therapeutic potential as an adjuvant to albendazole in treating trichinellosis. For this aim, mice were infected with T. spiralis and divided into the following groups: early and late ß-glucan treatment, albendazole treatment, and combined treatment groups. Infected mice were subjected to assessment of parasite burden, immunological markers, and histopathological changes in the small intestines and muscles. Immunohistochemical evaluation of NF-κB expression in small intestinal and muscle tissues was carried out in order to investigate the mechanism of action of ß-glucan. Interestingly, ß-glucan potentiated the efficacy of albendazole as noted by the significant reduction of counts of muscle larvae. The inflammatory responses in the small intestine and skeletal muscles were mitigated with some characteristic qualitative changes. ß-glucan also increased the expression of NF-κB in tissues which may account for some of its effects. In conclusion, ß-glucan showed a multifaceted beneficial impact on the therapeutic outcome of Trichinella infection and can be regarded as a promising adjuvant in the treatment of trichinellosis.


Subject(s)
Trichinella spiralis , Trichinellosis , beta-Glucans , Mice , Humans , Animals , Trichinellosis/drug therapy , Trichinellosis/parasitology , Albendazole/therapeutic use , Albendazole/pharmacology , beta-Glucans/pharmacology , beta-Glucans/therapeutic use , NF-kappa B , Muscle, Skeletal/parasitology , Treatment Outcome , Anti-Inflammatory Agents , Larva
16.
J Control Release ; 362: 577-590, 2023 10.
Article in English | MEDLINE | ID: mdl-37683733

ABSTRACT

Bacterial infections and excessive inflammation can impede the healing of wounds. Hydrogels have emerged as a promising approach for dressing bacterial-infected injuries. However, some antibacterial hydrogels are complex, costly, and even require assistance with other instruments such as light, making them unsuitable for routine outdoor injuries. Here, we developed an in-situ generating hydrogel via hybridizing oxidized ß-D-glucan with antimicrobial peptide C8G2 through the Schiff base reaction. This hydrogel is easily accessible and actively contributes to the whole healing process of bacterial-infected wounds, demonstrating remarkable antibacterial activity and biological compatibility. The pH-sensitive reversible imine bond enables the hydrogel to self-heal and sustainably release the antibacterial peptide, thereby improving its bioavailability and reducing toxicity. Meanwhile, the immunoregulating ß-D-glucan inhibits the release of inflammatory factors while promoting the release of anti-inflammatory factors. In methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness skin wound models, the hybrid hydrogel showed superior antibacterial and anti-inflammatory activity, enhanced the M2 macrophage polarization, expedited wound closure, and regenerated epidermis tissue. These features make this hydrogel an appealing wound dressing for treating multi-drug-resistant bacteria-infected wounds.


Subject(s)
Deafness , Methicillin-Resistant Staphylococcus aureus , beta-Glucans , Humans , beta-Glucans/therapeutic use , Hydrogels , Wound Healing , Glucans , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use
17.
Nutrients ; 15(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513599

ABSTRACT

Oats are considered a functional food due to the beneficial health effects associated with their consumption and are suitable to be explored for their ability to prevent or manage chronic disease, such as hypertension. Here, we examined the cardiovascular benefits of an oat beta-glucan extract in male and female spontaneously hypertensive rats (SHRs) to unravel its sex-specific roles when used with an anti-hypertensive medication, hydrochlorothiazide. Five-week-old male and female SHRs and Wistar-Kyoto (WKY) rats were treated with oat beta-glucan and hydrochlorothiazide for 15 weeks. Twenty-week-old male and female SHRs showed high blood pressure (BP), cardiac remodeling, and cardiac dysfunction. These animals also had significantly increased levels of malondialdehyde (MDA), angiotensin II, and norepinephrine. Treatments with beta-glucan and hydrochlorothiazide were able to differentially prevent high BP, cardiac dysfunction, and alterations in malondialdehyde (MDA), angiotensin II, and norepinephrine in 20-week-old male and female SHRs. To conclude, beta-glucan alone and in combination with hydrochlorothiazide may be a promising a strategy for managing hypertension and related cardiac complications.


Subject(s)
Heart Diseases , Hypertension , beta-Glucans , Rats , Male , Animals , Female , Rats, Inbred SHR , Hydrochlorothiazide/pharmacology , Rats, Inbred WKY , Blood Pressure , Angiotensin II/pharmacology , beta-Glucans/pharmacology , beta-Glucans/therapeutic use , Heart Diseases/complications , Norepinephrine/pharmacology
19.
Toxins (Basel) ; 15(6)2023 05 25.
Article in English | MEDLINE | ID: mdl-37368660

ABSTRACT

Since ancient times, mushrooms have been considered valuable allies of human well-being both from a dietary and medicinal point of view. Their essential role in several traditional medicines is explained today by the discovery of the plethora of biomolecules that have shown proven efficacy for treating various diseases, including cancer. Numerous studies have already been conducted to explore the antitumoural properties of mushroom extracts against cancer. Still, very few have reported the anticancer properties of mushroom polysaccharides and mycochemicals against the specific population of cancer stem cells (CSCs). In this context, ß-glucans are relevant in modulating immunological surveillance against this subpopulation of cancer cells within tumours. Small molecules, less studied despite their spread and assortment, could exhibit the same importance. In this review, we discuss several pieces of evidence of the association between ß-glucans and small mycochemicals in modulating biological mechanisms which are proven to be involved with CSCs development. Experimental evidence and an in silico approach are evaluated with the hope of contributing to future strategies aimed at the direct study of the action of these mycochemicals on this subpopulation of cancer cells.


Subject(s)
Agaricales , Neoplasms , beta-Glucans , Humans , beta-Glucans/pharmacology , beta-Glucans/therapeutic use , beta-Glucans/chemistry , Agaricales/chemistry , Polysaccharides , Neoplasms/drug therapy , Neoplastic Stem Cells
20.
ACS Appl Mater Interfaces ; 15(27): 32188-32200, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37350332

ABSTRACT

Based on cancer-related deaths, stomach cancer is ranked fifth, and first among Hispanics. Lack of technologies for early diagnosis and unavailability of target-specific therapeutics are largely the causes of the poor therapeutic outcomes from existing chemotherapeutics. Currently available therapeutic modalities are invasive and require systemic delivery, although the cancer is localized in the stomach at its early stage. Therefore, we hypothesize that an oral local delivery approach can extend the retention duration of the therapeutics modalities within the stomach and thereby enhance therapeutic efficacy. To accomplish this, we have developed a ß-glucan (BG)-based oral delivery vehicle that can adhere to the mucus lining of the stomach for an extended period while controlling the release of Bcl2 siRNA and 5-fluorouracil (5FU) payload for over 6 h. We found that Bcl2 siRNA selectively knocked down the Bcl2 gene in a C57BL/6 stomach cancer mouse model followed by upregulation of apoptosis and remission of cancer. BG was found to be very effective in maintaining the stability of siRNA for at least 6 h, when submerged in simulated gastric juice tested in vitro. To investigate the potential therapeutic effects in vivo, we used a stomach cancer mouse model, where C57BL/6 mice were treated with 5FU, BG/5FU, siRNA, BG/siRNA, and BG/5FU/siRNA. Higher inhibition of Bcl2 and therapeutic efficacy were observed in mice treated with BG/5FU/siRNA confirmed with Western blotting and a TUNEL assay. Significant reduction in the tumor region was observed with histology (H&E) and immunohistochemistry (Ki67, TUNEL, and Bcl2) analyses. Overall, the oral formulation shows improved efficacy with nonsignificant side effects compared to the conventional treatment tested in the gastric cancer mouse model.


Subject(s)
Stomach Neoplasms , beta-Glucans , Animals , Mice , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , RNA, Small Interfering/genetics , beta-Glucans/therapeutic use , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL