Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.363
Filter
1.
Toxicol Ind Health ; 40(1-2): 23-32, 2024.
Article in English | MEDLINE | ID: mdl-37921628

ABSTRACT

This toxicology study was conducted to assess the impact of formaldehyde, a common air pollutant found in Chinese gymnasiums, on the brain function of athletes. In this research, a total of 24 Balb/c male mice of SPF-grade were divided into four groups, each consisting of six mice. The mice were exposed to formaldehyde at different concentrations, including 0 mg/m3, 0.5 mg/m3, 3.0 mg/m3, and 3.0 mg/m3 in combination with an injection of L-NMMA (NG-monomethyl-L-arginine), which is a nitric oxide synthase antagonist. Following a one-week test period (8 h per day, over 7 days), measurements of biomarkers related to the nitric oxide (NO)/cGMP-cAMP signaling pathway were carried out on the experimental animals post-treatment. The study found that: (1) Exposure to formaldehyde can lead to brain cell apoptosis and neurotoxicity; (2) Additionally, formaldehyde exposure was found to alter the biomarkers of the NO/cGMP-cAMP signaling pathway, with some changes being statistically significant (p < 0.05 or p < 0.01); (3) The use of L-NMMA, an antagonist of the NO/cGMP-cAMP signaling pathway, was found to prevent these biomarker changes and had a protective effect on brain cells. The study suggests that the negative impact of formaldehyde on the brain function of mice is linked to the regulation of the NO/cGMP-cAMP signaling pathway.


Subject(s)
Cyclic GMP , Nitric Oxide , Respiratory Hypersensitivity , Humans , Male , Mice , Animals , omega-N-Methylarginine/pharmacology , Nitric Oxide/metabolism , Mice, Inbred BALB C , Cyclic GMP/pharmacology , Formaldehyde/toxicity , Signal Transduction , Brain/metabolism , Biomarkers
2.
Eur J Pharmacol ; 960: 176111, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37863413

ABSTRACT

Myopia is one of the most prevalent eye diseases that seriously threaten the eyesight of children and adolescents worldwide. However, the pathogenesis is still unclear, and effective drugs are still scarce. In the present study, the guinea pigs were randomly divided into a normal control (NC) group, a lens-induced myopia (LIM) group, a NOS inhibitor (L-NMMA) injection group, and a NOS inhibitor solvent phosphate-buffered saline (PBS) group and the animals received relevant treatments. After 2- and 4-week different treatments, we noted that the refraction and choroidal thickness in the LIM group decreased compared with the NC group, whereas the ocular axial length increased significantly, and the choroid showed a fibrotic trend. The expression of NOS1, NOS3, TGF-ß1, COLI, and α-SMA at gene and protein levels was increased significantly in the choroid (all P < 0.05). After intravitreal injection of NOS inhibitor L-NMMA, we found that compared with the LIM group, the refraction and the choroidal thickness significantly increased, whereas the axial length reduced significantly, accompanied by an increase of choroidal thickness and an improvement of choroidal fibrosis. The expression levels of choroidal NOS1, NOS3, TGF-ß, COLI, and α-SMA were significantly reduced (all P < 0.05). In conclusion, the trend of choroidal fibrosis in LIM guinea pigs is positively correlated with the increase in axial length. The NOS inhibitor L-NMMA can alleviate the process of choroidal fibrosis in myopic guinea pigs by inhibiting NO signaling pathway.


Subject(s)
Myopia , Nitric Oxide , Child , Guinea Pigs , Animals , Humans , Adolescent , omega-N-Methylarginine/pharmacology , Nitric Oxide/pharmacology , Myopia/chemically induced , Myopia/drug therapy , Myopia/metabolism , Choroid/metabolism , Choroid/pathology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Signal Transduction , Nitric Oxide Synthase
3.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R759-R768, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37842740

ABSTRACT

Animal data indicate that insulin triggers a robust nitric oxide synthase (NOS)-mediated dilation in cerebral arteries similar to the peripheral tissue vasodilation observed in healthy adults. Insulin's role in regulating cerebral blood flow (CBF) in humans remains unclear but may be important for understanding the links between insulin resistance, diminished CBF, and poor brain health outcomes. We tested the hypothesis that an oral glucose challenge (oral glucose tolerance test, OGTT), which increases systemic insulin and glucose, would acutely increase CBF in healthy adults due to NOS-mediated vasodilation, and that changes in CBF would be greater in anterior regions where NOS expression or activity may be greater. In a randomized, single-blind approach, 18 young healthy adults (24 ± 5 yr) underwent magnetic resonance imaging (MRI) with a placebo before and after an OGTT (75 g glucose), and 11 of these adults also completed an NG-monomethyl-l-arginine (l-NMMA) visit. Four-dimensional (4-D) flow MRI quantified macrovascular CBF and arterial spin labeling (ASL) quantified microvascular perfusion. Subjects completed baseline imaging with a placebo (or l-NMMA), then consumed an OGTT followed by MRI scans and blood sampling every 10-15 min for 90 min. Contrary to our hypothesis, total CBF (P = 0.17) and global perfusion (P > 0.05) did not change at any time point up to 60 min after the OGTT, and no regional changes were detected. l-NMMA did not mediate any effect of OGTT on CBF. These data suggest that insulin-glucose challenge does not acutely alter CBF in healthy adults.


Subject(s)
Enzyme Inhibitors , Nitric Oxide Synthase , Adult , Animals , Humans , omega-N-Methylarginine/pharmacology , Glucose Tolerance Test , Enzyme Inhibitors/pharmacology , Single-Blind Method , Cerebrovascular Circulation , Glucose/metabolism , Insulin/pharmacology
4.
Microb Pathog ; 183: 106294, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567327

ABSTRACT

The CXCL8/CXCR1 axis in conjoint with the free radicals and anti-oxidants dictates the severity of inflammation caused by the bacteria, Staphylococcus aureus. S.aureus mediated inflammatory processes is regulated by NF-κB and its product, iNOS. The objective of this study was to examine the effects of inhibition of NF-κB and iNOS on CXCL8/CXCR1, alteration in M1/M2 polarization of macrophages and associated inflammatory responses during S.aureus infection in vitro. For this, the murine peritoneal macrophages were pretreated with NF-κB inhibitor, Pyrrolidine dithiocarbamate (PDTC) and iNOS inhibitor, L-N-monomethyl arginine (LNMMA), either alone or in combination, followed by time-dependent S.aureus infection. The chemotactic migrations of macrophages were determined by the agarose spot assay. The iNOS, NF-κB and CXCR1 protein expressions were evaluated. The ROS level (superoxide, H2O2, NO) and antioxidant activities (SOD, CAT, GSH, arginase) were measured. The intra-macrophage phagoctyic activity had been analyzed by confocal microscopy. S.aureus activated macrophages showed increased iNOS expression that symbolizes M1 characterization of macrophages. The results suggest that the combination treatment of LNMMA + PDTC was effective in diminution of CXCL8 production and CXCR1 expression through downregulation of NF-κB and iNOS signaling pathway. Consequently, there was decrement in macrophage migration, reduced ROS generation, elevated antioxidant enzyme activity as well as bacterial phagocytosis at 90 min post bacterial infection. The increased arginase activity further proves the switch from pro-inflammatory M1 to anti-inflammatory M2 polarization of macrophages. Concludingly, the combination of PDTC + LNMMA could resolve S.aureus mediated inflammation through mitigation of CXCL8/CXCR1 pathway switching from M1 to M2 polarization.


Subject(s)
Macrophages, Peritoneal , Staphylococcal Infections , Mice , Animals , Macrophages, Peritoneal/microbiology , Staphylococcus aureus/metabolism , omega-N-Methylarginine/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Hydrogen Peroxide/metabolism , Arginase/metabolism , Cytokines/metabolism , Staphylococcal Infections/microbiology , Receptors, Interleukin-8A/metabolism , Inflammation/metabolism
5.
Nutrients ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447307

ABSTRACT

Changes in serum concentration of methylarginines and amino acids after exercise are well documented, whereas the effects of exercise applied together with fasting are still debated and not thoroughly studied. Thus, we hypothesised that alterations in methylarginines such as ADMA, SDMA and L-NMMA might be responsible for decreased exercise performance after 8 days of fasting. Additionally, we propose that conditions in which the human body is exposed to prolonged fasting for more than a week elicit a distinctly different response to exercise than after overnight fasting. A group of 10 healthy men with previous fasting experience participated in the study. The exercise test was performed until exhaustion with a gradually increasing intensity before and after the 8-day fast. Blood samples were collected before and immediately after exercise. ADMA, SDMA, L-NMMA, dimethylamine and amino acids were analysed in serum samples by ID-LC-MS/MS. SDMA, L-NMMA and dimethylamine significantly decreased after 8 days of fasting, whereas ADMA did not change. BCAA, Phe, alanine and some other amino acids increased after fasting. Exercise-induced changes in amino acids were distinct after an 8-day fast compared to overnight fasting. A decrease in physical performance accompanied all of these alterations. In conclusion, our data indicate that neither methyl-arginine changes nor the Trp/BCAA ratio can explain exercise-induced fatigue after fasting. However, the observed decrease in hArg concentration suggests the limited synthesis of creatine, possibly contributing to reduced physical performance.


Subject(s)
Amino Acids , Tandem Mass Spectrometry , Male , Humans , omega-N-Methylarginine , Chromatography, Liquid , Arginine/metabolism
6.
Atherosclerosis ; 384: 117172, 2023 11.
Article in English | MEDLINE | ID: mdl-37400308

ABSTRACT

BACKGROUND AND AIMS: To understand pathophysiological mechanisms underlying migraine as a cardiovascular risk factor, we studied neuropeptide action and endothelial function as measures of peripheral microvascular function in middle-aged women with or without migraine. METHODS: We included women with the endocrine disorder polycystic ovary syndrome (PCOS), a population with supposed elevated cardiovascular risk, with and without comorbid migraine. In 26 women without and 23 women with migraine in the interictal phase (mean age 50.8 ± 2.9 years) local thermal hyperemia (LTH) of the skin of the volar forearm was measured cross-sectionally under control conditions, after inhibition of neuropeptide release by 5% lidocaine/prilocaine (EMLA) cream application, and after inhibition of nitric oxide formation by iontophoresis of NG-monomethyl-l-arginine (L-NMMA). Hereafter, changes in the natural logarithm of the reactive hyperemia index (lnRHI) and augmentation index (AI) during reperfusion after occlusion-derived ischemia were measured. RESULTS: While mean values under control conditions and L-NMMA conditions were similar, migraine patients had a significantly higher mean area of the curve (AUC) of the total LTH response after EMLA application than those without (86.7 ± 26.5% versus 67.9 ± 24.2%; p = 0.014). This was also reflected by a higher median AUC of the plateau phase under similar conditions in women with migraine compared to those without (83.2% (IQR[73.2-109.5]) versus 73.2% (IQR[54.3-92.0]); p = 0.039). Mean changes in lnRHI and AI scores were similar in both groups. CONCLUSIONS: In PCOS patients with migraine, neuropeptide action was lower compared with those without migraine. While larger studies are warranted, these findings provide a potential mechanism supporting previous findings that migraine may be independent from traditional risk factors, including atherosclerosis.


Subject(s)
Migraine Disorders , Polycystic Ovary Syndrome , Middle Aged , Humans , Female , omega-N-Methylarginine , Polycystic Ovary Syndrome/complications , Vasodilation , Risk Factors
7.
J Appl Physiol (1985) ; 135(1): 94-108, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37199780

ABSTRACT

Ninety-million Americans suffer metabolic syndrome (MetSyn), increasing the risk of diabetes and poor brain outcomes, including neuropathology linked to lower cerebral blood flow (CBF), predominantly in anterior regions. We tested the hypothesis that total and regional CBF is lower in MetSyn more so in the anterior brain and explored three potential mechanisms. Thirty-four controls (25 ± 5 yr) and 19 MetSyn (30 ± 9 yr), with no history of cardiovascular disease/medications, underwent four-dimensional flow magnetic resonance imaging (MRI) to quantify macrovascular CBF, whereas arterial spin labeling quantified brain perfusion in a subset (n = 38/53). Contributions of cyclooxygenase (COX; n = 14), nitric oxide synthase (NOS, n = 17), or endothelin receptor A signaling (n = 13) were tested with indomethacin, NG-monomethyl-L-arginine (L-NMMA), and Ambrisentan, respectively. Total CBF was 20 ± 16% lower in MetSyn (725 ± 116 vs. 582 ± 119 mL/min, P < 0.001). Anterior and posterior brain regions were 17 ± 18% and 30 ± 24% lower in MetSyn; reductions were not different between regions (P = 0.112). Global perfusion was 16 ± 14% lower in MetSyn (44 ± 7 vs. 36 ± 5 mL/100 g/min, P = 0.002) and regionally in frontal, occipital, parietal, and temporal lobes (range 15-22%). The decrease in CBF with L-NMMA (P = 0.004) was not different between groups (P = 0.244, n = 14, 3), and Ambrisentan had no effect on either group (P = 0.165, n = 9, 4). Interestingly, indomethacin reduced CBF more in Controls in the anterior brain (P = 0.041), but CBF decrease in posterior was not different between groups (P = 0.151, n = 8, 6). These data indicate that adults with MetSyn exhibit substantially reduced brain perfusion without regional differences. Moreover, this reduction is not due to loss of NOS or gain of ET-1 signaling but rather a loss of COX vasodilation.NEW & NOTEWORTHY We tested the impact of insulin resistance (IR) on resting cerebral blood flow (CBF) in adults with metabolic syndrome (MetSyn). Using MRI and research pharmaceuticals to study the role of NOS, ET-1, or COX signaling, we found that adults with MetSyn exhibit substantially lower CBF that is not explained by changes in NOS or ET-1 signaling. Interestingly, adults with MetSyn show a loss of COX-mediated vasodilation in the anterior but not posterior circulation.


Subject(s)
Metabolic Syndrome , Humans , Young Adult , omega-N-Methylarginine , Indomethacin , Cerebrovascular Circulation/physiology
8.
Tumour Virus Res ; 15: 200259, 2023 06.
Article in English | MEDLINE | ID: mdl-36863485

ABSTRACT

Kaposi's Sarcoma (KS) is a heterogenous, multifocal vascular malignancy caused by the human herpesvirus 8 (HHV8), also known as Kaposi's Sarcoma-Associated Herpesvirus (KSHV). Here, we show that KS lesions express iNOS/NOS2 broadly throughout KS lesions, with enrichment in LANA positive spindle cells. The iNOS byproduct 3-nitrotyrosine is also enriched in LANA positive tumor cells and colocalizes with a fraction of LANA-nuclear bodies. We show that iNOS is highly expressed in the L1T3/mSLK tumor model of KS. iNOS expression correlated with KSHV lytic cycle gene expression, which was elevated in late-stage tumors (>4 weeks) but to a lesser degree in early stage (1 week) xenografts. Further, we show that L1T3/mSLK tumor growth is sensitive to an inhibitor of nitric oxide, L-NMMA. L-NMMA treatment reduced KSHV gene expression and perturbed cellular gene pathways relating to oxidative phosphorylation and mitochondrial dysfunction. These finding suggest that iNOS is expressed in KSHV infected endothelial-transformed tumor cells in KS, that iNOS expression depends on tumor microenvironment stress conditions, and that iNOS enzymatic activity contributes to KS tumor growth.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Animals , Humans , Mice , Antigens, Viral/genetics , Herpesvirus 8, Human/genetics , omega-N-Methylarginine , Sarcoma, Kaposi/genetics , Tumor Microenvironment
9.
Biochem Med (Zagreb) ; 33(1): 010701, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36627978

ABSTRACT

Introduction: This study determines and compares the concentrations of arginine and methylated arginine products ((asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), n-monomethyl-1-arginine (L-NMMA) and homoarginine (HA)) for assessment of their association with disease severity in serum samples of COVID-19 patients. Materials and methods: Serum arginine and methylated arginine products of 57 mild-moderate and 29 severe (N = 86) COVID-19 patients and 21 controls were determined by tandem mass spectrometry. Moreover, the concentrations of some of the routine clinical laboratory parameters -neutrophil lymphocyte ratio (NLR), C-reactive protein, ferritin, D-dimer, and fibrinogen measured during COVID-19 follow-up were also taken into consideration and compared with the concentrations of arginine and methylated arginine products. Results: Serum ADMA, SDMA and L-NMMA were found to be significantly higher in severe COVID-19 patients, than in both mild-moderate patients and the control group (P < 0.001 for each). In addition, multiple logistic regression analysis indicated L-NMMA (cut-off =120 nmol/L OR = 34, 95% confidence interval (CI) = 3.5-302.0, P= 0.002), CRP (cut-off = 32 mg/L, OR = 37, 95% CI = 4.8-287.0, P < 0.001), and NLR (cut-off = 7, OR = 22, 95% CI = 1.4-335.0, P = 0.020) as independent risk factors for identification of severe patients. Conclusions: The concentration of methylated arginine metabolites are significantly altered in COVID-19 disease. The results of this study indicate a significant correlation between the severity of COVID-19 disease and concentrations of CRP, NLR and L-NMMA.


Subject(s)
Arginine , COVID-19 , Humans , Arginine/blood , COVID-19/blood , COVID-19/diagnosis , Disease Progression , omega-N-Methylarginine
10.
Nutr Metab Cardiovasc Dis ; 33(3): 602-609, 2023 03.
Article in English | MEDLINE | ID: mdl-36710115

ABSTRACT

BACKGROUND AND AIMS: Smoking causes many diseases such as cardiovascular, lung diseases, stroke and premature aging. However, the role of smoking in the pathogenesis of these diseases is unclear. Increasing evidence suggests that methylarginine pathway metabolites and α-klotho may be strong markers for pathologies such as premature aging, endothelial dysfunction, and oxidant damage. Therefore, the study aimed to measure the serum levels of arginine, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), N-monomethyl-l-arginine (L-NMMA), and α-klotho levels in smokers. METHODS AND RESULTS: This case-control analytical study included 65 smokers and 71 non-smokers. Sociodemographic characteristics, routine biochemistry parameters, Framingham risk scores and Fagerström Nicotine Dependence Test (FTND) were recorded. Serum methylarginine and α-klotho levels were analyzed by tandem mass spectrometry and enzyme-linked immunosorbent assay (ELISA), respectively. Serum ADMA (p < 0.001), L-NMMA (p = 0.024), SDMA (p < 0.001) levels of smokers were higher than non-smokers, and serum α-klotho (p < 0.001) and arginine levels (p < 0.001) were lower. There was a positive correlation between serum ADMA levels with FNDT, age and pack/year in smokers, while there was a negative correlation between klotho levels and age. A positive correlation was found between serum ADMA levels, Framingham risk score and age in non-smokers. CONCLUSION: Smoking is related to premature aging and is a strong risk factor for various diseases such as cardiovascular, inflammatory, and renal diseases. Elevated serum methylarginine and decreased serum klotho levels were found in smokers. Therefore, our findings suggest that smoking may be involved in the pathogenesis of these diseases by affecting α-klotho and methylarginine-related pathways.


Subject(s)
Aging, Premature , Cardiovascular Diseases , Cardiovascular System , Cigarette Smoking , Humans , Arginine , omega-N-Methylarginine
11.
Amino Acids ; 55(2): 215-233, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36454288

ABSTRACT

Protein arginine N-methyltransferases (PRMTs) have emerged as important actors in the eukaryotic stress response with implications in human disease, aging, and cell signaling. Intracellular free methylarginines contribute to cellular stress through their interaction with nitric oxide synthase (NOS). The arginine-dependent production of nitric oxide (NO), which is strongly inhibited by methylarginines, serves as a protective small molecule against oxidative stress in eukaryotic cells. NO signaling is highly conserved between higher and lower eukaryotes, although a canonical NOS homologue has yet to be identified in yeast. Since stress signaling pathways are well conserved among eukaryotes, yeast is an ideal model organism to study the implications of PRMTs and methylarginines during stress. We sought to explore the roles and fates of methylarginines in Saccharomyces cerevisiae. We starved methyltransferase-, autophagy-, and permease-related yeast knockouts by incubating them in water and monitored methylarginine production. We found that under starvation, methylarginines are expelled from yeast cells. We found that autophagy-deficient cells have an impaired ability to efflux methylarginines, which suggests that methylarginine-containing proteins are degraded via autophagy. For the first time, we determine that yeast take up methylarginines less readily than arginine, and we show that methylarginines impact yeast NO production. This study reveals that yeast circumvent a potential methylarginine toxicity by expelling them after autophagic degradation of arginine-modified proteins.


Subject(s)
Nitric Oxide , Saccharomyces cerevisiae , Humans , omega-N-Methylarginine/metabolism , omega-N-Methylarginine/pharmacology , Saccharomyces cerevisiae/metabolism , Nitric Oxide/metabolism , Arginine/metabolism , Nitric Oxide Synthase/metabolism , Nutrients
12.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5900-5907, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36472009

ABSTRACT

This study was designed to determine the inhibitory effect of astragaloside Ⅳ(AS-Ⅳ), a principal bioactive component extracted from the Chinese medicinal Astragali Radix, on the inflammatory response of vascular endothelial cells induced by angiotensin Ⅱ(Ang Ⅱ), the most major pathogenic factor for cardiovascular diseases, and to clarify the role of calcium(Ca~(2+))/phosphatidylinosi-tol-3-kinase(PI3K)/protein kinase B(Akt)/endothelial nitric oxide synthase(eNOS)/nitric oxide(NO) pathway in the process. To be specific, human umbilical vein endothelial cells(HUVECs) were cultured in the presence of AS-Ⅳ with or without the specific inhibitor of NO synthase(NG-monomethyl-L-arginine, L-NMMA), inhibitor of PI3K/Akt signaling pathway(LY294002), or Ca~(2+)-chelating agent(ethylene glycol tetraacetic acid, EGTA) prior to Ang Ⅱ stimulation. The inhibitory effect of AS-Ⅳ on Ang Ⅱ-induced inflammatory response and the involved mechanism was determined with enzyme-linked immunosorbent assay(ELISA), cell-based ELISA assay, Western blot, and monocyte adhesion assay which determined the fluorescently labeled human monocytic cell line(THP-1) adhered to Ang Ⅱ-stimulated endothelial cells. AS-Ⅳ increased the production of NO by HUVECs in a dose-and time-dependent manner(P<0.05) and raised the level of phosphorylated eNOS(P<0.05). The above AS-Ⅳ-induced changes were abolished by pretreatment with L-NMMA, LY294002, or EGTA. Compared with the control group, Ang Ⅱ obviously enhanced the production and release of cytokines(tumor necrosis factor-α, interleukin-6), chemokines(monocyte chemoattractant protein-1) and adhesion molecules(intercellular adhesion molecule-1, vascular cellular adhesion molecule-1), and the number of monocytes adhered to HUVECs(P<0.05), which were accompanied by the enhanced levels of phosphorylated inhibitor of nuclear factor-κBα protein and activities of nuclear factor-κB(NF-κB)(P<0.05). This study also demonstrated that Ang Ⅱ-induced inflammatory response was inhibited by pretreatment with AS-Ⅳ(P<0.05). In addition, the inhibitory effect of AS-Ⅳ was abrogated by pretreatment with L-NMMA, LY294002, or EGTA(P<0.05). This study provides a direct link between AS-Ⅳ and Ca~(2+)/PI3K/Akt/eNOS/NO pathway in AS-Ⅳ-mediated anti-inflammatory actions in endothelial cells exposed to Ang Ⅱ. The results indicate that AS-Ⅳ attenuates endothelial cell-mediated inflammatory response induced by Ang Ⅱ via the activation of Ca~(2+)/PI3K/Akt/eNOS/NO signaling pathway.


Subject(s)
Angiotensin II , Proto-Oncogene Proteins c-akt , Humans , Angiotensin II/metabolism , Angiotensin II/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , omega-N-Methylarginine/metabolism , omega-N-Methylarginine/pharmacology , Egtazic Acid/metabolism , Egtazic Acid/pharmacology , Human Umbilical Vein Endothelial Cells , NF-kappa B/genetics , NF-kappa B/metabolism , Nitric Oxide/metabolism , Cells, Cultured
13.
World J Gastroenterol ; 28(29): 3854-3868, 2022 Aug 07.
Article in English | MEDLINE | ID: mdl-36157548

ABSTRACT

BACKGROUND: The mechanisms underlying gastrointestinal (GI) dysmotility with ulcerative colitis (UC) have not been fully elucidated. The enteric nervous system (ENS) plays an essential role in the GI motility. As a vital neurotransmitter in the ENS, the gas neurotransmitter nitric oxide (NO) may impact the colonic motility. In this study, dextran sulfate sodium (DSS)-induced UC rat model was used for investigating the effects of NO by examining the effects of rate-limiting enzyme nitric oxide synthase (NOS) changes on the colonic motility as well as the role of the ENS in the colonic motility during UC. AIM: To reveal the relationship between the effects of NOS expression changes in NOS-containing nitrergic neurons and the colonic motility in a rat UC model. METHODS: Male rats (n = 8/each group) were randomly divided into a control (CG), a UC group (EG1), a UC + thrombin derived polypeptide 508 trifluoroacetic acid (TP508TFA; an NOS agonist) group (EG2), and a UC + NG-monomethyl-L-arginine monoacetate (L-NMMA; an NOS inhibitor) group (EG3). UC was induced by administering 5.5% DSS in drinking water without any other treatment (EG1), while the EG2 and EG3 were gavaged with TP508 TFA and L-NMMA, respectively. The disease activity index (DAI) and histological assessment were recorded for each group, whereas the changes in the proportion of colonic nitrergic neurons were counted using immunofluorescence histochemical staining, Western blot, and enzyme linked immunosorbent assay, respectively. In addition, the contractile tension changes in the circular and longitudinal muscles of the rat colon were investigated in vitro using an organ bath system. RESULTS: The proportion of NOS-positive neurons within the colonic myenteric plexus (MP), the relative expression of NOS, and the NOS concentration in serum and colonic tissues were significantly elevated in EG1, EG2, and EG3 compared with CG rats. In UC rats, stimulation with agonists and inhibitors led to variable degrees of increase or decrease for each indicator in the EG2 and EG3. When the rats in EGs developed UC, the mean contraction tension of the colonic smooth muscle detected in vitro was higher in the EG1, EG2, and EG3 than in the CG group. Compared with the EG1, the contraction amplitude and mean contraction tension of the circular and longitudinal muscles of the colon in the EG2 and EG3 were enhanced and attenuated, respectively. Thus, during UC, regulation of the expression of NOS within the MP improved the intestinal motility, thereby favoring the recovery of intestinal functions. CONCLUSION: In UC rats, an increased number of nitrergic neurons in the colonic MP leads to the attenuation of colonic motor function. To intervene NOS activity might modulate the function of nitrergic neurons in the colonic MP and prevent colonic motor dysfunction. These results might provide clues for a novel approach to alleviate diarrhea symptoms of UC patients.


Subject(s)
Colitis, Ulcerative , Drinking Water , Nitrergic Neurons , Animals , Male , Rats , Colitis, Ulcerative/pathology , Colon/pathology , Dextran Sulfate/toxicity , Gastrointestinal Motility , Nitrergic Neurons/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , omega-N-Methylarginine/metabolism , omega-N-Methylarginine/pharmacology , Thrombin/metabolism , Trifluoroacetic Acid/metabolism , Trifluoroacetic Acid/pharmacology
14.
PLoS One ; 17(9): e0274487, 2022.
Article in English | MEDLINE | ID: mdl-36149900

ABSTRACT

The endothelium maintains and regulates vascular homeostasis mainly by balancing interplay between vasorelaxation and vasoconstriction via regulating Nitric Oxide (NO) availability. Endothelial nitric oxide synthase (eNOS) is one of three NOS isoforms that catalyses the synthesis of NO to regulate endothelial function. However, eNOS's role in the regulation of endothelial function, such as cell proliferation and migration remain unclear. To gain a better understanding, we genetically knocked down eNOS in cultured endothelial cells using sieNOS and evaluated cell proliferation, migration and also tube forming potential in vitro. To our surprise, loss of eNOS significantly induced endothelial cell proliferation, which was associated with significant downregulation of both cell cycle inhibitor p21 and cell proliferation antigen Ki-67. Knockdown of eNOS induced cell migration but inhibited formation of tube-like structures in vitro. Mechanistically, loss of eNOS was associated with activation of MAPK/ERK and inhibition of PI3-K/AKT signaling pathway. On the contrary, pharmacologic inhibition of eNOS by inhibitors L-NAME or L-NMMA, inhibited cell proliferation. Genetic and pharmacologic inhibition of eNOS, both promoted endothelial cell migration but inhibited tube-forming potential. Our findings confirm that eNOS regulate endothelial function by inversely controlling endothelial cell proliferation and migration, and by directly regulating its tube-forming potential. Differential results obtained following pharmacologic versus genetic inhibition of eNOS indicates a more complex mechanism behind eNOS regulation and activity in endothelial cells, warranting further investigation.


Subject(s)
Endothelial Cells , Nitric Oxide Synthase Type III , Cells, Cultured , Endothelial Cells/metabolism , Endothelium/metabolism , Ki-67 Antigen/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , omega-N-Methylarginine/metabolism
15.
Clin Hemorheol Microcirc ; 82(1): 1-12, 2022.
Article in English | MEDLINE | ID: mdl-35599472

ABSTRACT

BACKGROUND: Exercise-induced impairment of blood fluidity is considered to be associated with thrombosis development. However, the effects of L-arginine on blood fluidity after exercise remain unclear. OBJECTIVE: We investigated the mechanisms of impaired blood fluidity after high-intensity exercise, and examined whether L-arginine improves exercise-induced blood fluidity impairment in vitro. METHODS: Ten healthy male participants performed 15 minutes of ergometer exercise at 70% of their peak oxygen uptake levels. Blood samples were obtained before and after exercise. L-arginine and NG-monomethyl-L-arginine acetate (L-NMMA)-a nitric oxide (NO) synthase inhibitor-were added to the post-exercise blood samples. Using Kikuchi's microchannel method, we measured the blood passage time, percentage of obstructed microchannels, and the number of adherent white blood cells (WBCs) on the microchannel terrace. RESULTS: Exercise increased the hematocrit levels. The blood passage times, percentage of obstructed microchannels, and the number of adherent WBCs on the microchannel terrace increased after exercise; however, they decreased in a dose-dependent manner after the addition of L-arginine. L-NMMA inhibited the L-arginine-induced decrease in blood passage time. CONCLUSIONS: High-intensity exercise impairs blood fluidity by inducing hemoconcentration along with increasing platelet aggregation and WBC adhesion. The L-arginine-NO pathway improves blood fluidity impairment after high-intensity exercise in vitro.


Subject(s)
Arginine , Nitric Oxide , Humans , Male , omega-N-Methylarginine/pharmacology , Arginine/pharmacology , Exercise , Leukocytes , Platelet Aggregation
16.
Clin Oral Investig ; 26(7): 5061-5070, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35426000

ABSTRACT

OBJECTIVES: Methylated arginine metabolites and nitric oxide synthase (NOS) play a critical role in regulating endothelial function. The aim of this study was to determine levels of NOS, and methylated arginine metabolites (ADMA, SDMA, homoarginine, arginine, and L-NMMA) and IL-6 in serum and saliva in patients with advanced periodontal diseases and identify their association with clinical parameters. MATERIALS AND METHODS: The study consisted of two groups: healthy individuals (control: n = 24), and generalized Stage III Grade B periodontitis (P: n = 21). Clinical periodontal parameters (probing pocket depth, bleeding on probing, clinical attachment level) were recorded. IL 6 and NOS levels in saliva and serum were analyzed by enzyme-linked immunosorbent assay (ELISA). ADMA, SDMA, homoArg, arginine, and L-NMMA in saliva and serum were analyzed by liquid chromatography-mass spectrometry (LC MS/MS). RESULTS: Clinical parameters were significantly higher in the periodontitis group (p < 0.001). In periodontitis group, NOS, ADMA, and arginine levels in saliva were statistically significantly higher than control group (p < 0.05). Serum levels of SDMA were statistically significantly lower, and IL-6 was statistically significantly higher in P group than C group (p < 0.05). ADMA, NOS, and arginine levels were significantly positive correlated with all clinical periodontal parameters (p < 0.05). CONCLUSIONS: These findings suggest that there is a relationship between severity of periodontal disease and endothelial dysfunction by means of ADMA. Salivary ADMA may be related with periodontal inflammation. CLINICAL RELEVANCE: ADMA levels in periodontal inflammation are associated with endothelial dysfunction. According to the results of our study, periodontal inflammation is effective on both local and systemic methylated arginine metabolites and nitric oxide synthase levels. This may shed light on the relationship between periodontal disease and systemic status.


Subject(s)
Periodontal Diseases , Periodontitis , Arginine/metabolism , Humans , Inflammation , Interleukin-6 , Nitric Oxide Synthase , Tandem Mass Spectrometry/methods , omega-N-Methylarginine
17.
Clin Lab ; 68(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35023667

ABSTRACT

BACKGROUND: In this study, we aimed to show that methylated arginines are the predictors of non-clinical atherosclerotic cardiovascular complications in metal workers exposed to Cd. METHODS: The 80 Cd-exposed metal workers and 80 non-exposed workers (control) included in the study were available for measuring arginine, ADMA, SDMA, and L-NMMA levels. RESULTS: The average urine Cd levels (CdU) found were 1.03 ± 0.8 µg/g creatinine (0.84 ± 0.65 µg/L) ranging from 0.01 to 3.00 µg/g creatinine in the control group and 5.41 ± 5.2 µg/g creatinine (4.29 ± 3.81 µg/L) ranged from 0.11 to 27.2 µg/g creatinine in metal workers. On the other hand, the median ratios of the different groups (exposed and control) were found to be 449.35 and 483.88 for arginine/ADMA and 1.28 and 1.33 SDMA/ADMA, respectively. CONCLUSIONS: The present study was undertaken to investigate the relationship between cadmium exposure and methylated arginines such as ADMA/SDMA/L-NMMA parameters which is important for the early detection atherosclerotic cardiovascular diseases.


Subject(s)
Atherosclerosis , Cadmium , Arginine , Cadmium/toxicity , Creatinine , Humans , omega-N-Methylarginine
18.
Behav Brain Res ; 422: 113750, 2022 03 26.
Article in English | MEDLINE | ID: mdl-35033612

ABSTRACT

Nitric oxide (NO)-dependent pathways may play a significant role in the decline of synaptic and cognitive functions in Alzheimer's disease (AD). However, whether NO in the hippocampal dentate gyrus (DG) is involved in the spatial learning and memory impairments of AD by affecting the glutamate (Glu) response during these processes is not well-understood. Here, we prepared an AD rat model by long-term i.p. of D-galactose into ovariectomized rats, and then the effects of L-NMMA (a NO synthase inhibitor) on Glu concentration and amplitude of field excitatory postsynaptic potential (fEPSP) were measured in the DG region during the Morris water maze (MWM) test in freely-moving rats. During the MWM test, compared with the sham group, the escape latency was increased in the place navigation trial, and the percentage of time spent in target quadrant and the number of platform crossings were decreased in the spatial probe trial, in addition, the increase of fEPSP amplitude in the DG was significantly attenuated in AD group rats. L-NMMA significantly attenuated the spatial learning and memory impairment in AD rats, and reversed the inhibitory effect of AD on increase of fEPSP amplitude in the DG during the MWM test. In sham group rats, the Glu level in the DG increased significantly during the MWM test, and this response was markedly enhanced in AD rats. Furthermore, the response of Glu in the DG during spatial learning was recovered by microinjection of L-NMMA into the DG. Our results suggest that NO in the DG impairs spatial learning and memory and related synaptic plasticity in AD rats, by disturbing the Glu response during spatial learning.


Subject(s)
Alzheimer Disease , Behavior, Animal , Dentate Gyrus , Enzyme Inhibitors/pharmacology , Excitatory Postsynaptic Potentials , Glutamic Acid/metabolism , Maze Learning , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/physiopathology , Disease Models, Animal , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Female , Maze Learning/drug effects , Maze Learning/physiology , Ovariectomy , Rats , Rats, Sprague-Dawley , omega-N-Methylarginine/pharmacology
20.
Am J Physiol Heart Circ Physiol ; 322(1): H25-H35, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34738833

ABSTRACT

Central adiposity is associated with greater sympathetic support of blood pressure. ß-adrenergic receptors (ß-AR) buffer sympathetically mediated vasoconstriction and ß-AR-mediated vasodilation is attenuated in preclinical models of obesity. With this information, we hypothesized ß-AR vasodilation would be lower in obese compared with normal weight adults. Because ß-AR vasodilation in normal weight adults is limited by cyclooxygenase (COX) restraint of nitric oxide synthase (NOS), we further explored the contributions of COX and NOS to ß-AR vasodilation in this cohort. Forearm blood flow (FBF, Doppler ultrasound) and mean arterial blood pressure (MAP, brachial arterial catheter) were measured and forearm vascular conductance (FVC) was calculated (FVC = FBF/MAP). The rise in FVC from baseline (ΔFVC) was quantified during graded brachial artery infusion of isoproterenol (Iso, 1-12 ng/100 g/min) in normal weight (n = 36) and adults with obesity (n = 22) (18-40 yr old). In a subset of participants, Iso-mediated vasodilation was examined before and during inhibition of NOS [NG-monomethyl-l-arginine (l-NMMA)], COX (ketorolac), and NOS + COX (l-NMMA + ketorolac). Iso-mediated increases in FVC did not differ between groups (P = 0.57). l-NMMA attenuated Iso-mediated ΔFVC in normal weight (P = 0.03) but not adults with obesity (P = 0.27). In normal weight adults, ketorolac increased Iso-mediated ΔFVC (P < 0.01) and this response was lost with concurrent l-NMMA (P = 0.67). In contrast, neither ketorolac (P = 0.81) nor ketorolac + l-NMMA (P = 0.40) altered Iso-mediated ΔFVC in adults with obesity. Despite shifts in COX and NOS, ß-AR vasodilation is preserved in young adults with obesity. These data highlight the presence of a compensatory shift in microvascular control mechanisms in younger humans with obesity.NEW & NOTEWORTHY We examined ß-adrenergic receptor-mediated vasodilation in skeletal muscle of humans with obesity and normal weight. Results show that despite shifts in the contribution of cyclooxygenase and nitric oxide synthase, ß-adrenergic-mediated vasodilation is relatively preserved in young, otherwise healthy adults with obesity. These data highlight the presence of subclinical changes in microvascular control mechanisms early in the obesity process and suggest duration of obesity and/or the addition of primary aging may be necessary for overt dysfunction.


Subject(s)
Muscle, Skeletal/blood supply , Nitric Oxide Synthase Type III/metabolism , Obesity/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Vasodilation , Adrenergic beta-Agonists/pharmacology , Adult , Blood Vessels/drug effects , Blood Vessels/metabolism , Blood Vessels/physiology , Cyclooxygenase Inhibitors/pharmacology , Female , Humans , Isoproterenol/pharmacology , Ketorolac/pharmacology , Male , Nitric Oxide Synthase Type III/antagonists & inhibitors , Obesity/physiopathology , Receptors, Adrenergic, beta/metabolism , omega-N-Methylarginine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...