ABSTRACT
BACKGROUND: HIV-1 gp120 binds to integrin α4ß7, a homing receptor of lymphocytes to gut-associated lymphoid tissues. This interaction is mediated by the LDI/V tripeptide encoded in the V2-loop. This tripeptide mimics similar motifs in mucosal addressin cellular adhesion molecule (MAdCAM) and vascular CAM (VCAM), the natural ligands of α4ß7. In this study, we explored the association of V2-loop LDI/V mimotopes with transmission routes and patterns of disease progression in HIV-infected adult and pediatric patients. HIV-1 env sequences available in the Los Alamos HIV Sequence database were included in the analyses. METHODS: HIV-1 V2-loop sequences generated from infected adults and infants from South and Southeast Brazil, and also retrieved from the Los Alamos database, were assessed for α4ß7 binding tripeptide composition. Chi-Square/Fisher Exact test and Mann Whitney U test were used for tripeptide comparisons. Shannon entropy was assessed for conservancy of the α4ß7 tripeptide mimotope. RESULTS: We observed no association between the tripeptide composition or conservation and virus transmission route or disease progression. However, LDI was linked to successful epidemic dissemination of HIV-1 subtype C in South America, and further to other expanding non-B subtypes in Europe and Asia. In Africa, subtypes showing increased LDV prevalence evidenced an ongoing process of selection toward LDI expansion, an observation also extended to subtype B in the Americas and Western Europe. CONCLUSIONS: The V2-loop LDI mimotope was conserved in HIV-1C from South America and other expanding subtypes across the globe, which suggests that LDI may promote successful dissemination of HIV at local geographic levels by means of increased transmission fitness.
Subject(s)
HIV Envelope Protein gp120/metabolism , HIV Infections/virology , HIV-1/genetics , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , Amino Acid Motifs , Gene Expression Regulation, Viral/physiology , Global Health , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Infections/epidemiology , Humans , env Gene Products, Human Immunodeficiency Virus/metabolismABSTRACT
Entry of HIV-1 into a host cell is a multi-step process, with the viral envelope gp120 and gp41 acting sequentially to mediate the viral attachment, CD4 binding, coreceptor binding, and fusion of the viral and host membranes. The emerging class of antiretroviral agents, collectively known as entry inhibitors, interfere in some of these steps. However, viral diversity has implications for possible differential responses to entry inhibitors, since envelope is the most variable of all HIV genes. Different HIV genetic forms carry in their genomes genetic signatures and polymorphisms that could alter the structure of viral proteins which are targeted by drugs, thus impairing antiretroviral binding and efficacy. This review will examine current research that describes subtype differences in envelope at the genetic level and the effects of mutations on the efficacy of current entry inhibitors.
Subject(s)
HIV-1/physiology , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism , Drug Resistance, Viral/genetics , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/metabolism , HIV Fusion Inhibitors/pharmacology , HIV-1/drug effects , Humans , Virus Internalization/drug effects , env Gene Products, Human Immunodeficiency Virus/geneticsABSTRACT
BACKGROUND: The extreme genetic diversity of the human immunodeficiency virus type 1 (HIV-1) poses a daunting challenge to the generation of an effective AIDS vaccine. In Argentina, the epidemic is characterized by the high prevalence of infections caused by subtype B and BF variants. The aim of this study was to characterize in mice the immunogenic and antigenic properties of the Env protein from CRF12_BF in comparison with clade B, employing prime-boost schemes with the combination of recombinant DNA and vaccinia virus (VV) vectors. METHODOLOGY/PRINCIPAL FINDINGS: As determined by ELISPOT from splenocytes of animals immunized with either EnvBF or EnvB antigens, the majority of the cellular responses to Env were found to be clade-specific. A detailed peptide mapping of the responses reveal that when there is cross-reactivity, there are no amino acid changes in the peptide sequence or were minimal and located at the peptide ends. In those cases, analysis of T cell polifunctionality and affinity indicated no differences with respect to the cellular responses found against the original homologous sequence. Significantly, application of a mixed immunization combining both clades (B and BF) induced a broader cellular response, in which the majority of the peptides targeted after the single clade vaccinations generated a positive response. In this group we could also find significant cellular and humoral responses against the whole gp120 protein from subtype B. CONCLUSIONS/SIGNIFICANCE: This work has characterized for the first time the immunogenic peptides of certain EnvBF regions, involved in T cell responses. It provides evidence that to improve immune responses to HIV there is a need to combine Env antigens from different clades, highlighting the convenience of the inclusion of BF antigens in future vaccines for geographic regions where these HIV variants circulate.
Subject(s)
HIV-1/classification , HIV-1/immunology , Immunity, Cellular/immunology , Immunization/methods , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocytes/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/therapeutic use , Amino Acid Sequence , Animals , BALB 3T3 Cells , Cells, Cultured , Female , HIV Antigens/genetics , HIV Antigens/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/genetics , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Models, Biological , Molecular Sequence Data , T-Lymphocytes/physiology , env Gene Products, Human Immunodeficiency Virus/chemistryABSTRACT
BACKGROUND: The HIV-1 subtype B epidemic in Brazil is peculiar because of the high frequency of isolates having the GWGR tetramer at V3 loop region. It has been suggested that GWGR is a distinct variant and less pathogenic than other subtype B isolates. METHODOLOGY/PRINCIPAL FINDINGS: Ninety-four percent of the HIV-1 subtype B worldwide sequences (7689/8131) obtained from the Los Alamos HIV database contain proline at the tetramer of the V3 loop of the env gene (GPGR) and only 0.74% (60/8131) have tryptophan (GWGR). By contrast, 48.4% (161/333) of subtype B isolates from Brazil have proline, 30.6% (102/333) contain tryptophan and 10.5% (35/333) have phenylalanine (F) at the second position of the V3 loop tip. The proportion of tryptophan and phenylalanine in Brazilian isolates is much higher than in worldwide subtype B sequences (chi-square test, p = 0.0001). The combined proportion of proline, tryptophan and phenylalanine (GPGR+GWGR+GFGR) of Brazilian isolates corresponds to 89% of all amino acids in the V3 loop. Phylogenetic analysis revealed that almost all subtype B isolates in Brazil have a common origin regardless of their motif (GWGR, GPGR, GGGR, etc.) at the V3 tetramer. This shared ancestral origin was also observed in CRF28_BF and CRF29_BF in a genome region (free of recombination) derived from parental subtype B. These results imply that tryptophan substitution (e.g., GWGR-to-GxGR), which was previously associated with the change in the coreceptor usage within the host, also occurs at the population level. CONCLUSIONS/SIGNIFICANCE: Based on the current findings and previous study showing that tryptophan and phenylalanine in the V3 loop are related with coreceptor usage, we propose that tryptophan and phenylalanine in subtype B isolates in Brazil are kept by selective mechanisms due to the distinct coreceptor preferences in target cells of GWGR, GFGR and GFGR viruses.