Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.692
Filter
1.
Syst Biol Reprod Med ; 70(1): 289-298, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39361820

ABSTRACT

Cryptorchidism, a condition where the testis fails to fully descend into the scrotum during development, is associated with elevated environmental temperatures and pressures, leading to male infertility and germ cell tumors. Factors such as oxidative stress and high temperatures contribute to infertility in cryptorchidism. This study aims to explore how external pressure affects Sertoli cells and discover new mechanisms affecting spermatogenesis in cryptorchidism. Sertoli cells were subjected to various pressure levels (0 mmHg, 25 mmHg, 50 mmHg, 100 mmHg) and durations (0 h, 2 h, 4 h) using an enzyme-linked immunosorbent assay (ELISA) to measure androgen binding protein (ABP) and inhibin B (INH B) secretion. Cell morphology changes were observed using immunofluorescence; apoptosis rates were measured with terminal-deoxynucleotidyl transferase mediated nick end labelling (TUNEL) assay and flow cytometry; ultrastructural variations were examined via transmission electron microscopy; and the expression of apoptosis-related proteins (Fas, FasL, caspase 3, and caspase 8) was analyzed through immunohistochemistry, real-time polymerase chain reaction (real-time PCR), and western blotting. The results showed that elevated pressure suppressed ABP and INH B secretion from Sertoli cells. Structural changes were observed under pressure, including cytoskeleton loosening and nuclear fragmentation. Apoptosis rates increased with higher pressure levels. Ultrastructural analysis revealed chromatin changes, apoptotic bodies, and mitochondrial alterations. Increased expressions of Fas and FasL were detected, along with elevated levels of caspase 3 and caspase 8. The caspase 8 inhibitor blocked pressure-induced apoptosis and caspase 3 activation, while the cytochrome C inhibitor did not show the same effect. Our findings suggested that external pressure induces apoptosis of Sertoli cells via the Fas/FasL signaling pathway, potentially contributing to male infertility associated with cryptorchidism.


Subject(s)
Apoptosis , Fas Ligand Protein , Sertoli Cells , Signal Transduction , fas Receptor , Male , Sertoli Cells/metabolism , Fas Ligand Protein/metabolism , Animals , fas Receptor/metabolism , Pressure , Rats, Sprague-Dawley , Rats , Inhibins/metabolism , Spermatogenesis , Cryptorchidism/pathology , Cryptorchidism/metabolism , Cells, Cultured
2.
J Clin Immunol ; 45(1): 23, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39384643

ABSTRACT

OBJECTIVE: FAS gene defects lead to autoimmune lymphoproliferative syndrome (ALPS), which is often inherited in an autosomal dominant and rarely in an autosomal recessive manner. We report a case of a newborn girl with novel compound heterozygous variants in FAS and reveal the underlying mechanism. METHODS: Whole-exome sequencing (WES) was used to identify pathogenic variants. Multiparametric flow cytometry analysis, phosflow analysis, and FAS-induced apoptosis assays were used to explore the effects of the variants on FAS expression, apoptosis, and immunophenotype. The HEK293T cells were used to assess the impact of the variants on protein expression and FAS-induced apoptosis. RESULTS: The patient was born with hepatosplenomegaly, anemia, and thrombocytopenia. She also experienced COVID-19, rotavirus infection, herpes simplex virus infection, and severe pneumonia. The proportion of double-negative T cells (DNTs) was significantly elevated. Novel FAS compound heterozygous variants c.310T > A (p.C104S) and c.702_704del (p.T235del) were identified. The apoptotic ability of T cells was defective, and FAS expression on the surface of T cells was deficient. The T235del variant decreased FAS expression, and the C104S protein remained in the endoplasmic reticulum (ER) and could not translocate to the cell surface. Both mutations resulted in loss-of-function in terms of FAS-induced apoptosis in HEK293T cells. The DNTs were mainly terminally differentiated T (TEMRA) and CD45RA+HLA-DR+, with high expression of CD85j, PD-1, and CD57. The percentage of Th1, Tfh, and autoreactive B cells were significantly increased in the patient. The abnormal immunophenotyping was partially attenuated by sirolimus treatment. CONCLUSIONS: We identified two variants that significantly affect FAS expression or localization, leading to early disease onset of in the fetus. Abnormalities in the mTOR pathway are associated with a favorable response to sirolimus.


Subject(s)
Autoimmune Lymphoproliferative Syndrome , Exome Sequencing , Heterozygote , fas Receptor , Humans , Autoimmune Lymphoproliferative Syndrome/genetics , Autoimmune Lymphoproliferative Syndrome/diagnosis , Autoimmune Lymphoproliferative Syndrome/immunology , fas Receptor/genetics , Female , Infant, Newborn , HEK293 Cells , Mutation/genetics , Apoptosis/genetics , SARS-CoV-2/physiology , SARS-CoV-2/immunology , COVID-19/genetics , COVID-19/immunology , Genetic Predisposition to Disease
3.
Biomolecules ; 14(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39334864

ABSTRACT

The regenerative capacity of muscle, which primarily relies on anabolic processes, diminishes with age, thereby reducing the effectiveness of therapeutic interventions aimed at treating age-related muscle atrophy. In this study, we observed a decline in the expression of methionine adenosine transferase 2A (MAT2A), which synthesizes S-adenosylmethionine (SAM), in the muscle tissues of both aged humans and mice. Considering MAT2A's critical role in anabolism, we hypothesized that its reduced expression contributes to the impaired regenerative capacity of aging skeletal muscle. Mimicking this age-related reduction in the MAT2A level, either by reducing gene expression or inhibiting enzymatic activity, led to inhibiting their differentiation into myotubes. In vivo, inhibiting MAT2A activity aggravated BaCl2-induced skeletal muscle damage and decreased the number of satellite cells, whereas supplementation with SAM improved these effects. RNA-sequencing analysis further revealed that the Fas cell surface death receptor (Fas) gene was upregulated in Mat2a-knockdown C2C12 cells. Suppressing MAT2A expression or activity elevated Fas protein levels and increased the proportion of apoptotic cells. Additionally, inhibition of MAT2A expression or activity increased p53 expression. In conclusion, our findings demonstrated that impaired MAT2A expression or activity compromised the regeneration and repair capabilities of skeletal muscle, partially through p53-Fas-mediated apoptosis.


Subject(s)
Methionine Adenosyltransferase , Muscle, Skeletal , Aged , Animals , Humans , Male , Mice , Aging/metabolism , Aging/genetics , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Line , fas Receptor/metabolism , fas Receptor/genetics , Methionine Adenosyltransferase/antagonists & inhibitors , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Regeneration , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
4.
Viruses ; 16(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39339840

ABSTRACT

Herpes simplex virus type 2 (HSV-2) is a sexually transmitted pathogen that causes a persistent infection in sensory ganglia. The infection manifests itself as genital herpes but in rare cases it can cause meningitis. In this study, we used a murine model of HSV-2 meningitis to show that Fas and FasL are induced within the CNS upon HSV-2 infection, both on resident microglia and astrocytes and on infiltrating monocytes and lymphocytes. Mice lacking Fas or FasL had a more severe disease development with significantly higher morbidity, mortality, and an overall higher CNS viral load. In parallel, these Fas/FasL-deficient mice showed a severely impaired infection-induced CNS inflammatory response with lower levels of infiltrating CD4+ T-cells, lower levels of Th1 cytokines and chemokines, and a shift in the balance between M1 and M2 microglia/monocytes. In vitro, we confirmed that Fas and FasL is required for the induction of leucocyte apoptosis, but also show that the Fas/FasL pathway is required for adequate cytokine and chemokine production by glial cells. In summary, our data show that the Fas/FasL cell death receptor pathway is an important defense mechanism in the spinal cord as it down-regulates HSV-2-induced inflammation while at the same time promoting adequate anti-viral immune responses against infection.


Subject(s)
Apoptosis , Fas Ligand Protein , Herpesvirus 2, Human , Inflammation , fas Receptor , Animals , Female , Mice , Cytokines/metabolism , Disease Models, Animal , Fas Ligand Protein/metabolism , Fas Ligand Protein/genetics , fas Receptor/metabolism , fas Receptor/genetics , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 2, Human/immunology , Herpesvirus 2, Human/physiology , Inflammation/virology , Mice, Knockout , Microglia/virology , Microglia/immunology , Microglia/metabolism , Spinal Cord/virology , Spinal Cord/pathology , Spinal Cord/immunology
5.
Cell Death Dis ; 15(8): 576, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117629

ABSTRACT

Due to the large number of genes and mutations that result in inherited retinal degenerations (IRD), there has been a paucity of therapeutic options for these patients. There is a large unmet need for therapeutic approaches targeting shared pathophysiologic pathways in a mutation-independent manner. The Fas receptor is a major activator and regulator of retinal cell death and inflammation in a variety of ocular diseases. We previously reported the activation of Fas-mediated photoreceptor (PR) cell death in two different IRD mouse models, rd10 and P23H, and demonstrated the protective effect of genetic Fas inhibition. The purpose of this study was to examine the effects of pharmacologic inhibition of Fas in these two models by intravitreal injection with a small peptide inhibitor of the Fas receptor, ONL1204. A single intravitreal injection of ONL1204 was given to one eye of rd10 mice at P14. Two intravitreal injections of ONL1204 were given to the P23H mice, once at P14 and again at 2-months of age. The fellow eyes were injected with vehicle alone. Fas activation, rate of PR cell death, retinal function, and the activation of immune cells in the retina were evaluated. In both rd10 and P23H mice, ONL1204 treatment resulted in decreased number of TUNEL (+) PRs, decreased caspase 8 activity, enhanced photoreceptor cell counts, and improved visual function compared with vehicle treated fellow eyes. Treatment with ONL1204 also reduced immune cell activation in the retinas of both rd10 and P23H mice. The protective effect of pharmacologic inhibition of Fas by ONL1204 in two distinct mouse models of retinal degeneration suggests that targeting this common pathophysiologic mechanism of cell death and inflammation represents a potential therapeutic approach to preserve the retina in patients with IRD, regardless of the genetic underpinning.


Subject(s)
Disease Models, Animal , Retina , Retinal Degeneration , fas Receptor , Animals , Retinal Degeneration/pathology , Retinal Degeneration/drug therapy , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Mice , fas Receptor/metabolism , fas Receptor/genetics , Retina/pathology , Retina/metabolism , Retina/drug effects , Mice, Inbred C57BL , Intravitreal Injections , Apoptosis/drug effects
6.
Mol Biol Rep ; 51(1): 895, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115693

ABSTRACT

BACKGROUND: Insufficient trophoblast invasion, culminating in suboptimal uterine spiral artery remodeling, is pinpointed as a pivotal contributor to preeclampsia (PE) development. LINC01410 has been documented to be increased in various neoplasms, and is significantly associated with the invasive capabilities of tumor cells. Nonetheless, its function and the mechanisms in the pathogenesis of PE require further investigation. METHODS AND RESULTS: LINC01410 and methyltransferase-like 3 (METTL3) were ectopically expressed in HTR-8/Svneo cells via lentiviral transduction. Subsequently, the cells' invasive capabilities and apoptosis rates were evaluated employing Transwell assays and flow cytometry, respectively. The interplay between LINC01410 and METTL3, alongside the m6A methylation of FAS, was probed through RNA immunoprecipitation (RIP). Additionally, the association between FAS and METTL3 was elucidated via Coimmunoprecipitation (Co-IP) assays. The protein level of NF-κB, BAX, and BCL-2 in LINC01410-overexpressing cells was detected by Western blot. Our findings revealed that LINC01410 elevation increased the invasive ability of HTR-8/Svneo cells, directly impacting METTL3 then leading to its reduced expression. Conversely, heightened METTL3 expression mitigated invasiveness while enhancing apoptosis in these cells. Moreover, METTL3's interaction with FAS led to increased FAS expression, subject to m6A methylation. A surge in LINC01410 markedly decreased both mRNA and protein levels of FAS. Furthermore, LINC01410 overexpression significantly reduced NF-κB and BAX protein levels while augmenting BCL-2. CONCLUSIONS: Upregulation of LINC01410 expression promotes trophoblast cell invasion by inhibiting FAS levels through modified m6A alteration and suppressing the NF-κB pathway. These findings underscore the pivotal role of LINC01410 in regulating trophoblast cell invasion and propose it as a promising therapeutic strategy for preventing or alleviating PE. This offers valuable insights for the clinical treatment of PE, for which definitive targeted therapy methods are currently lacking.


Subject(s)
Apoptosis , Methyltransferases , Pre-Eclampsia , RNA, Long Noncoding , Trophoblasts , fas Receptor , Humans , Trophoblasts/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , fas Receptor/metabolism , fas Receptor/genetics , Female , Apoptosis/genetics , Pregnancy , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Cell Line , Cell Movement/genetics , NF-kappa B/metabolism , Signal Transduction/genetics
7.
Sci Adv ; 10(35): eadn3238, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39213362

ABSTRACT

Unraveling the concentration-dependent spatiotemporal organization of receptors in the plasma membrane is crucial to understand cell signal initiation. A paradigm of this process is the oligomerization of CD95 during apoptosis signaling, with different oligomerization models being discussed. Here, we establish the molecular-sensitive approach cell lifetime Förster resonance energy transfer image spectroscopy to determine CD95 configurations in live cells. These data are corroborated by stimulated emission depletion microscopy, confocal photobleaching step analysis, and fluorescence correlation spectroscopy. We probed CD95 interactions for concentrations of ~10 to 1000 molecules per square micrometer, over nanoseconds to hours, and molecular to cellular scales. Quantitative benchmarking was achieved establishing high-fidelity monomer and dimer controls. While CD95 alone is primarily monomeric (~96%) and dimeric (4%), the addition of ligand induces oligomerization to dimers/trimers (~15%) leading to cell death. This study highlights molecular concentration effects and oligomerization dynamics. It reveals a minimal model, where small CD95 oligomers suffice to efficiently initiate signaling.


Subject(s)
Signal Transduction , fas Receptor , fas Receptor/metabolism , fas Receptor/chemistry , Humans , Fluorescence Resonance Energy Transfer/methods , Protein Multimerization , Apoptosis , Fas Ligand Protein/metabolism , Fas Ligand Protein/chemistry , Cell Membrane/metabolism
8.
BMC Pediatr ; 24(1): 493, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095736

ABSTRACT

BACKGROUND: Type 1 diabetes mellitus (T1DM) is characterized by immune and metabolic dysregulation. Apo1/Fas is implicated in maintaining homeostasis of the immune system. Cytokeratin-18 (cCK-18) is a predictive marker of liver disorders in T2DM. Intercellular adhesion molecule-1 (ICAM-1) is considered to increase susceptibility to diabetes mellitus. All three markers are associated with endothelial function, apoptosis and diabetes-related complications. The possible role of Apo1/Fas, cCK-18 and ICAM-1 was investigated in children and adolescents with T1DM. METHOD: Forty-nine (49) children and adolescents with T1DM and 49 controls were included in the study. Somatometric measurements were obtained and the Body Mass Index (BMI) of the participants was calculated. Biochemical parameters were measured by standard laboratory methods and Apo1/Fas, cCK-18 and ICAM-1 were measured using appropriate ELISA kits. The statistical analysis was performed using the IBM SPSS Statistics 23 program. RESULTS: Apo1/Fas (p = 0.001), cCK-18 (p < 0.001) and ICAM-1 (p < 0.001) were higher in patients with T1DM compared to the controls. Apo1Fas was negatively correlated with glucose (p = 0.042), uric acid (p = 0.026), creatinine (p = 0.022), total cholesterol (p = 0.023) and LDL (p = 0.005) in the controls. In children and adolescents with T1DM, Apo1/Fas was positively correlated with total cholesterol (p = 0.013) and LDL (p = 0.003). ICAM-1 was negatively correlated with creatinine (p = 0.019) in the controls, whereas in patients with T1DM it was negatively correlated with HbA1c (p = 0.05). CONCLUSIONS: Apo1/Fas, cCK-18 and ICAM-1 may be useful as serological markers for immune and metabolic dysregulation in children and adolescents with T1DM. Also, Apo1/Fas may have a protective role against metabolic complications in healthy children.


Subject(s)
Biomarkers , Diabetes Mellitus, Type 1 , Intercellular Adhesion Molecule-1 , Humans , Diabetes Mellitus, Type 1/blood , Intercellular Adhesion Molecule-1/blood , Child , Adolescent , Male , Female , Biomarkers/blood , Case-Control Studies , Keratin-18/blood , fas Receptor/blood , Apoptosis , Apolipoprotein A-I/blood
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167472, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39154794

ABSTRACT

COVID-19, caused by SARS-CoV-2 infection, results in irreversible or fatal lung injury. We assumed that necroptosis of virus-infected alveolar epithelial cells (AEC) could promote local inflammation and further lung injury in COVID-19. Since CD8+ lymphocytes induced AEC cell death via cytotoxic molecules such as FAS ligands, we examined the involvement of FAS-mediated cell death in COVID-19 patients and murine COVID-19 model. We identified the occurrence of necroptosis and subsequent release of HMGB1 in the admitted patients with COVID-19. In the mouse model of COVID-19, lung inflammation and injury were attenuated in Fas-deficient mice compared to Fas-intact mice. The infection enhanced Type I interferon-inducible genes in both groups, while inflammasome-associated genes were specifically upregulated in Fas-intact mice. The treatment with necroptosis inhibitor, Nec1s, improved survival rate, lung injury, and systemic inflammation. SARS-CoV-2 induced necroptosis causes cytokine induction and lung damage, and its inhibition could be a novel therapeutic strategy for COVID-19.


Subject(s)
Alveolar Epithelial Cells , COVID-19 , Necroptosis , SARS-CoV-2 , COVID-19/pathology , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , COVID-19/complications , Animals , Humans , Mice , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Lung Injury/pathology , Lung Injury/virology , Lung Injury/immunology , Lung Injury/metabolism , Male , Disease Models, Animal , Female , Mice, Inbred C57BL , fas Receptor/metabolism , fas Receptor/genetics , Mice, Knockout , Pneumonia/pathology , Pneumonia/virology , Pneumonia/metabolism , Pneumonia/immunology , Middle Aged , Imidazoles , Indoles
10.
Cell Rep ; 43(9): 114685, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39213151

ABSTRACT

Signaling through classical death receptor Fas was mainly appreciated as a pro-death pathway until recent reports characterized pro-inflammatory outcomes of Fas-mediated activation in pathological contexts. How Fas signaling can switch to pro-inflammatory activation is poorly understood. Herein, we report that in macrophages and neutrophils, the Toll-like receptor (TLR) adapter CD14 determines the inflammatory output of Fas-mediated signaling. Our findings propose CD14 as a crucial chaperone of Fas receptor internalization in macrophages and neutrophils, resulting in Cd14-/- myeloid cells that are protected from FasL-induced apoptosis, activate nuclear factor κB (NF-κB), and release cytokines in response. As in TLR signaling, CD14 is also required for Fas to signal through the adaptor TRIF (TIR-domain-containing adapter-inducing interferon-ß) and induce a pro-death complex. Our findings demonstrate that CD14 availability can determine the switch between Fas-mediated pro-death and pro-inflammatory outcomes by internalizing the receptor.


Subject(s)
Inflammation , Lipopolysaccharide Receptors , Macrophages , Signal Transduction , fas Receptor , Lipopolysaccharide Receptors/metabolism , Animals , fas Receptor/metabolism , Inflammation/metabolism , Inflammation/pathology , Mice , Macrophages/metabolism , NF-kappa B/metabolism , Apoptosis , Adaptor Proteins, Vesicular Transport/metabolism , Mice, Inbred C57BL , Humans , Neutrophils/metabolism , Fas Ligand Protein/metabolism
11.
STAR Protoc ; 5(3): 103126, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39088326

ABSTRACT

Engagement of TRAIL or Fas death receptors can trigger the assembly of cytoplasmic caspase-8/FADD/RIPK1 (FADDosome) signaling complexes that promote nuclear factor κB (NF-κB) activation. Here, we present a protocol for immunoprecipitation of TRAIL- or Fas-induced FADDosomes from human cell lines. We describe steps for stimulating human cells with TRAIL or Fas ligand, followed by preparation of membrane death receptor-associated, as well as cytoplasmic FADDosome, signaling complexes. This protocol has application in the analysis of death receptor-induced signaling complex formation. For complete details on the use and execution of this protocol, please refer to Davidovich et al.1.


Subject(s)
Fas-Associated Death Domain Protein , Immunoprecipitation , Signal Transduction , TNF-Related Apoptosis-Inducing Ligand , fas Receptor , Humans , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Immunoprecipitation/methods , Fas-Associated Death Domain Protein/metabolism , fas Receptor/metabolism , Fas Ligand Protein/metabolism , Caspase 8/metabolism , Cell Line , NF-kappa B/metabolism
12.
Anat Histol Embryol ; 53(5): e13089, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39046664

ABSTRACT

The Tianzhu white yak, a globally rare species, holds immense value as a source for yak materials. While the Fas/FasL pathway is pivotal in granulosa cells apoptosis, its precise molecular workings remain enigmatic. This study endeavours to decipher the role of follicle-stimulating hormone (FSH) in suppressing ovarian granulosa cells (GC) apoptosis in the Tianzhu white yak. Utilizing advanced cell culture techniques, we employed the MTT method, flow cytometry, fluorescence labelling and RT-PCR to investigate the apoptotic effects of FSH on yak GCs. Our results reveal that FSH's inhibitory effect on GC apoptosis follows a normal distribution pattern, peaking at an FSH concentration of 100 ng/mL with an apoptosis inhibition rate of 89.31%. When serum was withdrawn, an FSH concentration of 2 × 106 ng/mL reduced apoptosis by 72.84%. Annexin V-FITC staining revealed membrane invaginations, bubble and protrusion formation on the cell surface, and alterations in membrane structure and cell morphology. Flow cytometry analysis further demonstrated that FSH administration prior to early granulosa cell apoptosis had a more profound effect than during gradual apoptosis, both showing a suppressive effect on early follicular granulosa cell apoptosis. A transcription-level analysis conducted 3 h prior to serum withdrawal, with the addition of 100 ng/mL FSH, revealed intricate regulations in the expression of Fas/FasL. Notably, we observed a gradual increase in FasL expression over time, yet the presence of FSH effectively down-regulated FasL expression to baseline levels, without notable changes in Fas expression. Immunocytochemical analysis further confirmed the presence of both Fas and FasL on the cell membrane, nucleus and cytoplasm, with varying intensities depending on the duration of FSH treatment. Our findings suggest that FSH may suppress the apoptotic pathway in follicular primarily by down-regulating FasL expression, indicating that Fas-regulated mitochondrial pathways play a more prominent role compared to death receptor pathways. This study offers a fresh perspective on the mechanism underlying follicular atresia in Tianzhu white yaks and lays a solid theoretical foundation for the expansion of this endangered species' population.


Subject(s)
Apoptosis , Fas Ligand Protein , Follicle Stimulating Hormone , Granulosa Cells , RNA, Messenger , fas Receptor , Animals , Female , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Apoptosis/drug effects , Fas Ligand Protein/metabolism , Fas Ligand Protein/genetics , Follicle Stimulating Hormone/pharmacology , Cattle , fas Receptor/metabolism , fas Receptor/genetics , RNA, Messenger/metabolism , Flow Cytometry/veterinary
13.
J Proteome Res ; 23(9): 3904-3916, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39079039

ABSTRACT

Colorectal cancer (CRC) is projected to become the third most diagnosed and third most fatal cancer in the United States by 2024, with early onset CRC on the rise. Research is constantly underway to discover novel therapeutics for the treatment of various cancers to improve patient outcomes and survival. Fatty acid synthase (FAS) has become a druggable target of interest for the treatment of many different cancers. One such inhibitor, TVB-2640, has gained popularity for its high specificity for FAS and has entered a phase 1 clinical trial for the treatment of solid tumors. However, the distinct molecular differences that occur upon inhibition of FAS have yet to be understood. Here, we conduct proteomics and phosphoproteomics analyses on HCT 116 and HT-29 CRC spheroids inhibited with either a generation 1 (cerulenin) or generation 2 (TVB-2640) FAS inhibitor. Proteins involved in lipid metabolism and cellular respiration were altered in abundance. It was also observed that proteins involved in ferroptosis─an iron mediated form of cell death─were altered. These results show that HT-29 spheroids exposed to cerulenin or TVB-2640 are undergoing a ferroptotic death mechanism. The data were deposited to the ProteomeXchange Consortium via the PRIDE repository with the identifier PXD050987.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Proteomics , Spheroids, Cellular , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Proteomics/methods , Ferroptosis/drug effects , HT29 Cells , HCT116 Cells , Cerulenin/pharmacology , Fatty Acid Synthases/metabolism , Fatty Acid Synthases/antagonists & inhibitors , Fatty Acid Synthases/genetics , Phosphoproteins/metabolism , Lipid Metabolism/drug effects , fas Receptor
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1159-1165, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977346

ABSTRACT

OBJECTIVE: To investigate the effect of Porphyromonas gingivalis (Pg) infection on immune escape of oesophageal cancer cells and the role of YTHDF2 and Fas in this regulatory mechanism. METHODS: We examined YTHDF2 and Fas protein expressions in esophageal squamous cell carcinoma (ESCC) tissues with and without Pg infection using immunohistochemistry and in Pg-infected KYSE150 cells using Western blotting. The interaction between YTHDF2 and Fas was investigated by co-immunoprecipitation (Co-IP). Pg-infected KYSE150 cells with lentivirus-mediated YTHDF2 knockdown were examined for changes in expression levels of YTHDF2, cathepsin B (CTSB), Fas and FasL proteins, and the effect of E64 (a cathepsin inhibitor) on these proteins were observed. After Pg infection and E64 treatment, KYSE150 cells were co-cultured with human peripheral blood mononuclear cells (PBMCs), and the expressions of T cell-related effector molecules were detected by flow cytometry. RESULTS: ESCC tissues and cells with Pg infection showed significantly increased YTHDF2 expression and lowered Fas expression. The results of Co-IP demonstrated a direct interaction between YTHDF2 and Fas. In Pg-infected KYSE150 cells with YTHDF2 knockdown, the expression of CTSB was significantly reduced while Fas and FasL expressions were significantly increased. E64 treatment of KYSE150 cells significantly decreased the expression of CTSB without affecting YTHDF2 expression and obviously increased Fas and FasL expressions. Flow cytometry showed that in Pg-infected KYSE150 cells co-cultured with PBMCs, the expressions of Granzyme B and Ki67 were significantly decreased while PD-1 expression was significantly enhanced. CONCLUSION: Pg infection YTHDF2-dependently regulates the expression of Fas to facilitate immune escape of esophageal cancer and thus promoting cancer progression, suggesting the key role of YTHDF2 in regulating immune escape of esophageal cancer.


Subject(s)
Esophageal Neoplasms , Porphyromonas gingivalis , RNA-Binding Proteins , fas Receptor , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/metabolism , Cell Line, Tumor , fas Receptor/metabolism , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/metabolism , Bacteroidaceae Infections/microbiology , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Fas Ligand Protein/metabolism , Tumor Escape
15.
J Clin Immunol ; 44(7): 166, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060684

ABSTRACT

Autoimmune lymphoproliferative syndrome (ALPS) is a rare genetic disorder featuring chronic lymphadenopathy, splenomegaly, cytopenias, and increased lymphoma risk. Differentiating ALPS from immunodeficiencies with overlapping symptoms is challenging. This study evaluated the performance and the diagnostic yield of a 15-gene NGS panel for ALPS at Cincinnati Children's Hospital Medical Center. Samples from 802 patients submitted for ALPS NGS panel were studied between May 2014 and January 2023. A total of 62 patients (7.7%) had a definite diagnosis: 52/62 cases (84%) showed 37 unique pathogenic/likely pathogenic germline FAS variants supporting ALPS diagnosis (6.5%, 52/802). The ALPS diagnostic yield increased to 30% in patients who additionally fulfilled abnormal ALPS immunology findings criteria. 17/37 (46%) diagnostic FAS variants were novel variants reported for the first time in ALPS. 10/802 cases (1.2%) showed diagnostic findings in five genes (ADA2, CTLA4, KRAS, MAGT1, NRAS) which are related to autoimmune lymphoproliferative immunodeficiency (ALPID). Family studies enabled the reclassification of variants of unknown significance (VUS) and also the identification of at-risk family members of FAS-positive patients, which helped in the follow-up diagnosis and treatment. Alongside family studies, complete clinical phenotypes and abnormal ALPS immunology and Fas-mediated apoptosis results helped clarify uncertain genetic findings. This study describes the largest cohort of genetic testing for suspected ALPS in North America and highlights the effectiveness of the ALPS NGS panel in distinguishing ALPS from non-ALPS immunodeficiencies. More comprehensive assessment from exome or genome sequencing could be considered for undefined ALPS-U patients or non-ALPS immunodeficiencies after weighing cost, completeness, and timeliness of different genetic testing options.


Subject(s)
Autoimmune Lymphoproliferative Syndrome , Genetic Testing , Humans , Autoimmune Lymphoproliferative Syndrome/diagnosis , Autoimmune Lymphoproliferative Syndrome/genetics , Genetic Testing/methods , Female , Male , Child , Child, Preschool , Infant , Adolescent , fas Receptor/genetics , High-Throughput Nucleotide Sequencing , Genetic Predisposition to Disease , Hospitals, Pediatric , Mutation/genetics
16.
Obesity (Silver Spring) ; 32(10): 1812-1818, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39020501

ABSTRACT

OBJECTIVE: Induction of browning in white adipose tissue (WAT) increases energy expenditure and may be an attractive target for the treatment of obesity. Since activation of Fas (CD95) induces pathways known to blunt expression of uncoupling protein 1 (UCP1), we hypothesized that Fas expression in adipocytes inhibits WAT browning and thus contributes to the development of obesity. METHODS: Adipocyte-specific Fas knockout (FasΔadipo) and control littermate (FasF/F) mice were fed a regular chow diet or a high-fat diet (HFD) for 20 weeks. Energy expenditure was assessed by indirect calorimetry, and browning was determined in subcutaneous WAT. In vitro, UCP1 was analyzed in subcutaneous murine adipocytes treated with or without Fas ligand. Moreover, FAS expression in WAT was correlated to UCP1 and percentage of body fat in human individuals. RESULTS: HFD-fed FasΔadipo mice displayed reduced body weight gain and blunted adiposity compared to control littermates. Concomitantly, whole-body energy expenditure and WAT browning were elevated. In cultured adipocytes, Fas ligand treatment blunted isoproterenol-induced UCP1 protein levels. In support of these findings in rodents, FAS expression in WAT correlated negatively with UCP1 but positively with adiposity in human individuals. CONCLUSIONS: Fas activation in adipocytes contributes to HFD-associated adiposity in rodents and may be a therapeutic target to reduce obesity and associated diseases.


Subject(s)
Adipocytes , Adipose Tissue, White , Diet, High-Fat , Energy Metabolism , Mice, Knockout , Obesity , Uncoupling Protein 1 , fas Receptor , Animals , Obesity/metabolism , Obesity/etiology , Uncoupling Protein 1/metabolism , Mice , Diet, High-Fat/adverse effects , Adipocytes/metabolism , Adipose Tissue, White/metabolism , fas Receptor/metabolism , fas Receptor/genetics , Humans , Male , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Adipose Tissue, Brown/metabolism , Ion Channels/metabolism , Ion Channels/genetics , Adiposity , Fas Ligand Protein/metabolism , Weight Gain , Female , Mice, Inbred C57BL , Isoproterenol/pharmacology
17.
BMC Pharmacol Toxicol ; 25(1): 36, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943212

ABSTRACT

Chalcones and dihydrochalcones (DHCs) are important bioactive natural products (BNPs) isolated from traditional Chinese medicine. In this study, 13 chalcones were designed with the inspiration of Loureirin, a DHC extracted from Resina Draconis, and synthesized by classical Claisen-Schmidt reactions. Afterwards the reduction reactions were carried out to obtain the corresponding DHCs. Cytotoxicity assay indicated chalcones and DHCs possessed selective cytotoxicity against colorectal cancer (CRC) cells. The preliminary structure-activity relationships (SAR) of these compounds suggested the α, ß-unsaturated ketone of the chalcones were crucial for the anticancer activity. Interestingly, compounds 3d and 4c exhibited selective anticancer activity against CRC cell line HCT116 with IC50s of 8.4 and 17.9 µM but not normal cell. Moreover, 4c could also inhibit the migration and invasion of CRC cells. Mechanism investigations showed 4c could induce cell cycle G2/M arrest by regulating cell cycle-associated proteins and could also up-regulate Fas cell surface death receptor. The virtual docking further pointed out that compounds 3d and 4c could nicely bind to the Fas/FADD death domain complex (ID: 3EZQ). Furthermore, silencing of Fas significantly enhanced the proliferation of CRC cells and attenuated the cytotoxicity induced by 4c. These results suggested 4c exerted its anticancer activity possibly regulating cell cycle and Fas death receptor. In summary, this study investigated the anticancer activity and mechanism of Loureirin analogues in CRC, suggesting these compounds may warrant further investigation as promising anticancer drug candidates for the treatment of CRC.


Subject(s)
Antineoplastic Agents , Chalcones , Colorectal Neoplasms , fas Receptor , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Chalcones/pharmacology , Chalcones/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , fas Receptor/metabolism , Structure-Activity Relationship , HCT116 Cells , Molecular Docking Simulation , Cell Movement/drug effects , Cell Cycle/drug effects , Cell Line, Tumor
18.
Int J Pharm ; 660: 124349, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38885778

ABSTRACT

The clinical application of doxorubicin (DOX) is mainly restricted by its serious side effects, poor drug delivery efficiency, and limited immunogenic death (ICD) effect. To improve DOX-based chemotherapy and ameliorate its adverse effects, we utilized 3LL cell-derived extracellular vesicles to encapsulate DOX and sodium nitroprusside (SNP) to obtain DOX/SNP@CM, which could effectively target the tumor site by harnessing the inherent homologous targeting property of tumor cell membranes. DOX performed its role on chemotherapy, and SNP successfully respond to the intracellular GSH to continuously generate nitric oxide (NO). The in situ-produced NO upregulated the Fas expression on the tumor cell surface, thereby sensitizing the Fas/FasL pathway-mediated tumor cell apoptosis of DOX. Furthermore, NO also boosted the intratumoral infiltration of cytotoxic T cells by promoted ICD effect towards tumor cells. Importantly, the anti-tumor immunity tightly cooperated with Fas/FasL mediated tumor cell apoptosis by NO-mediated manipulation on Fas/FasL interaction, collectively making DOX/SNP@CM exert significant tumor growth inhibition with low-dose DOX. Remarkably, DOX and SNP both are widely used clinical medicines, ensuring DOX/SNP@CM a potential opportunity for future practical applications.


Subject(s)
Antibiotics, Antineoplastic , Apoptosis , Doxorubicin , Extracellular Vesicles , Fas Ligand Protein , Nitroprusside , fas Receptor , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Fas Ligand Protein/metabolism , fas Receptor/metabolism , Animals , Nitroprusside/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Mice , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Nitric Oxide/metabolism , Immunotherapy/methods , Mice, Inbred C57BL , Female , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Humans , Signal Transduction/drug effects , Mice, Inbred BALB C , Drug Delivery Systems/methods
19.
Cell Death Dis ; 15(6): 440, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909035

ABSTRACT

The transmembrane death receptor Fas transduces apoptotic signals upon binding its ligand, FasL. Although Fas is highly expressed in cancer cells, insufficient cell surface Fas expression desensitizes cancer cells to Fas-induced apoptosis. Here, we show that the increase in Fas microaggregate formation on the plasma membrane in response to the inhibition of endocytosis sensitizes cancer cells to Fas-induced apoptosis. We used a clinically accessible Rho-kinase inhibitor, fasudil, that reduces endocytosis dynamics by increasing plasma membrane tension. In combination with exogenous soluble FasL (sFasL), fasudil promoted cancer cell apoptosis, but this collaborative effect was substantially weaker in nonmalignant cells. The combination of sFasL and fasudil prevented glioblastoma cell growth in embryonic stem cell-derived brain organoids and induced tumor regression in a xenograft mouse model. Our results demonstrate that sFasL has strong potential for apoptosis-directed cancer therapy when Fas microaggregate formation is augmented by mechano-inhibition of endocytosis.


Subject(s)
Apoptosis , Endocytosis , Fas Ligand Protein , fas Receptor , Humans , Endocytosis/drug effects , Apoptosis/drug effects , Animals , Fas Ligand Protein/metabolism , fas Receptor/metabolism , Mice , Cell Line, Tumor , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Xenograft Model Antitumor Assays , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/drug therapy
20.
Virchows Arch ; 484(6): 925-937, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38748263

ABSTRACT

High-grade osteosarcoma, a primary malignant bone tumour, is experiencing a global increase in reported incidence with varied prevalence. Despite advances in management, which include surgery and neoadjuvant chemotherapy often an unsatisfactory outcome is found due to poor or heterogeneous response to chemotherapy. Our study delved into chemotherapy responses in osteosarcoma patients and associated molecular expressions, focusing on CD95 receptor (CD95R), interferon (IFN)-γ, catalase, heat-shock protein (Hsp)70, and vascular endothelial growth factor (VEGF). Employing immunohistochemistry and Huvos grading of post-chemo specimens, we analysed formalin-fixed paraffin-embedded (FFPE) osteosarcoma tissue of resected post-chemotherapy specimens from Dr. Soetomo General Academic Hospital in Surabaya, Indonesia (DSGAH), spanning from 2016 to 2020. Results revealed varied responses (poor 40.38%, moderate 48.08%, good 11.54%) and distinct patterns in CD95R, IFN-γ, catalase, Hsp70, and VEGF expression. Significant differences among response groups were observed in CD95R and IFN-γ expression in tumour-infiltrating lymphocytes. The trend of diminishing CD95R expression from poor to good responses, accompanied by an increase in IFN-γ, implied a reduction in the count of viable osteosarcoma cells with the progression of Huvos grading. Catalase expression in osteosarcoma cells was consistently elevated in the poor response group, while Hsp70 expression was highest. VEGF expression in macrophages was significantly higher in the good response group. In conclusion, this study enhances our understanding of immune-chemotherapy interactions in osteosarcoma and identifies potential biomarkers for targeted interventions.


Subject(s)
Bone Neoplasms , Catalase , HSP70 Heat-Shock Proteins , Interferon-gamma , Osteosarcoma , Vascular Endothelial Growth Factor A , fas Receptor , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Osteosarcoma/metabolism , Osteosarcoma/immunology , Humans , Vascular Endothelial Growth Factor A/metabolism , Female , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/immunology , Male , HSP70 Heat-Shock Proteins/metabolism , Catalase/metabolism , Young Adult , Adult , fas Receptor/metabolism , fas Receptor/analysis , Adolescent , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Neoplasm Grading , Child , Treatment Outcome , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL