Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.151
1.
Front Immunol ; 15: 1405622, 2024.
Article En | MEDLINE | ID: mdl-38827741

Background: Severe acute pancreatitis (SAP) is an inflammatory disorder affecting the gastrointestinal system. Intestinal injury plays an important role in the treatment of severe acute pancreatitis. In this study, we mainly investigated the role of S1PR2 in regulating macrophage pyroptosis in the intestinal injury of severe acute pancreatitis. Methods: The SAP model was constructed using cerulein and lipopolysaccharide, and the expression of S1PR2 was inhibited by JTE-013 to detect the degree of pancreatitis and intestinal tissue damage in mice. Meanwhile, the level of pyroptosis-related protein was detected by western blot, the level of related mRNA was detected by PCR, and the level of serum inflammatory factors was detected by ELISA. In vitro experiments, LPS+ATP was used to construct the pyroptosis model of THP-1. After knockdown and overexpression of S1PR2, the pyroptosis proteins level was detected by western blot, the related mRNA level was detected by PCR, and the level of cell supernatant inflammatory factors were detected by ELISA. A rescue experiment was used to verify the sufficient necessity of the RhoA/ROCK pathway in S1PR2-induced pyroptosis. Meanwhile, THP-1 and FHC were co-cultured to verify that cytokines released by THP-1 after damage could regulate FHC damage. Results: Our results demonstrated that JTE-013 effectively attenuated intestinal injury and inflammation in mice with SAP. Furthermore, we observed a significant reduction in the expression of pyroptosis-related proteins within the intestinal tissue of SAP mice upon treatment with JTE-013. We confirmed the involvement of S1PR2 in THP-1 cell pyroptosis in vitro. Specifically, activation of S1PR2 triggered pyroptosis in THP-1 cells through the RhoA/ROCK signaling pathway. Moreover, it was observed that inflammatory factors released during THP-1 cell pyroptosis exerted an impact on cohesin expression in FHC cells. Conclusion: The involvement of S1PR2 in SAP-induced intestinal mucosal injury may be attributed to its regulation of macrophage pyroptosis.


Disease Models, Animal , Macrophages , Pancreatitis , Pyroptosis , Sphingosine-1-Phosphate Receptors , Animals , Mice , Humans , Macrophages/metabolism , Macrophages/immunology , Pancreatitis/metabolism , Pancreatitis/immunology , Pancreatitis/pathology , Pancreatitis/chemically induced , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Male , Signal Transduction , Mice, Inbred C57BL , rhoA GTP-Binding Protein/metabolism , THP-1 Cells , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/pathology , Intestines/immunology , Cytokines/metabolism , Lipopolysaccharides , Pyrazoles , Pyridines
2.
J Clin Invest ; 134(10)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38747285

Transforming growth factor ß (TGF-ß) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-ß remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-ß in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-ß. The activation of latent TGF-ß requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-ß, rebalanced TGF-ß signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-ß in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.


Fibroblasts , Fibrosis , Transforming Growth Factor beta , Wnt-5a Protein , rho-Associated Kinases , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Animals , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Mice , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Scleroderma, Systemic/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/genetics , Mice, Knockout , Wnt Proteins/metabolism , Wnt Proteins/genetics , MAP Kinase Signaling System , Myofibroblasts/metabolism , Myofibroblasts/pathology , Signal Transduction , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/genetics
3.
Matrix Biol ; 130: 36-46, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723870

Cellular Communication Network Factor 2, CCN2, is a profibrotic cytokine implicated in physiological and pathological processes in mammals. The expression of CCN2 is markedly increased in dystrophic muscles. Interestingly, diminishing CCN2 genetically or inhibiting its function improves the phenotypes of chronic muscular fibrosis in rodent models. Elucidating the cell-specific mechanisms behind the induction of CCN2 is a fundamental step in understanding its relevance in muscular dystrophies. Here, we show that the small lipids LPA and 2S-OMPT induce CCN2 expression in fibro/adipogenic progenitors (FAPs) through the activation of the LPA1 receptor and, to a lower extent, by also the LPA6 receptor. These cells show a stronger induction than myoblasts or myotubes. We show that the LPA/LPARs axis requires ROCK kinase activity and organized actin cytoskeleton upstream of YAP/TAZ signaling effectors to upregulate CCN2 levels, suggesting that mechanical signals are part of the mechanism behind this process. In conclusion, we explored the role of the LPA/LPAR axis on CCN2 expression, showing a strong cytoskeletal-dependent response in muscular FAPs.


Adipogenesis , Connective Tissue Growth Factor , Lysophospholipids , Animals , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Mice , Lysophospholipids/metabolism , Cell Communication , Signal Transduction , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics , Stem Cells/metabolism , Stem Cells/cytology , Gene Expression Regulation , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Cell Differentiation , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Humans , Actin Cytoskeleton/metabolism
4.
Aging (Albany NY) ; 16(10): 8732-8746, 2024 May 21.
Article En | MEDLINE | ID: mdl-38775730

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). This study focuses on deciphering the role of microRNA (miR)-101a-3p in the neuronal injury of PD and its regulatory mechanism. METHODS: We constructed a mouse model of PD by intraperitoneal injection of 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP), and used 1-methyl-4-phenylpyridinium (MPP+) to treat Neuro-2a cells to construct an in-vitro PD model. Neurological dysfunction in mice was evaluated by swimming test and traction test. qRT-PCR was utilized to examine miR-101a-3p expression and ROCK2 expression in mouse brain tissues and Neuro-2a cells. Western blot was conducted to detect the expression of α-synuclein protein and ROCK2 in mouse brain tissues and Neuro-2a cells. The targeting relationship between miR-101a-3p and ROCK2 was determined by dual-luciferase reporter gene assay. The apoptosis of neuro-2a cells was assessed by flow cytometry. RESULTS: Low miR-101a-3p expression and high ROCK2 expression were found in the brain tissues of PD mice and MPP+-treated Neuro-2a cells; PD mice showed decreased neurological disorders, and apoptosis of Neuro-2a cells was increased after MPP+ treatment, both of which were accompanied by increased accumulation of α-synuclein protein. After miR-101a-3p was overexpressed, the neurological function of PD mice was improved, and the apoptosis of Neuro-2a cells induced by MPP+ was alleviated, and the accumulation of α-synuclein protein was reduced; ROCK2 overexpression counteracted the protective effect of miR-101a-3p. Additionally, ROCK2 was identified as the direct target of miR-101a-3p. CONCLUSION: MiR-101a-3p can reduce neuronal apoptosis and neurological deficit in PD mice by inhibiting ROCK2 expression, suggesting that miR-101a-3p is a promising therapeutic target for PD.


Disease Models, Animal , MicroRNAs , rho-Associated Kinases , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Mice , Male , Mice, Inbred C57BL , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/genetics , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Cell Line, Tumor , Apoptosis/genetics , 1-Methyl-4-phenylpyridinium/toxicity
5.
Zool Res ; 45(3): 535-550, 2024 May 18.
Article En | MEDLINE | ID: mdl-38747058

Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function. Synaptic abnormalities, such as defects in the density and morphology of postsynaptic dendritic spines, underlie the pathology of various neuropsychiatric disorders. Protocadherin 17 (PCDH17) is associated with major mood disorders, including bipolar disorder and depression. However, the molecular mechanisms by which PCDH17 regulates spine number, morphology, and behavior remain elusive. In this study, we found that PCDH17 functions at postsynaptic sites, restricting the number and size of dendritic spines in excitatory neurons. Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety- and depression-like behaviors in mice. Mechanistically, PCDH17 interacts with actin-relevant proteins and regulates actin filament (F-actin) organization. Specifically, PCDH17 binds to ROCK2, increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3 (Ser3). Inhibition of ROCK2 activity with belumosudil (KD025) ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression, suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development. Hence, these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior, providing pathological insights into the neurobiological basis of mood disorders.


Actin Cytoskeleton , Cadherins , Dendritic Spines , Protocadherins , rho-Associated Kinases , Animals , Mice , Actin Cytoskeleton/metabolism , Cadherins/metabolism , Cadherins/genetics , Dendritic Spines/metabolism , Dendritic Spines/physiology , Gene Expression Regulation , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Protocadherins/genetics , Protocadherins/metabolism
6.
Epigenetics ; 19(1): 2348840, 2024 Dec.
Article En | MEDLINE | ID: mdl-38716769

To explore the role of lncRNA m6A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m6A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m6A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m6A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m6A peaks, with statistically significant differences (| Fold Change (FC) |≥2, p < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- ß signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m6A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m6A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m6A methylation.


Adenosine , Exfoliation Syndrome , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Female , Exfoliation Syndrome/genetics , Exfoliation Syndrome/metabolism , Male , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Aged , Aqueous Humor/metabolism , Gene Regulatory Networks , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA Methylation , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism
7.
Sci Rep ; 14(1): 9012, 2024 04 19.
Article En | MEDLINE | ID: mdl-38641671

To better understand molecular aspects of equine endometrial function, there is a need for advanced in vitro culture systems that more closely imitate the intricate 3-dimensional (3D) in vivo endometrial structure than current techniques. However, development of a 3D in vitro model of this complex tissue is challenging. This study aimed to develop an in vitro 3D endometrial tissue (3D-ET) with an epithelial cell phenotype optimized by treatment with a Rho-associated protein kinase (ROCK) inhibitor. Equine endometrial epithelial (eECs) and mesenchymal stromal (eMSCs) cells were isolated separately, and eECs cultured in various concentrations of Rock inhibitor (0, 5, 10 µmol) in epithelial medium (EC-medium) containing 10% knock-out serum replacement (KSR). The optimal concentration of Rock inhibitor for enhancing eEC proliferation and viability was 10 µM. However, 10 µM Rock inhibitor in the 10% KSR EC-medium was able to maintain mucin1 (Muc1) gene expression for only a short period. In contrast, fetal bovine serum (FBS) was able to maintain Muc1 gene expression for longer culture durations. An in vitro 3D-ET was successfully constructed using a collagen-based scaffold to support the eECs and eMSCs. The 3D-ET closely mimicked in vivo endometrium by displaying gland-like eEC-derived structures positive for the endometrial gland marker, Fork headbox A2 (FOXA2), and by mimicking the 3D morphology of the stromal compartment. In addition, the 3D-ET expressed the secretory protein MUC1 on its glandular epithelial surface and responded to LPS challenge by upregulating the expression of the interleukin-6 (IL6) and prostaglandin F synthase (PGFS) genes (P < 0.01), along with an increase in their secretory products, IL-6 (P < 0.01) and prostaglandin F2alpha (PGF2α) (P < 0.001) respectively. In the future, this culture system can be used to study both normal physiology and pathological processes of the equine endometrium.


Tissue Engineering , rho-Associated Kinases , Female , Animals , Horses , Cells, Cultured , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Endometrium/metabolism , Epithelial Cells/metabolism , Collagen/metabolism , Dinoprost/metabolism
8.
Zhen Ci Yan Jiu ; 49(4): 367-375, 2024 Apr 25.
Article En, Zh | MEDLINE | ID: mdl-38649204

OBJECTIVES: To investigate the effect of electroacupuncture (EA) on Rho/Rho-associated coiled-coil-forming kinases (ROCK) signaling pathway of uterus tissue in rats with dysmenorrhea, so as to explore the underlying mechanism of EA treating primary dysmenorrhea (PD) and uterine smooth muscle spasm, and to observe whether there is a difference in the effect of meridian acupoints in Conception Vessel (CV) and Governer Vessel (GV). METHODS: Sixty female SD rats were randomly divided into saline, model, CV, GV, and non-acupoint groups, with 12 rats in each group. The dysmenorrhea model was established by subcutaneous injection of estradiol diphenhydrate combined with intraperitoneal injection of oxytocin (OT). EA (2 Hz) was applied to "Qihai" (CV6) and "Zhongji" (CV3) for CV group, "Mingmen" (GV4) and "Yaoshu" (GV2) for GV group, "non-acupoint 1" and "non-acupoint 3" on the left side for non-acupoint group, and manual acupuncture was applied to "Guanyuan" (CV4) for CV group, "Yaoyangguan" (GV3) for GV group, "non-acupoint 2" on the left side for non-acupoint group. The treatment was conducted for 20 min each time, once daily for 10 days. The writhing score was evaluated. The smooth myoelectric signals of rats' uterus in vivo were recorded by multi-channel physiological recorder. The uterine histopathological changes were observed by HE staining. The contents of prostaglandin F2α (PGF2α), OT and calcium ion (Ca2+) in uterine tissue of rats were detected by ELISA. The protein and mRNA expression levels of smooth muscle 22-α (SM22-α), RhoA and ROCKⅡ in uterine tissue were detected by Western blot and fluorescence quantitative PCR, respectively. RESULTS: Compared with the saline group, the writhing score of rats in the model group was increased (P<0.01), the amplitude voltage of uterine smooth muscle in vivo was elevated (P<0.01), the contents of PGF2α, OT and Ca2+, the protein and mRNA expression of SM22-α, RhoA and ROCK Ⅱ in uterine tissue were all increased (P<0.01). Compared with the model and the non-acupoint groups, the writhing scores of the CV and the GV groups were decreased (P<0.01, P<0.05), the amplitude voltage of uterine smooth muscle was decreased (P<0.01), the contents of PGF2α, OT and Ca2+ in uterine tissue were decreased (P<0.01, P<0.05), and the protein expression and mRNA expression of SM22-α, RhoA and ROCKⅡ in uterine tissue were decreased (P<0.01, P<0.05). HE staining showed extensive exfoliation of uterine intima with severe edema and increased glandular secretion in the model group, which was alleviated in the CV and GV groups. CONCLUSIONS: EA at acupoints of CV and GV can significantly reduce the writhing score, uterine smooth muscle amplitude voltage, pathological injury degree of uterus, and relieve spasm of uterine smooth muscle in dysmenorrhea rats, which may be related to its effect in regulating PGF2α and OT contents, inhibiting the Rho/ROCK signaling pathway, and reducing the SM22-α, RhoA, ROCKⅡ protein and mRNA expression, and Ca2+ content in uterine tissue.


Acupuncture Points , Dysmenorrhea , Electroacupuncture , Rats, Sprague-Dawley , Signal Transduction , Uterus , rho-Associated Kinases , Animals , Female , Dysmenorrhea/therapy , Dysmenorrhea/metabolism , Dysmenorrhea/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Rats , Humans , Uterus/metabolism , Muscle, Smooth/metabolism , Spasm/therapy , Spasm/genetics , Spasm/metabolism , Spasm/physiopathology
9.
ACS Biomater Sci Eng ; 10(5): 3069-3085, 2024 May 13.
Article En | MEDLINE | ID: mdl-38578110

Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Drug delivery to the brain through the blood-brain barrier (BBB) is a significant challenge in PD treatment. Exosomes, which can efficiently traverse the BBB, which many drugs cannot penetrate, are ideal natural carriers for drug delivery. In this study, the BBB shuttle peptide was modified on the exosome surfaces. Three types of exosomes were constructed, each modified with a distinct peptide (RVG29, TAT, or Ang2) and loaded with miR-133b. The safety and brain-targeting capabilities of these peptide-modified exosomes were then evaluated. Finally, the mechanism by which RVG29-Exo-133b regulates the RhoA-ROCK signaling pathway was investigated. The findings indicate that the three peptide-modified exosomes were adequately tolerated, safe, and effectively assimilated in vivo and ex vivo, with RVG29 exhibiting superior targeting to the brain. Furthermore, RVG29-Exo-133b decreased the phosphorylation level of the Tau protein by targeting the RhoA-ROCK signaling pathway. It also enhanced the motor function in mice with PD, thereby reducing the degree of depression, improving dopaminergic neuron function, and attenuating 6-OHDA-induced nerve damage. In this study, we developed a stable drug delivery mechanism that targets the intracerebral region using exosomes. Furthermore, a novel strategy was developed to manage PD and can potentially serve as a preclinical basis for utilizing exosomes in the diagnosis and treatment of neurodegenerative conditions.


Exosomes , MicroRNAs , Parkinson Disease , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , Exosomes/metabolism , Animals , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Parkinson Disease/metabolism , Parkinson Disease/genetics , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Mice , Male , Mice, Inbred C57BL , Humans , Peptides/metabolism , Blood-Brain Barrier/metabolism
10.
Environ Int ; 187: 108700, 2024 May.
Article En | MEDLINE | ID: mdl-38678936

The significant correlation between particulate matter with aerodynamic diameters of ≤ 2.5 µm (PM2.5) and the high morbidity and mortality of respiratory diseases has become the consensus of the research. Epidemiological studies have clearly pointed out that there is no safe concentration of PM2.5, and mechanism studies have also shown that exposure to PM2.5 will first cause pulmonary inflammation. Therefore, the purpose of this study is to explore the mechanism of early lung injury induced by low-level PM2.5 from the perspective of epigenetics. Based on the previous results of population samples, combined with an in vitro/vivo exposure model of PM2.5, it was found that low-level PM2.5 promoted the transport of circ_0092363 from intracellular to extracellular spaces. The decreased expression of intracellular circ_0092363 resulted in reduced absorption of miR-31-5p, leading to inhibition of Rho associated coiled-coil containing protein kinase 1 (ROCK1) and the subsequent abnormal expression of tight junction proteins such as Zonula occludens protein 1 (ZO-1) and Claudin-1, ultimately inducing the occurrence of early pulmonary injury. Furthermore, this study innovatively introduced organoid technology and conducted a preliminary exploration for a study of the relationship among environmental exposure genomics, epigenetics and disease genomics in organoids. The role of circ_0092363 in early pulmonary injury induced by low-level PM2.5 was elucidated, and its value as a potential diagnostic biomarker was confirmed.


Lung Injury , Particulate Matter , Lung Injury/chemically induced , Humans , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Animals , MicroRNAs/genetics , Air Pollutants/toxicity , Environmental Exposure/adverse effects
11.
FEBS Open Bio ; 14(6): 906-921, 2024 Jun.
Article En | MEDLINE | ID: mdl-38604990

The Ras homology (Rho) family of GTPases serves various functions, including promotion of cell migration, adhesion, and transcription, through activation of effector molecule targets. One such pair of effectors, the Rho-associated coiled-coil kinases (ROCK1 and ROCK2), induce reorganization of actin cytoskeleton and focal adhesion through substrate phosphorylation. Studies on ROCK knockout mice have confirmed that ROCK proteins are essential for embryonic development, but their physiological functions in adult mice remain unknown. In this study, we aimed to examine the roles of ROCK1 and ROCK2 proteins in normal adult mice. Tamoxifen (TAM)-inducible ROCK1 and ROCK2 single and double knockout mice (ROCK1flox/flox and/or ROCK2flox/flox;Ubc-CreERT2) were generated and administered a 5-day course of TAM. No deaths occurred in either of the single knockout strains, whereas all of the ROCK1/ROCK2 double conditional knockout mice (DcKO) had died by Day 11 following the TAM course. DcKO mice exhibited increased lung tissue vascular permeability, thickening of alveolar walls, and a decrease in percutaneous oxygen saturation compared with noninducible ROCK1/ROCK2 double-floxed control mice. On Day 3 post-TAM, there was a decrease in phalloidin staining in the lungs in DcKO mice. On Day 5 post-TAM, immunohistochemical analysis also revealed reduced staining for vascular endothelial (VE)-cadherin, ß-catenin, and p120-catenin at cell-cell contact sites in vascular endothelial cells in DcKO mice. Additionally, VE-cadherin/ß-catenin complexes were decreased in DcKO mice, indicating that ROCK proteins play a crucial role in maintaining lung function by regulating cell-cell adhesion.


Endothelial Cells , Mice, Knockout , rho-Associated Kinases , Animals , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Mice , Endothelial Cells/metabolism , Intercellular Junctions/metabolism , Lung/metabolism , Lung/pathology , Cadherins/metabolism , Cadherins/genetics , beta Catenin/metabolism , beta Catenin/genetics , Male , Antigens, CD
12.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 753-762, 2024 05 25.
Article En | MEDLINE | ID: mdl-38602002

Adhesion molecules play critical roles in maintaining the structural integrity of the airway epithelium in airways under stress. Previously, we reported that catenin alpha-like 1 (CTNNAL1) is downregulated in an asthma animal model and upregulated at the edge of human bronchial epithelial cells (HBECs) after ozone stress. In this work, we explore the potential role of CTNNAL1 in the structural adhesion of HBECs and its possible mechanism. We construct a CTNNAL1 ‒/‒ mouse model with CTNNAL1-RNAi recombinant adeno-associated virus (AAV) in the lung and a CTNNAL1-silencing cell line stably transfected with CTNNAL1-siRNA recombinant plasmids. Hematoxylin and eosin (HE) staining reveals that CTNNAL1 ‒/‒ mice have denuded epithelial cells and structural damage to the airway. Silencing of CTNNAL1 in HBECs inhibits cell proliferation and weakens extracellular matrix adhesion and intercellular adhesion, possibly through the action of the cytoskeleton. We also find that the expressions of the structural adhesion-related molecules E-cadherin, integrin ß1, and integrin ß4 are significantly decreased in ozone-treated cells than in vector control cells. In addition, our results show that the expression levels of RhoA/ROCK1 are decreased after CTNNAL1 silencing. Treatment with Y27632, a ROCK inhibitor, abolished the expressions of adhesion molecules induced by ozone in CTNNAL1-overexpressing HBECs. Overall, the findings of the present study suggest that CTNNAL1 plays a critical role in maintaining the structural integrity of the airway epithelium under ozone challenge, and is associated with epithelial cytoskeleton dynamics and the expressions of adhesion-related molecules via the RhoA/ROCK1 pathway.


Bronchi , Epithelial Cells , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , Animals , Humans , Mice , alpha Catenin/metabolism , alpha Catenin/genetics , Bronchi/cytology , Bronchi/metabolism , Cell Adhesion , Cell Line , Cell Proliferation , Epithelial Cells/metabolism , Ozone , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , rhoA GTP-Binding Protein/metabolism
13.
J Cell Mol Med ; 28(8): e18153, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568071

The small GTPase RhoA and the downstream Rho kinase (ROCK) regulate several cell functions and pathological processes in the vascular system that contribute to the age-dependent risk of cardiovascular disease, including endothelial dysfunction, excessive permeability, inflammation, impaired angiogenesis, abnormal vasoconstriction, decreased nitric oxide production and apoptosis. Frailty is a loss of physiological reserve and adaptive capacity with advanced age and is accompanied by a pro-inflammatory and pro-oxidative state that promotes vascular dysfunction and thrombosis. This review summarises the role of the RhoA/Rho kinase signalling pathway in endothelial dysfunction, the acquisition of the pro-thrombotic state and vascular ageing. We also discuss the possible role of RhoA/Rho kinase signalling as a promising therapeutic target for the prevention and treatment of age-related cardiovascular disease.


Cardiovascular Diseases , Thrombosis , Vascular Diseases , Humans , rho-Associated Kinases/genetics , Endothelial Cells
14.
Gene ; 905: 148232, 2024 May 05.
Article En | MEDLINE | ID: mdl-38309317

The lncRNA plays an important role in tumorigenesis and the progression of renal cell carcinoma (RCC). LINC00645 is one of the most different expressed lncRNA between RCC and normal renal tissue. However, the regulatory mechanism of LINC00645 in RCC remains unknown. Our results indicated that LINC00645 inhibited RCC proliferation, migration, and invasion. Mechanistically, HNRNPA2B1 directly bound to ROCK1 mRNA and strengthened its stability. LINC00645 competitively bound to the RRM1 domain, which is responsible for interacting with ROCK1 mRNA, reducing ROCK1 mRNA level by affecting posttranscriptional destabilization. The expression of LINC00645 was significantly reduced in RCC cells, significantly upregulating ROCK1 by abolishing the interaction with HNRNPA2B1, finally promoting RCC proliferation, migration, and invasion. Moreover, RCC cells with lower LINC00645 expression were more sensitive to the ROCK1 inhibitor Y-27632. Our study indicates that decreased expression of LINC00645 promotes the RCC progression via HNRNPA2B1/ROCK1 axis, providing a promising treatment strategy for RCC patients with decreased LINC00645 expression.


Carcinoma, Renal Cell , Kidney Neoplasms , RNA Stability , RNA, Long Noncoding , rho-Associated Kinases , Humans , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/pathology , rho-Associated Kinases/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics
15.
Zhongguo Zhong Yao Za Zhi ; 49(1): 185-196, 2024 Jan.
Article Zh | MEDLINE | ID: mdl-38403351

This study investigated the effect of trametenolic acid(TA) on the migration and invasion of human hepatocellular carcinoma HepG2.2.15 cells by using Ras homolog gene family member C(RhoC) as the target and probed into the mechanism, aiming to provide a basis for the utilization of TA. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the proliferation of HepG2.2.15 cells exposed to TA, and scratch and Transwell assays to examine the cell migration and invasion. The pull down assay was employed to determine the impact of TA on RhoC GTPase activity. Western blot was employed to measure the effect of TA on the transport of RhoC from cytoplasm to cell membrane and the expression of RhoC/Rho-associated kinase 1(ROCK1)/myosin light chain(MLC)/matrix metalloprotease 2(MMP2)/MMP9 pathway-related proteins. RhoC was over-expressed by transient transfection of pcDNA3.1-RhoC. The changes of F-actin in the cytoskeleton were detected by Laser confocal microscopy. In addition, the changes of cell migration and invasion, expression of proteins in the RhoC/ROCK1/MLC/MMP2/MMP9 pathway, and RhoC GTPase activity were detected. The subcutaneously transplanted tumor model of BALB/c nude mice and the low-, medium-, and high-dose(40, 80, and 120 mg·kg~(-1), respectively) TA groups were established and sorafenib(20 mg·kg~(-1)) was used as the positive control. The tumor volume and weight in each group were measured, and the expression of related proteins in the tumor tissue was determined by Western blot. The results showed that TA inhibited the proliferation of HepG2.2.15 cells in a concentration-dependent manner, with the IC_(50) of 66.65 and 23.09 µmol·L~(-1) at the time points of 24 and 48 h, respectively. The drug administration groups had small tumors with low mass. The tumor inhibition rates of sorafenib and low-, medium-and high-dose TA were 62.23%, 26.48%, 55.45%, and 62.36%, respectively. TA reduced migrating and invading cells and inhibited RhoC protein expression and RhoC GTPase activity in a concentration-dependent manner, dramatically reducing RhoC and membrane-bound RhoC GTPase. The expression of ROCK1, MLC, p-MLC, MMP2, and MMP9 downstream of RhoC can be significantly inhibited by TA, as confirmed in both in vitro and in vivo experiments. After HepG2.2.15 cells were transfected with pcDNA3.1-RhoC to overexpress RhoC, TA down-regulated the protein levels of RhoC, ROCK1, MLC, p-MLC, MMP2, and MMP9 and decreased the activity of RhoC GTPase, with the inhibition level comparable to that before overexpression. In summary, TA can inhibit the migration and invasion of HepG2.2.15 cells. It can inhibit the RhoC/ROCK1/MLC/MMP2/MMP9 signaling pathway by suppressing RhoC GTPase activity and down-regulating RhoC expression. This study provides a new idea for the development of autophagy modulators targeting HSP90α to block the proliferation and inhibit the invasion and migration of hepatocellular carcinoma cells via multiple targets of active components in traditional Chinese medicines.


Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , rhoC GTP-Binding Protein/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Matrix Metalloproteinase 9/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , Matrix Metalloproteinase 2/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Sorafenib , Mice, Nude , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Line, Tumor , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Cell Movement , Cell Proliferation
16.
Nat Commun ; 15(1): 446, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38199985

Patients with corticosteroid-refractory acute graft-versus-host disease (aGVHD) have a low one-year survival rate. Identification and validation of novel targetable kinases in patients who experience corticosteroid-refractory-aGVHD may help improve outcomes. Kinase-specific proteomics of leukocytes from patients with corticosteroid-refractory-GVHD identified rho kinase type 1 (ROCK1) as the most significantly upregulated kinase. ROCK1/2 inhibition improved survival and histological GVHD severity in mice and was synergistic with JAK1/2 inhibition, without compromising graft-versus-leukemia-effects. ROCK1/2-inhibition in macrophages or dendritic cells prior to transfer reduced GVHD severity. Mechanistically, ROCK1/2 inhibition or ROCK1 knockdown interfered with CD80, CD86, MHC-II expression and IL-6, IL-1ß, iNOS and TNF production in myeloid cells. This was accompanied by impaired T cell activation by dendritic cells and inhibition of cytoskeletal rearrangements, thereby reducing macrophage and DC migration. NF-κB signaling was reduced in myeloid cells following ROCK1/2 inhibition. In conclusion, ROCK1/2 inhibition interferes with immune activation at multiple levels and reduces acute GVHD while maintaining GVL-effects, including in corticosteroid-refractory settings.


Graft vs Host Disease , rho-Associated Kinases , Humans , Animals , Mice , rho-Associated Kinases/genetics , Graft vs Host Disease/drug therapy , Signal Transduction , NF-kappa B , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use
17.
Front Biosci (Landmark Ed) ; 29(1): 6, 2024 01 12.
Article En | MEDLINE | ID: mdl-38287795

BACKGROUND: Ferroptosis, a distinct iron-dependent form of regulated cell death, is induced by severe lipid peroxidation due to reactive oxygen species (ROS) generation. Breast cancer patient survival is correlated with the tumor-suppressing properties of Rho guanosine triphosphatase hydrolase enzyme (GTPase)-activating protein 6 (ARHGAP6). This study investigates the impact and mechanisms of ARHGAP6 on ferroptosis in breast cancer. METHODS: Using quantitative RT-PCR, Western blotting, and immunofluorescence staining, ARHGAP6 expression was detected in a gene expression dataset, cancer tissue samples, and cells. ARHGAP6 was overexpressed or silenced in breast cancer cell lines. Cell proliferation was measured using 5-ethynyl-2-deoxyuridine (EdU) assay, and cell death rate was determined using LDH cytotoxicity assay. As indicators of ferroptosis, Fe2+ ion content, lipid ROS, glutathione peroxidase 4 (GPX4), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1), prostaglandin-endoperoxide synthase 2 (PTGS2), solute carrier family 7 member 11 (SLC7A11), and acyl-CoA synthetase long chain family member 4 (ACSL4) levels were evaluated. RESULTS: ARHGAP6 was obviously downregulated in cancer tissues and cells. ARHGAP6 overexpression decreased cell proliferation, elevated cell death and lipid ROS, decreased GPX4 and SLC7A11, increased PTGS2, ACSL4, and CHAC1, and inhibited RhoA/ROCK1 and p38 MAPK signaling in cancer cells. ARHGAP6 knockdown exerted opposite effects to those of ARHGAP6 overexpression. p38 signaling suppression reversed the effect of ARHGAP6 knockdown on ferroptosis, while RhoA/ROCK1 signaling inhibition compromised the effect of ARHGAP6 on p38 MAPK signaling. In mice models, ARHGAP6 together with the ferroptosis inducer RSL3 cooperatively enhanced ferroptosis and inhibited tumor growth of cancer cells. ARHGAP6 mRNA level was positively correlated with that of ferroptosis indicators in tumor tissues. CONCLUSIONS: This study revealed that ARHGAP6 inhibited tumor growth of breast cancer by inducing ferroptosis via RhoA/ROCK1/p38 MAPK signaling. Integrating ARHGAP6 with ferroptosis-inducing agents may be a promising therapeutic strategy for breast cancer treatment.


Breast Neoplasms , Ferroptosis , GTPase-Activating Proteins , Animals , Female , Humans , Mice , Breast Neoplasms/genetics , Cyclooxygenase 2 , Ferroptosis/genetics , GTPase-Activating Proteins/genetics , Lipids , p38 Mitogen-Activated Protein Kinases/genetics , Reactive Oxygen Species , rho-Associated Kinases/genetics
18.
J Physiol Sci ; 74(1): 5, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38297223

BACKGROUND: Sepsis-induced acute lung injury (ALI) accounts for about 40% of ALI, accompanied by alveolar epithelial injury. The study aimed to reveal the role of circular RNA_0114428 (circ_0114428) in sepsis-induced ALI. METHODS: Human pulmonary alveolar epithelial cells (HPAEpiCs) were treated with lipopolysaccharide (LPS) to mimic a sepsis-induced ALI cell model. RNA expression of circ_0114428, miR-574-5p and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) was detected by qRT-PCR. Protein expression was checked by Western blotting. Cell viability, proliferation and apoptosis were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine (EdU) and flow cytometry analysis, respectively. The levels of pro-inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). Oxidative stress was analyzed by lipid peroxidation Malondialdehyde (MDA) and Superoxide Dismutase (SOD) activity detection assays. The interplay among circ_0114428, miR-574-5p and ROCK2 was identified by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. RESULTS: Circ_0114428 and ROCK2 expression were significantly increased, but miR-574-5p was decreased in blood samples from sepsis patients and LPS-stimulated HPAEpiCs. LPS treatment led to decreased cell viability and proliferation and increased cell apoptosis, inflammation and oxidative stress; however, these effects were relieved after circ_0114428 knockdown. Besides, circ_0114428 acted as a miR-574-5p sponge and regulated LPS-treated HPAEpiC disorders through miR-574-5p. Meanwhile, ROCK2 was identified as a miR-574-5p target, and its silencing protected against LPS-induced cell injury. Importantly, circ_0114428 knockdown inhibited ROCK2 production by interacting with miR-574-5p. CONCLUSION: Circ_0114428 knockdown protected against LPS-induced HPAEpiC injury through miR-574-5p/ROCK2 axis, providing a novel therapeutic target in sepsis-induced ALI.


Lung Injury , MicroRNAs , Sepsis , Humans , Alveolar Epithelial Cells , Lipopolysaccharides/pharmacology , rho-Associated Kinases/genetics , RNA, Circular/genetics , Apoptosis , Sepsis/genetics , MicroRNAs/genetics , Cell Proliferation
19.
Adv Clin Exp Med ; 33(3): 247-259, 2024 Mar.
Article En | MEDLINE | ID: mdl-37486699

BACKGROUND: The tolerance of cervical cancer to radiotherapy is a major factor affecting treatment outcomes. The miR-214-5p is involved in the regulation of biological processes such as tumor proliferation and metastasis. OBJECTIVES: The aim of the study was to explore the role of miR-214-5p and Rho-associated coiled-coil containing protein kinase 1 (ROCK1) in cervical cancer and their response to radiotherapy in cervical cancer patients. MATERIAL AND METHODS: Fifty-three cervical cancer tissue samples were collected to analyze the level of miR-214-5p in patients with different responses to radiotherapy. Cervical cancer cell lines with radiation resistance were selected to explore the role of miR-214-5p in radiosensitivity. The wound healing, transwell migration, clone formation assay, and in vivo analysis were utilized to evaluate the effect of miR-214-5p on the radiation sensitivity of cervical cancer cells. RESULTS: Patients with poor radiotherapy responses demonstrated low levels of miR-214-5p. The upregulation of miR-214-5p decreased migration and invasion ability of radiotherapy-resistant cells. The bioinformatic analysis showed that ROCK1 is a candidate target gene of miR-214-5p, and this was confirmed with dual luciferase reporter assay showing that miR-214-5p directly interacts with the 3'untranslated region (3'UTR) of ROCK1. Decreased ROCK1 improved the radiosensitivity of cervical cancer in vitro and in vivo, and the overexpression of ROCK1 decreased the radiosensitivity effect of miR-214-5p in cervical cancer cells. CONCLUSIONS: The miR-214-5p can regulate the radiation sensitivity of cervical cancer cells by targeting the mRNA of ROCK1 and regulating its expression.


MicroRNAs , Uterine Cervical Neoplasms , Female , Humans , MicroRNAs/genetics , Uterine Cervical Neoplasms/pathology , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Radiation Tolerance , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
20.
Kaohsiung J Med Sci ; 40(2): 161-174, 2024 Feb.
Article En | MEDLINE | ID: mdl-37873881

Temozolomide (TMZ) resistance presents a significant challenge in the treatment of gliomas. Although lysine demethylase 4A (KDM4A) has been implicated in various cancer-related processes, its role in TMZ resistance remains unclear. This study aims to elucidate the contribution of KDM4A to TMZ resistance in glioma cells and its potential implications for glioma prognosis. We assessed the expression of KDM4A in glioma cells (T98G and U251MG) using qRT-PCR and Western blot assays. To explore the role of KDM4A in TMZ resistance, we transfected siRNA targeting KDM4A into drug-resistant glioma cells. Cell viability was assessed using the CCK-8 assay and the TMZ IC50 value was determined. ChIP assays were conducted to investigate KDM4A, H3K9me3, and H3K36me3 enrichment on the promoters of ROCK2 and HUWE1. Co-immunoprecipitation confirmed the interaction between HUWE1 and ROCK2, and we examined the levels of ROCK2 ubiquitination following MG132 treatment. Notably, T98G cells exhibited greater resistance to TMZ than U251MG cells, and KDM4A displayed high expression in T98G cells. Inhibiting KDM4A resulted in decreased cell viability and a reduction in the TMZ IC50 value. Mechanistically, KDM4A promoted ROCK2 transcription by modulating H3K9me3 levels. Moreover, disruption of the interaction between HUWE1 and ROCK2 led to reduced ROCK2 ubiquitination. Inhibition of HUWE1 or overexpression of ROCK2 counteracted the sensitization effect of si-KDM4A on TMZ responsiveness in T98G cells. Our findings highlight KDM4A's role in enhancing TMZ resistance in glioma cells by modulating ROCK2 and HUWE1 transcription and expression through H3K9me3 and H3K36me3 removal.


Brain Neoplasms , Glioma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Histones/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Cell Line, Tumor , Glioma/genetics , Methylation , Drug Resistance, Neoplasm/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
...