ABSTRACT
Sepsis and septic shock are associated with acute and sustained impairment in the function of the cardiovascular system, kidneys, lungs, liver, and brain, among others. Despite the significant advances in prevention and treatment, sepsis and septic shock sepsis remain global health problems with elevated mortality rates. Rho proteins can interact with a considerable number of targets, directly affecting cellular contractility, actin filament assembly and growing, cell motility and migration, cytoskeleton rearrangement, and actin polymerization, physiological functions that are intensively impaired during inflammatory conditions, such as the one that occurs in sepsis. In the last few decades, Rho proteins and their downstream pathways have been investigated in sepsis-associated experimental models. The most frequently used experimental design included the exposure to bacterial lipopolysaccharide (LPS), in both in vitro and in vivo approaches, but experiments using the cecal ligation and puncture (CLP) model of sepsis have also been performed. The findings described in this review indicate that Rho proteins, mainly RhoA and Rac1, are associated with the development of crucial sepsis-associated dysfunction in different systems and cells, including the endothelium, vessels, and heart. Notably, the data found in the literature suggest that either the inhibition or activation of Rho proteins and associated pathways might be desirable in sepsis and septic shock, accordingly with the cellular system evaluated. This review included the main findings, relevance, and limitations of the current knowledge connecting Rho proteins and sepsis-associated experimental models.
Subject(s)
Sepsis/enzymology , Shock, Septic/enzymology , rho GTP-Binding Proteins/metabolism , Animals , Disease Models, Animal , Humans , Molecular Targeted Therapy , Sepsis/drug therapy , Sepsis/pathology , Shock, Septic/drug therapy , Shock, Septic/pathology , Signal Transduction , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/agonists , rho GTP-Binding Proteins/antagonists & inhibitors , rhoA GTP-Binding Protein/metabolismABSTRACT
OBJECTIVE: The RHO family of GTPases, particularly RAC1, has been linked with hepatocarcinogenesis, suggesting that their inhibition might be a rational therapeutic approach. We aimed to identify and target deregulated RHO family members in human hepatocellular carcinoma (HCC). DESIGN: We studied expression deregulation, clinical prognosis and transcription programmes relevant to HCC using public datasets. The therapeutic potential of RAC1 inhibitors in HCC was study in vitro and in vivo. RNA-Seq analysis and their correlation with the three different HCC datasets were used to characterise the underlying mechanism on RAC1 inhibition. The therapeutic effect of RAC1 inhibition on liver fibrosis was evaluated. RESULTS: Among the RHO family of GTPases we observed that RAC1 is upregulated, correlates with poor patient survival, and is strongly linked with a prooncogenic transcriptional programme. From a panel of novel RAC1 inhibitors studied, 1D-142 was able to induce apoptosis and cell cycle arrest in HCC cells, displaying a stronger effect in highly proliferative cells. Partial rescue of the RAC1-related oncogenic transcriptional programme was obtained on RAC1 inhibition by 1D-142 in HCC. Most importantly, the RAC1 inhibitor 1D-142 strongly reduce tumour growth and intrahepatic metastasis in HCC mice models. Additionally, 1D-142 decreases hepatic stellate cell activation and exerts an anti-fibrotic effect in vivo. CONCLUSIONS: The bioinformatics analysis of the HCC datasets, allows identifying RAC1 as a new therapeutic target for HCC. The targeted inhibition of RAC1 by 1D-142 resulted in a potent antitumoural effect in highly proliferative HCC established in fibrotic livers.
Subject(s)
Carcinoma, Hepatocellular/drug therapy , Enzyme Inhibitors/pharmacology , Guanidines/therapeutic use , Liver Cirrhosis/drug therapy , Liver Neoplasms/drug therapy , rac1 GTP-Binding Protein/antagonists & inhibitors , Animals , Apoptosis/drug effects , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/secondary , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Computational Biology , Databases, Genetic , Enzyme Inhibitors/therapeutic use , Guanidines/pharmacology , Hepatic Stellate Cells/drug effects , Hepatocytes/drug effects , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Molecular Targeted Therapy , Neoplasm Transplantation , Transcriptome/drug effects , rac1 GTP-Binding Protein/genetics , rho GTP-Binding Proteins/antagonists & inhibitors , rho GTP-Binding Proteins/geneticsABSTRACT
Rho GTPases are molecular switches that control the different cellular processes. Deregulation of these proteins is associated to transformation and malignant progression in several cancer types. Given the evidence available of the role of Rho GTPases in cancer it is suggested that these proteins can serve as potential therapeutic targets. This review focuses on the strategies used to develop Rho GTPases modulators and their potential use in therapeutic settings.
Subject(s)
Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , rho GTP-Binding Proteins/antagonists & inhibitors , Humans , Neoplasms/enzymology , rho GTP-Binding Proteins/physiologyABSTRACT
Las Rho GTPasas son una familia de proteínas que actúan como interruptores moleculares en diversas vías de señalización coordinando la regulación de distintos procesos celulares. La desregulación de dichas proteínas se vincula con transformación maligna y progresión tumoral en distintos tipos de cáncer. Por estos motivos, en los últimos años las Rho GTPasas fueron postuladas como blancos moleculares interesantes. En este trabajo describimos las distintas estrategias estudiadas utilizando a las Rho GTPasas como blanco y su grado de avance, mostrando una estrategia novedosa para el tratamiento del cáncer.
Rho GTPases are molecular switches that control the different cellular processes. Deregulation of these proteins is associated to transformation and malignant progression in several cancer types. Given the evidence available of the role of Rho GTPases in cancer it is suggested that these proteins can serve as potential therapeutic targets. This review focuses on the strategies used to develop Rho GTPases modulators and their potential use in therapeutic settings.
Subject(s)
Humans , rho GTP-Binding Proteins/antagonists & inhibitors , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , rho GTP-Binding Proteins/physiology , Neoplasms/enzymologyABSTRACT
Rho GTPases are key molecular switches controlling the transduction of external signals to cytoplasmic and nuclear effectors. In the last few years, the development of genetic and pharmacological tools has allowed a more precise definition of the specific roles of Rho GTPases in cancer. The aim of the present review is to describe the cellular functions regulated by these proteins with focus in deregulated signals present in malignant tumors. Finally, we describe the state of the art in search of different experimental therapeutic strategies with Rho GTPases as molecular targets.
Subject(s)
Neoplasms/drug therapy , Neoplasms/enzymology , rho GTP-Binding Proteins/antagonists & inhibitors , rho GTP-Binding Proteins/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Molecular Targeted TherapyABSTRACT
Low-level laser therapy (LLLT) controls bronchial hyperresponsiveness (BHR) associated with increased RhoA expression as well as pro-inflammatory mediators associated with NF-kB in acute lung inflammation. Herein, we explore if LLLT can reduce both BHR and Th2 cytokines in allergic asthma. Mice were studied for bronchial reactivity and lung inflammation after antigen challenge. BHR was measured through dose-response curves to acetylcholine. Some animals were pretreated with a RhoA inhibitor before the antigen. LLLT (660 nm, 30 mW and 5.4 J) was applied on the skin over the right upper bronchus and two irradiation protocols were used. Reduction of BHR post LLLT coincided with lower RhoA expression in bronchial muscle as well as reduction in eosinophils and eotaxin. LLLT also diminished ICAM expression and Th2 cytokines as well as signal transducer and activator of transduction 6 (STAT6) levels in lungs from challenged mice. Our results demonstrated that LLLT reduced BHR via RhoA and lessened allergic lung inflammation via STAT6.
Subject(s)
Airway Remodeling/radiation effects , Asthma/radiotherapy , Bronchoconstriction/radiation effects , Cytokines/metabolism , Hypersensitivity/radiotherapy , Low-Level Light Therapy , Airway Remodeling/drug effects , Airway Remodeling/physiology , Amides/pharmacology , Animals , Asthma/drug therapy , Asthma/physiopathology , Bronchi/drug effects , Bronchi/physiopathology , Bronchi/radiation effects , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/physiopathology , Bronchial Hyperreactivity/radiotherapy , Bronchoconstriction/drug effects , Bronchoconstriction/physiology , Enzyme Inhibitors/pharmacology , Hypersensitivity/drug therapy , Hypersensitivity/physiopathology , Lung/drug effects , Lung/physiopathology , Lung/radiation effects , Male , Mice , Mice, Inbred BALB C , Muscle, Smooth/drug effects , Muscle, Smooth/physiopathology , Muscle, Smooth/radiation effects , Ovalbumin/adverse effects , Pneumonia/drug therapy , Pneumonia/physiopathology , Pneumonia/radiotherapy , Pyridines/pharmacology , STAT6 Transcription Factor/metabolism , rho GTP-Binding Proteins/antagonists & inhibitors , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding ProteinABSTRACT
The Rho GTPase Rac regulates actin cytoskeleton reorganization to form cell surface extensions (lamellipodia) required for cell migration/invasion during cancer metastasis. Rac hyperactivation and overexpression are associated with aggressive cancers; thus, interference of the interaction of Rac with its direct upstream activators, guanine nucleotide exchange factors (GEFs), is a viable strategy for inhibiting Rac activity. We synthesized EHop-016, a novel inhibitor of Rac activity, based on the structure of the established Rac/Rac GEF inhibitor NSC23766. Herein, we demonstrate that EHop-016 inhibits Rac activity in the MDA-MB-435 metastatic cancer cells that overexpress Rac and exhibits high endogenous Rac activity. The IC(50) of 1.1 µM for Rac inhibition by EHop-016 is â¼100-fold lower than for NSC23766. EHop-016 is specific for Rac1 and Rac3 at concentrations of ≤5 µM. At higher concentrations, EHop-016 inhibits the close homolog Cdc42. In MDA-MB-435 cells that demonstrate high active levels of the Rac GEF Vav2, EHop-016 inhibits the association of Vav2 with a nucleotide-free Rac1(G15A), which has a high affinity for activated GEFs. EHop-016 also inhibits the Rac activity of MDA-MB-231 metastatic breast cancer cells and reduces Rac-directed lamellipodia formation in both cell lines. EHop-016 decreases Rac downstream effects of PAK1 (p21-activated kinase 1) activity and directed migration of metastatic cancer cells. Moreover, at effective concentrations (<5 µM), EHop-016 does not affect the viability of transformed mammary epithelial cells (MCF-10A) and reduces viability of MDA-MB-435 cells by only 20%. Therefore, EHop-016 holds promise as a targeted therapeutic agent for the treatment of metastatic cancers with high Rac activity.
Subject(s)
Breast Neoplasms/drug therapy , Carbazoles/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyrimidines/pharmacology , rac1 GTP-Binding Protein/antagonists & inhibitors , Aminoquinolines/pharmacology , Binding Sites/drug effects , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Carbazoles/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Drug Design , Female , Humans , Pyrimidines/chemical synthesis , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , rac1 GTP-Binding Protein/chemistry , rac1 GTP-Binding Protein/genetics , rho GTP-Binding Proteins/antagonists & inhibitorsABSTRACT
Spinal cord (SC) injury causes serious neurological alterations that importantly disturb the physical, emotional and economical stability of affected individuals. Damage to the neural tissue is primarily caused by the lesion itself and secondarily by a multitude of destructive mechanisms that develop afterwards. Unfortunately, the restoring capacity of the central nervous system is very limited because of reduced intrinsic growth capacity and non-permissive environment for axonal elongation. The regenerative processes are blocked by diverse factors such as growth inhibitory proteins and the glial scar formed in the site of lesion. In spite of these problems, central neurons regenerate if a permissive environment is provided. In line with this thought, some pharmacological compounds have been tested to achieve neuroregeneration. The main objective of this manuscript is to provide the state-of-art of chemotherapeutic treatments for spinal cord regeneration after injury in the field. The efficacy and usefulness of different therapeutic strategies will be reviewed, including Rho-ROCK inhibitors, cyclic AMP-enhancers, glial scar inhibitors and immunophilin ligands. Aside from this, the use of hydrogels alone or in combination with drugs, growth factors or stem cells will also be revised.
Subject(s)
Nerve Regeneration/drug effects , Neuroprotective Agents/pharmacology , Spinal Cord Injuries/therapy , Animals , Axons/drug effects , Axons/physiology , Cyclic AMP/metabolism , Gliosis/drug therapy , Humans , Hydrogels/pharmacology , Hydrogels/therapeutic use , Immunophilins/metabolism , Ligands , Nerve Regeneration/physiology , Neuroprotective Agents/therapeutic use , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , rho GTP-Binding Proteins/antagonists & inhibitors , rho-Associated Kinases/antagonists & inhibitorsABSTRACT
This study is an investigation into the mechanism of Clostridium difficile toxin A-induced apoptosis in human intestinal epithelial cells. Toxin A induced apoptosis of T84 cells in a dose- and time-dependent fashion. Toxin A-induced apoptosis was completely inhibited by blocking toxin enzymatic activity on Rho GTPases with uridine 5'-diphosphate-2',3'-dialdehyde by a nonspecific caspase inhibitor and was partially inhibited by caspase-1, -3, -6, -8, and -9 inhibitors. Caspases 3, 6, 8, and 9 and Bid activation were detected. Toxin A also induced changes in mitochondrial membrane potential and cytochrome c release at 18-24 h, a time course similar to caspase-9 activation. In conclusion, toxin A induces apoptosis by a mechanism dependent on inactivation of Rho, activation of caspases 3, 6, 8, and 9 and Bid, and mitochondrial damage followed by cytochrome c release. Toxin A proapoptotic activity may contribute to the mucosal disruption seen in toxin A-induced enteritis.