Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Med ; 3(5): 309-324.e6, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35584653

ABSTRACT

BACKGROUND: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, viral variants with greater transmissibility or immune-evasion properties have arisen, which could jeopardize recently deployed vaccine- and antibody-based countermeasures. METHODS: Here, we evaluated in mice and hamsters the efficacy of a pre-clinical version of the Moderna mRNA vaccine (mRNA-1273) and the Johnson & Johnson recombinant adenoviral-vectored vaccine (Ad26.COV2.S) against the B.1.621 (Mu) variant of SARS-CoV-2, which contains spike mutations T95I, Y144S, Y145N, R346K, E484K, N501Y, D614G, P681H, and D950N. FINDINGS: Immunization of 129S2 and K18-human ACE2 transgenic mice with the mRNA-1273 vaccine protected against weight loss, lung infection, and lung pathology after challenge with the B.1.621 or WA1/2020 N501Y/D614G SARS-CoV-2 strain. Similarly, immunization of 129S2 mice and Syrian hamsters with a high dose of Ad26.COV2.S reduced lung infection after B.1.621 virus challenge. CONCLUSIONS: Thus, immunity induced by the mRNA-1273 or Ad26.COV2.S vaccine can protect against the B.1.621 variant of SARS-CoV-2 in multiple animal models. FUNDING: This study was supported by the NIH (R01 AI157155 and U01 AI151810), NIAID Centers of Excellence for Influenza Research and Response [CEIRR] contracts 75N93021C00014 and 75N93021C00016, and the Collaborative Influenza Vaccine Innovation Centers [CIVIC] contract 75N93019C00051. It was also supported, in part, by the National Institutes of Allergy and Infectious Diseases Center for Research on Influenza Pathogenesis (HHSN272201400008C) and the Japan Program for Infectious Diseases Research and Infrastructure (JP21wm0125002) from the Japan Agency for Medical Research and Development (AMED).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Influenza, Human , mRNA Vaccines , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/pharmacology , Ad26COVS1 , Animals , Antibodies, Neutralizing , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Cricetinae , Humans , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , mRNA Vaccines/immunology , mRNA Vaccines/pharmacology
3.
JCI Insight ; 7(5)2022 03 08.
Article in English | MEDLINE | ID: mdl-35104245

ABSTRACT

Benchmarks for protective immunity from infection or severe disease after SARS-CoV-2 vaccination are still being defined. Here, we characterized virus neutralizing and ELISA antibody levels, cellular immune responses, and viral variants in 4 separate groups: healthy controls (HCs) weeks (early) or months (late) following vaccination in comparison with symptomatic patients with SARS-CoV-2 after partial or full mRNA vaccination. During the period of the study, most symptomatic breakthrough infections were caused by the SARS-CoV-2 Alpha variant. Neutralizing antibody levels in the HCs were sustained over time against the vaccine parent virus but decreased against the Alpha variant, whereas IgG titers and T cell responses against the parent virus and Alpha variant declined over time. Both partially and fully vaccinated patients with symptomatic infections had lower virus neutralizing antibody levels against the parent virus than the HCs, similar IgG antibody titers, and similar virus-specific T cell responses measured by IFN-γ. Compared with HCs, neutralization activity against the Alpha variant was lower in the partially vaccinated infected patients and tended to be lower in the fully vaccinated infected patients. In this cohort of breakthrough infections, parent virus neutralization was the superior predictor of breakthrough infections with the Alpha variant of SARS-CoV-2.


Subject(s)
Adaptive Immunity , Antibodies, Viral/immunology , COVID-19 Vaccines/pharmacology , COVID-19/virology , SARS-CoV-2/immunology , Vaccination/methods , Vaccines, Synthetic/pharmacology , mRNA Vaccines/pharmacology , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pandemics , Population Surveillance , Retrospective Studies , United States/epidemiology , Young Adult
5.
Curr Top Microbiol Immunol ; 440: 1-30, 2022.
Article in English | MEDLINE | ID: mdl-33591423

ABSTRACT

In the past 20 years, the mRNA vaccine technology has evolved from the first proof of concept to the first licensed vaccine against emerging pandemics such as SARS-CoV-2. Two mRNA vaccines targeting SARS-CoV-2 have received emergency use authorization by US FDA, conditional marketing authorization by EMA, as well as multiple additional national regulatory authorities. The simple composition of an mRNA encoding the antigen formulated in a lipid nanoparticle enables a fast adaptation to new emerging pathogens. This can speed up vaccine development in pandemics from antigen and sequence selection to clinical trial to only a few months. mRNA vaccines are well tolerated and efficacious in animal models for multiple pathogens and will further contribute to the development of vaccines for other unaddressed diseases. Here, we give an overview of the mRNA vaccine design and factors for further optimization of this new promising technology and discuss current knowledge on the mode of action of mRNA vaccines interacting with the innate and adaptive immune system.


Subject(s)
Vaccine Development , mRNA Vaccines , Animals , COVID-19/prevention & control , Models, Animal , mRNA Vaccines/pharmacology , COVID-19 Vaccines
6.
Signal Transduct Target Ther ; 6(1): 438, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34952914

ABSTRACT

Messenger RNA (mRNA) vaccine technology has shown its power in preventing the ongoing COVID-19 pandemic. Two mRNA vaccines targeting the full-length S protein of SARS-CoV-2 have been authorized for emergency use. Recently, we have developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor-binding domain (RBD) of SARS-CoV-2 (termed ARCoV), which confers complete protection in mouse model. Herein, we further characterized the protection efficacy of ARCoV in nonhuman primates and the long-term stability under normal refrigerator temperature. Intramuscular immunization of two doses of ARCoV elicited robust neutralizing antibodies as well as cellular response against SARS-CoV-2 in cynomolgus macaques. More importantly, ARCoV vaccination in macaques significantly protected animals from acute lung lesions caused by SARS-CoV-2, and viral replication in lungs and secretion in nasal swabs were completely cleared in all animals immunized with low or high doses of ARCoV. No evidence of antibody-dependent enhancement of infection was observed throughout the study. Finally, extensive stability assays showed that ARCoV can be stored at 2-8 °C for at least 6 months without decrease of immunogenicity. All these promising results strongly support the ongoing clinical trial.


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/immunology , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , mRNA Vaccines/pharmacology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Humans , Macaca fascicularis , Vero Cells , mRNA Vaccines/immunology
7.
Theranostics ; 11(20): 9775-9790, 2021.
Article in English | MEDLINE | ID: mdl-34815785

ABSTRACT

Rationale: Diffuse glioma patients have high mortality and recurrence despite multimodal therapies. This study aims to identify the potential tumor antigens for mRNA vaccines and subtypes suitable for the immunotherapy of patients with diffuse glioma. Methods: Gene expression profiles and corresponding clinical information were obtained from the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) databases. Genetic alterations were extracted from cBioPortal. Differential gene analysis, survival analysis, correlation analysis, consensus clustering analysis, and immune cell infiltration analysis were conducted based on the various databases. Finally, the hub genes, the modules related to tumor antigens, and the immune subtypes were identified using WGCNA method. Results: Three over-expressed, amplified, and mutated tumor antigens, including KDR, COL1A2, and SAMD9, were associated with clinical outcomes. The expression of the three genes had a positive correlation with the abundance of antigen-presenting cells (APCs) and APC marker expression. Subsequently, three immune subtypes (Ims1, Ims2, and Ims3) were distinguished in the TCGA cohort, which exhibited distinct molecular, cellular, and clinical characteristics consistent with the CGGA cohort. Diffuse gliomas with subtype Ims1 were more malignant with immunosuppressive phenotypes and more associated with poor prognosis than the other two subtypes. The three antigens and the immune checkpoints were differentially expressed among the three immune subtypes. Finally, functional enrichment analysis of the genes related to tumor antigens and immune subtypes suggested that they are enriched in many immune-associated processes. Conclusions: KDR, COL1A2, and SAMD9 are potential antigens for developing mRNA vaccines against diffuse glioma. The results suggest that immunotherapy targeting these three antigens is more suitable for patients with subtype Ims1. This study provides insights into immunotherapy for diffuse glioma.


Subject(s)
Glioma/immunology , mRNA Vaccines/pharmacology , Antigens, Neoplasm/immunology , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Cancer Vaccines/immunology , China , Collagen Type I/genetics , Databases, Genetic , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Glioma/genetics , Glioma/therapy , Humans , Immunotherapy , Intracellular Signaling Peptides and Proteins/genetics , Prognosis , RNA, Messenger/genetics , Survival Analysis , Transcriptome/genetics , Tumor Microenvironment/immunology , Vascular Endothelial Growth Factor Receptor-2/genetics , mRNA Vaccines/genetics
8.
Mol Ther ; 29(9): 2769-2781, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33992803

ABSTRACT

It is well established that memory CD8 T cells protect susceptible strains of mice from mousepox, a lethal viral disease caused by ectromelia virus (ECTV), the murine counterpart to human variola virus. While mRNA vaccines induce protective antibody (Ab) responses, it is unknown whether they also induce protective memory CD8 T cells. We now show that immunization with different doses of unmodified or N(1)-methylpseudouridine-modified mRNA (modified mRNA) in lipid nanoparticles (LNP) encoding the ECTV gene EVM158 induced similarly strong CD8 T cell responses to the epitope TSYKFESV, albeit unmodified mRNA-LNP had adverse effects at the inoculation site. A single immunization with 10 µg modified mRNA-LNP protected most susceptible mice from mousepox, and booster vaccination increased the memory CD8 T cell pool, providing full protection. Moreover, modified mRNA-LNP encoding TSYKFESV appended to green fluorescent protein (GFP) protected against wild-type ECTV infection while lymphocytic choriomeningitis virus glycoprotein (GP) modified mRNA-LNP protected against ECTV expressing GP epitopes. Thus, modified mRNA-LNP can be used to create protective CD8 T cell-based vaccines against viral infections.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Ectromelia virus/immunology , Ectromelia, Infectious/prevention & control , Viral Proteins/genetics , mRNA Vaccines/administration & dosage , Animals , Drug Compounding , Ectromelia, Infectious/immunology , Immunization, Secondary , Immunologic Memory , Liposomes , Male , Mice , Nanoparticles , Peptides/chemistry , Peptides/genetics , Peptides/immunology , Pseudouridine/analogs & derivatives , Pseudouridine/chemistry , Viral Proteins/chemistry , Viral Proteins/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/chemistry , Viral Vaccines/pharmacology , mRNA Vaccines/chemistry , mRNA Vaccines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...