Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(31): 17510-17523, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39052486

ABSTRACT

To convert ginsenosides Rb1, Rb2, Rb3, and Rc into Rd by a single enzyme, a putative ß-glycosidase (Pxbgl) from the xylan-degrading bacterium Petroclostridium xylanilyticum was identified and used. The kcat/Km value of Pxbgl for Rb3 was 18.18 ± 0.07 mM-1/s, which was significantly higher than those of Pxbgl for other ginsenosides. Pxbgl converted almost all Rb3 to Rd with a productivity of 5884 µM/h, which was 346-fold higher than that of only ß-xylosidase from Thermoascus aurantiacus. The productivity of Rd from the Panax ginseng root and Panax notoginseng leaf was 146 and 995 µM/h, respectively. Mutants N293 K and I447L from site-directed mutagenesis based on bioinformatics analysis showed an increase in specific activity of 29 and 7% toward Rb3, respectively. This is the first report of a ß-glycosidase that can simultaneously remove four different glycosyls at the C-20 position of natural PPD-type ginsenosides and produce Rd as the sole product from P. notoginseng leaf extracts with the highest productivity.


Subject(s)
Bacterial Proteins , Ginsenosides , Panax , Ginsenosides/metabolism , Ginsenosides/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Panax/chemistry , Panax/genetics , Panax/metabolism , Substrate Specificity , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Kinetics , beta-Glucosidase/metabolism , beta-Glucosidase/genetics , beta-Glucosidase/chemistry , Plant Roots/chemistry , Plant Roots/metabolism , Panax notoginseng/chemistry , Panax notoginseng/genetics , Panax notoginseng/enzymology , Panax notoginseng/metabolism
2.
PLoS One ; 19(7): e0305817, 2024.
Article in English | MEDLINE | ID: mdl-38980877

ABSTRACT

The bovine rumen contains a large consortium of residential microbes that release a variety of digestive enzymes for feed degradation. However, the utilization of these microbial enzymes is still limited because these rumen microorganisms are mostly anaerobes and are thus unculturable. Therefore, we applied a sequence-based metagenomic approach to identify a novel 2,445-bp glycoside hydrolase family 3 ß-glucosidase gene known as BrGH3A from the metagenome of bovine ruminal fluid. BrGH3A ß-glucosidase is a 92-kDa polypeptide composed of 814 amino acid residues. Unlike most glycoside hydrolases in the same family, BrGH3A exhibited a permuted domain arrangement consisting of an (α/ß)6 sandwich domain, a fibronectin type III domain and a (ß/α)8 barrel domain. BrGH3A exhibited greater catalytic efficiency toward laminaribiose than cellobiose. We proposed that BrGH3A is an exo-acting ß-glucosidase from Spirochaetales bacteria that is possibly involved in the intracellular degradation of ß-1,3-/1,4-mixed linkage glucans that are present in grass cell walls. BrGH3A exhibits rich diversity in rumen hydrolytic enzymes and may represent a member of a new clan with a permuted domain topology within the large family.


Subject(s)
Rumen , beta-Glucosidase , Animals , Cattle , Rumen/microbiology , Rumen/enzymology , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , beta-Glucosidase/chemistry , Amino Acid Sequence , Phylogeny , Protein Domains , Metagenome
3.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928288

ABSTRACT

Abscisic acid (ABA) plays a crucial role in plant defense mechanisms under adverse environmental conditions, but its metabolism and perception in response to heavy metals are largely unknown. In Pisum sativum exposed to CdCl2, an accumulation of free ABA was detected in leaves at different developmental stages (A, youngest, unexpanded; B1, youngest, fully expanded; B2, mature; C, old), with the highest content found in A and B1 leaves. In turn, the content of ABA conjugates, which was highest in B2 and C leaves under control conditions, increased only in A leaves and decreased in leaves of later developmental stages after Cd treatment. Based on the expression of PsNCED2, PsNCED3 (9-cis-epoxycarotenoid dioxygenase), PsAO3 (aldehyde oxidase) and PsABAUGT1 (ABA-UDP-glucosyltransferase), and the activity of PsAOγ, B2 and C leaves were found to be the main sites of Cd-induced de novo synthesis of ABA from carotenoids and ABA conjugation with glucose. In turn, ß-glucosidase activity and the expression of genes encoding ABA receptors (PsPYL2, PsPYL4, PsPYL8, PsPYL9) suggest that in A and B1 leaves, Cd-induced release of ABA from inactive ABA-glucosyl esters and enhanced ABA perception comes to the forefront when dealing with Cd toxicity. The distinct role of leaves at different developmental stages in defense against the harmful effects of Cd is discussed.


Subject(s)
Abscisic Acid , Cadmium , Gene Expression Regulation, Plant , Pisum sativum , Plant Leaves , Plant Proteins , Abscisic Acid/metabolism , Pisum sativum/metabolism , Pisum sativum/drug effects , Pisum sativum/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , Cadmium/metabolism , Cadmium/toxicity , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Dioxygenases/metabolism , Dioxygenases/genetics , beta-Glucosidase/metabolism , beta-Glucosidase/genetics
4.
Int J Biol Macromol ; 273(Pt 1): 132929, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866279

ABSTRACT

In order to more efficiently utilize the abundant cellulose resources in nature, increase the utilization rate of cellulose in aquaculture, implement precise feeding and save aquaculture costs, we have conducted research on cellulase genes related to the spotted knifejaw (Oplegnathus punctatus). Cellulose, as the most abundant renewable resource, is a cornerstone in the intricate ecological balance of diverse ecosystems. While herbivorous fish are recognized for their utilization of proteins, sugars, and fats, the extent of cellulose utilization by carnivorous and omnivorous fish remains an enigma. Here, through field sampling and behavioural observations, O. punctatus' omnivorous diet has been demonstrated (stomach contents contain approximately several species of algae in the Bacillariophyta (1.12 %), Streptomyces (0.55 %), Chlorophyta (0.35 %), Rhodophyta (0.16 %), and Euglenophyta (0.19 %) phylum). Additionally, the high cellulase activity in the intestine of O. punctatus has been detected first discovery (enzyme activity up to 4800.15 U/g), indicating its ability to digest cellulose. By employing whole-genome scanning and high-throughput sequencing, a single cellulase gene (ß-glucosidase) within the genome of O. punctatus, suggesting the absence of a complete cellulose digestive system. However, microbiological analysis revealed the three crucial role of microorganisms, including Actinobacteria (25.80 %), Bacteroidetes (18.93 %), and Firmicutes phylum (0.82 %), were found to play a crucial role in the decomposition of plant cell walls, thereby facilitating plant material digestion to help the host to complete the process of cellulose digestion. Expression patterns and proteomic analysis of the ß-glucosidase were notably high in the gonads. In situ hybridization confirmed the expression of the ß-glucosidase gene in the intestinal contents and gonads, highlighting its role in supplying energy of gonads. These discoveries shed light on the dietary habits of O. punctatus and its cellulose utilization, offering insights that can inform the development of customized feeding strategies to enhance aquaculture sustainability and minimize resource expenditure.


Subject(s)
Fishes , beta-Glucosidase , Animals , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Fishes/genetics , Phylogeny , Cellulose/metabolism , Carnivory
5.
Sci Rep ; 14(1): 10012, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693138

ABSTRACT

Beta-glucosidases catalyze the hydrolysis of the glycosidic bonds of cellobiose, producing glucose, which is a rate-limiting step in cellulose biomass degradation. In industrial processes, ß-glucosidases that are tolerant to glucose and stable under harsh industrial reaction conditions are required for efficient cellulose hydrolysis. In this study, we report the molecular cloning, Escherichia coli expression, and functional characterization of a ß-glucosidase from the gene, CelGH3_f17, identified from metagenomics libraries of an Ethiopian soda lake. The CelGH3_f17 gene sequence contains a glycoside hydrolase family 3 catalytic domain (GH3). The heterologous expressed and purified enzyme exhibited optimal activity at 50 °C and pH 8.5. In addition, supplementation of 1 M salt and 300 mM glucose enhanced the ß-glucosidase activity. Most of the metal ions and organic solvents tested did not affect the ß-glucosidase activity. However, Cu2+ and Mn2+ ions, Mercaptoethanol and Triton X-100 reduce the activity of the enzyme. The studied ß-glucosidase enzyme has multiple industrially desirable properties including thermostability, and alkaline, salt, and glucose tolerance.


Subject(s)
Biomass , Lakes , beta-Glucosidase , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , beta-Glucosidase/chemistry , Lakes/microbiology , Metagenomics/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Metagenome , Cloning, Molecular , Enzyme Stability , Hydrolysis , Hydrogen-Ion Concentration , Cellulose/metabolism , Temperature , Glucose/metabolism
6.
Appl Microbiol Biotechnol ; 108(1): 349, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809317

ABSTRACT

Galacto-oligosaccharides (GOS) are prebiotic compounds that are mainly used in infant formula to mimic bifidogenic effects of mother's milk. They are synthesized by ß-galactosidase enzymes in a trans-glycosylation reaction with lactose. Many ß-galactosidase enzymes from different sources have been studied, resulting in varying GOS product compositions and yields. The in vivo role of these enzymes is in lactose hydrolysis. Therefore, the best GOS yields were achieved at high lactose concentrations up to 60%wt, which require a relatively high temperature to dissolve. Some thermostable ß-glucosidase enzymes from thermophilic bacteria are also capable of using lactose or para nitrophenyl-galactose as a substrate. Here, we describe the use of the ß-glucosidase BglA from Thermotoga maritima for synthesis of oligosaccharides derived from lactose and cellobiose and their detailed structural characterization. Also, the BglA enzyme kinetics and yields were determined, showing highest productivity at higher lactose and cellobiose concentrations. The BglA trans-glycosylation/hydrolysis ratio was higher with 57%wt lactose than with a nearly saturated cellobiose (20%wt) solution. The yield of GOS was very high, reaching 72.1%wt GOS from lactose. Structural elucidation of the products showed mainly ß(1 → 3) and ß(1 → 6) elongating activity, but also some ß(1 → 4) elongation was observed. The ß-glucosidase BglA from T. maritima was shown to be a very versatile enzyme, producing high yields of oligosaccharides, particularly GOS from lactose. KEY POINTS: • ß-Glucosidase of Thermotoga maritima synthesizes GOS from lactose at very high yield. • Thermotoga maritima ß-glucosidase has high activity and high thermostability. • Thermotoga maritima ß-glucosidase GOS contains mainly (ß1-3) and (ß1-6) linkages.


Subject(s)
Cellobiose , Lactose , Oligosaccharides , Thermotoga maritima , beta-Glucosidase , Thermotoga maritima/enzymology , Thermotoga maritima/genetics , Lactose/metabolism , Cellobiose/metabolism , beta-Glucosidase/metabolism , beta-Glucosidase/genetics , beta-Glucosidase/chemistry , Kinetics , Oligosaccharides/metabolism , Glycosylation , Hydrolysis , Temperature , Enzyme Stability
7.
Biotechnol Bioeng ; 121(7): 2079-2090, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38682557

ABSTRACT

Hyperthermophilic enzymes serve as an important source of industrial enzymes due to their high thermostability. Unfortunately, most hyperthermophilic enzymes suffer from reduced activity at low temperatures (e.g., ambient temperature), limiting their applicability. In addition, evolving hyperthermophilic enzymes to increase low temperature activity without compromising other desired properties is generally difficult. In the current study, a variant of ß-glucosidase from Pyrococcus furiosus (PfBGL) was engineered to enhance enzyme activity at low temperatures through the construction of a saturation mutagenesis library guided by the HotSpot Wizard analysis, followed by its screening for activity and thermostability. From this library construction and screening, one PfBGL mutant, PfBGL-A4 containing Q214S/A264S/F344I mutations, showed an over twofold increase in ß-glucosidase activity at 25 and 50°C compared to the wild type, without compromising high-temperature activity, thermostability and substrate specificity. Our experimental and computational characterizations suggest that the findings with PfBGL-A4 may be due to the elevation of local conformational flexibility around the active site, while slightly compacting the global protein structure. This study showcases the potential of HotSpot Wizard-informed engineering of hyperthermophilic enzymes and underscores the interplays among temperature, enzyme activity, and conformational flexibility in these enzymes.


Subject(s)
Enzyme Stability , Protein Engineering , Pyrococcus furiosus , beta-Glucosidase , Pyrococcus furiosus/enzymology , Pyrococcus furiosus/genetics , beta-Glucosidase/genetics , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism , Protein Engineering/methods , Cold Temperature
8.
Plant Cell Environ ; 47(8): 3076-3089, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38679945

ABSTRACT

Flavonoids are usually present in forms of glucosides in plants, which could be catabolized by ß-glucosidase (BGLU) to form their corresponding flavonoid aglycones. In this study, we isolated three abiotic-responsive BGLU genes (MtBGLU17, MtBGLU21 and MtBGLU22) from Medicago truncatula, and found only the recombinant MtBGLU17 protein could catalyse the hydrolysis of flavonoid glycosides. The recombinant MtBGLU17 protein is active towards a variety of flavonoid glucosides, including glucosides of flavones (apigenin and luteolin), flavonols (kaempferol and quercetin), isoflavones (genistein and daidzein) and flavanone (naringenin). In particular, the recombinant MtBGLU17 protein preferentially hydrolyses flavonoid-7-O-glucosides over their corresponding 3-O-glucosides. The content of luteoin-7-O-glucoside was reduced in the MtBGLU17 overexpression plants but increased in the Tnt-1 insertional mutant lines, whereas luteoin content was increased in the MtBGLU17 overexpression plants but reduced in the Tnt-1 insertional mutant lines. Under drought and salt (NaCl) treatment, the MtBGLU17 overexpression lines showed relatively higher DPPH content, and higher CAT and SOD activity than the wild type control. These results indicated that overexpression lines of MtBGLU17 possess higher antioxidant activity and thus confer drought and salt tolerance, implying MtBGLU17 could be potentially used as a candidate gene to improve plant abiotic stress tolerance.


Subject(s)
Antioxidants , Droughts , Flavonoids , Medicago truncatula , Plant Proteins , Salt Tolerance , beta-Glucosidase , Medicago truncatula/genetics , Medicago truncatula/enzymology , Medicago truncatula/metabolism , Medicago truncatula/physiology , Flavonoids/metabolism , Antioxidants/metabolism , beta-Glucosidase/metabolism , beta-Glucosidase/genetics , Salt Tolerance/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant
9.
Theor Appl Genet ; 137(1): 14, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165440

ABSTRACT

KEY MESSAGE: HvBGlu3, a ß-glucosidase enzyme gene, negatively influences ß-glucan content in barley grains by mediating starch and sucrose metabolism in developing grains. Barley grains are rich in ß-glucan, an important factor affecting end-use quality. Previously, we identified several stable marker-trait associations (MTAs) and novel candidate genes associated with ß-glucan content in barley grains using GWAS (Genome Wide Association Study) analysis. The gene HORVU3Hr1G096910, encoding ß-glucosidase 3, named HvBGlu3, is found to be associated with ß-glucan content in barley grains. In this study, conserved domain analysis suggested that HvBGlu3 belongs to glycoside hydrolase family 1 (GH1). Gene knockout assay revealed that HvBGlu3 negatively influenced ß-glucan content in barley grains. Transcriptome analysis of developing grains of hvbglu3 mutant and the wild type indicated that the knockout of the gene led to the increased expression level of genes involved in starch and sucrose metabolism. Glucose metabolism analysis showed that the contents of many sugars in developing grains were significantly changed in hvbglu3 mutants. In conclusion, HvBGlu3 modulates ß-glucan content in barley grains by mediating starch and sucrose metabolism in developing grains. The obtained results may be useful for breeders to breed elite barley cultivars for food use by screening barley lines with loss of function of HvBGlu3 in barley breeding.


Subject(s)
Hordeum , beta-Glucans , beta-Glucosidase/genetics , Hordeum/genetics , Genome-Wide Association Study , Plant Breeding , Starch , Sucrose
10.
Food Microbiol ; 119: 104458, 2024 May.
Article in English | MEDLINE | ID: mdl-38225057

ABSTRACT

In this study, we conducted a comprehensive investigation into a GH3 family ß-glucosidase (BGL) from the wild-type strain of Oenococcus oeni and its mutated counterpart from the acid-tolerant mutant strain. Our analysis revealed the mutant BGL's remarkable capacity to adapt to wine-related stress conditions, including heightened tolerance to low pH, elevated ethanol concentrations, and metal ions. Additionally, the mutant BGL exhibited superior hydrolytic activity towards various substrates. Through de novo modeling, we identified specific amino acid mutations responsible for its resilience to low pH and high ethanol environments. In simulated wine conditions, the mutant BGL outperformed both wild-type and commercial BGLs, efficiently releasing terpene and phenolic aglycones from glycosides in wine grapes. These findings not only expand our understanding of O. oeni BGLs but also highlight their potential in enhancing wine production. The mutant BGL's enhanced adaptation to wine stress conditions opens promising avenue for improving wine quality and flavor.


Subject(s)
Oenococcus , Wine , Wine/analysis , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Odorants/analysis , Ethanol/metabolism , Oenococcus/genetics , Oenococcus/metabolism , Fermentation
11.
BMC Genomics ; 25(1): 118, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38281030

ABSTRACT

Conifers are long-lived and slow-evolving, thus requiring effective defences against their fast-evolving insect natural enemies. The copy number variation (CNV) of two key acetophenone biosynthesis genes Ugt5/Ugt5b and ßglu-1 may provide a plausible mechanism underlying the constitutively variable defence in white spruce (Picea glauca) against its primary defoliator, spruce budworm. This study develops a long-insert sequence capture probe set (Picea_hung_p1.0) for quantifying copy number of ßglu-1-like, Ugt5-like genes and single-copy genes on 38 Norway spruce (Picea abies) and 40 P. glauca individuals from eight and nine provenances across Europe and North America respectively. We developed local assemblies (Piabi_c1.0 and Pigla_c.1.0), full-length transcriptomes (PIAB_v1 and PIGL_v1), and gene models to characterise the diversity of ßglu-1 and Ugt5 genes. We observed very large copy numbers of ßglu-1, with up to 381 copies in a single P. glauca individual. We observed among-provenance CNV of ßglu-1 in P. glauca but not P. abies. Ugt5b was predominantly single-copy in both species. This study generates critical hypotheses for testing the emergence and mechanism of extreme CNV, the dosage effect on phenotype, and the varying copy number of genes with the same pathway. We demonstrate new approaches to overcome experimental challenges in genomic research in conifer defences.


Subject(s)
Picea , Humans , Picea/genetics , Picea/metabolism , DNA Copy Number Variations , beta-Glucosidase/genetics , Genomics , Transcriptome
12.
Res Microbiol ; 175(4): 104178, 2024.
Article in English | MEDLINE | ID: mdl-38160731

ABSTRACT

In this study, CRISPR/Cas9 genome editing was used to knockout the bgl2 gene encoding intracellular ß-glucosidase filamentous fungus Penicillium verruculosum. This resulted in a dramatic reduction of secretion of cellulolytic enzymes. The study of P. verruculosum Δbgl2 found that the transcription of the cbh1 gene, which encodes cellobiohydrolase 1, was impaired when induced by cellobiose and cellotriose. However, the transcription of the cbh1 gene remains at level of the host strain when induced by gentiobiose. This implies that gentiobiose is the true inducer of the cellulolytic response in P. verruculosum, in contrast to Neurospora crassa where cellobiose acts as an inducer.


Subject(s)
Penicillium , beta-Glucosidase , Penicillium/genetics , Penicillium/enzymology , beta-Glucosidase/metabolism , beta-Glucosidase/genetics , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Cellulose/metabolism , Cellobiose/metabolism , CRISPR-Cas Systems , Gene Knockout Techniques , Neurospora crassa/genetics , Neurospora crassa/enzymology , Cellulose 1,4-beta-Cellobiosidase/metabolism , Cellulose 1,4-beta-Cellobiosidase/genetics , Gene Editing
13.
Chinese Journal of Biotechnology ; (12): 580-592, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-878583

ABSTRACT

A novel β-glucosidase BglD2 with glucose and ethanol tolerant properties was screened and cloned from the deep-sea bacterium Bacillus sp. D1. The application potential of BglD2 toward polydatin-hydrolyzing was also evaluated. BglD2 exhibited the maximal β-glucosidase activity at 45 °C and pH 6.5. BglD2 maintained approximately 50% of its origin activity after incubation at 30 °C and pH 6.5 for 20 h. BglD2 could hydrolyze a variety of substrates containing β (1→3), β (1→4), and β (1→6) bonds. The activity of β-glucosidase was enhanced to 2.0 fold and 2.3 fold by 100 mmol/L glucose and 150 mmol/L xylose, respectively. BglD2 possessed ethanol-stimulated and -tolerant properties. At 30 °C, the activity of BglD2 enhanced to 1.2 fold in the presence of 10% ethanol and even remained 60% in 25% ethanol. BglD2 could hydrolyze polydatin to produce resveratrol. At 35 °C, BglD2 hydrolyzed 86% polydatin after incubation for 2 h. Thus, BglD2 possessed glucose and ethanol tolerant properties and can be used as the potential candidate of catalyst for the production of resveratrol from polydatin.


Subject(s)
Enzyme Stability , Glucose , Glucosides/pharmacology , Hydrogen-Ion Concentration , Stilbenes/pharmacology , Substrate Specificity , Temperature , Xylose , beta-Glucosidase/genetics
14.
Braz. j. microbiol ; 45(4): 1139-1144, Oct.-Dec. 2014. ilus
Article in English | LILACS | ID: lil-741263

ABSTRACT

Bacteria have evolved various mechanisms to extract utilizable substrates from available resources and consequently acquire fitness advantage over competitors. One of the strategies is the exploitation of cryptic cellular functions encoded by genetic systems that are silent under laboratory conditions, such as the bgl (β-glucoside) operon of E. coli. The bgl operon of Escherichia coli, involved in the uptake and utilization of aromatic β-glucosides salicin and arbutin, is maintained in a silent state in the wild type organism by the presence of structural elements in the regulatory region. This operon can be activated by mutations that disrupt these negative elements. The fact that the silent bgl operon is retained without accumulating deleterious mutations seems paradoxical from an evolutionary view point. Although this operon appears to be silent, specific physiological conditions might be able to regulate its expression and/or the operon might be carrying out function(s) apart from the utilization of aromatic β-glucosides. This is consistent with the observations that the activated operon confers a Growth Advantage in Stationary Phase (GASP) phenotype to Bgl+ cells and exerts its regulation on at least twelve downstream target genes.


Subject(s)
Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression Regulation , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Arbutin/metabolism , Benzyl Alcohols/metabolism , Escherichia coli/growth & development , Escherichia coli/metabolism , Glucosides/metabolism , Operon
15.
Braz. j. med. biol. res ; 43(1): 8-12, Jan. 2010. tab
Article in English | LILACS | ID: lil-535650

ABSTRACT

The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the â-glycosidase from Spodoptera frugiperda (Sfâgly), both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfâgly (A451E39, S451E39 and S451N39) were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl â-galactoside and p-nitrophenyl â-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfâgly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ES‡ (enzyme-transition state complex) of the double mutations (∆∆G‡xy) is not the sum of the effects resulting from the single mutations (∆∆G‡x and ∆∆G‡y). This difference in ∆∆G‡ indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in ∆∆G‡xy. Crystallographic data on â-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.


Subject(s)
Animals , Spodoptera/enzymology , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism , Amino Acid Sequence , Amino Acid Substitution , Chromatography, Liquid , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Glycosides/chemistry , Glycosides/metabolism , Molecular Sequence Data , Substrate Specificity , beta-Glucosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL