Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Nat Commun ; 15(1): 5514, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951492

ABSTRACT

HIV-1 Vpr promotes efficient spread of HIV-1 from macrophages to T cells by transcriptionally downmodulating restriction factors that target HIV-1 Envelope protein (Env). Here we find that Vpr induces broad transcriptomic changes by targeting PU.1, a transcription factor necessary for expression of host innate immune response genes, including those that target Env. Consistent with this, we find silencing PU.1 in infected macrophages lacking Vpr rescues Env. Vpr downmodulates PU.1 through a proteasomal degradation pathway that depends on physical interactions with PU.1 and DCAF1, a component of the Cul4A E3 ubiquitin ligase. The capacity for Vpr to target PU.1 is highly conserved across primate lentiviruses. In addition to impacting infected cells, we find that Vpr suppresses expression of innate immune response genes in uninfected bystander cells, and that virion-associated Vpr can degrade PU.1. Together, we demonstrate Vpr counteracts PU.1 in macrophages to blunt antiviral immune responses and promote viral spread.


Subject(s)
HIV-1 , Immunity, Innate , Macrophages , Proto-Oncogene Proteins , Trans-Activators , vpr Gene Products, Human Immunodeficiency Virus , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , vpr Gene Products, Human Immunodeficiency Virus/metabolism , vpr Gene Products, Human Immunodeficiency Virus/genetics , HIV-1/physiology , HIV-1/immunology , Trans-Activators/metabolism , Trans-Activators/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , HIV Infections/immunology , HIV Infections/virology , HIV Infections/genetics , HEK293 Cells , Virion/metabolism , Protein Serine-Threonine Kinases
2.
J Chem Inf Model ; 64(8): 3360-3374, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38597744

ABSTRACT

HIV-1 Vpr is a multifunctional accessory protein consisting of 96 amino acids that play a critical role in viral pathogenesis. Among its diverse range of activities, Vpr can create a cation-selective ion channel within the plasma membrane. However, the oligomeric state of this channel has not yet been elucidated. In this study, we investigated the conformational dynamics of Vpr helices to model the ion channel topology. First, we employed a series of multiscale simulations to investigate the specific structure of monomeric Vpr in a membrane model. During the lipid bilayer self-assembly coarse grain simulation, the C-terminal helix (residues 56-77) effectively formed the transmembrane region, while the N-terminal helix exhibited an amphipathic nature by associating horizontally with a single leaflet. All-atom molecular dynamics (MD) simulations of full-length Vpr inside a phospholipid bilayer show that the C-terminal helix remains very stable inside the bilayer core in a vertical orientation. Subsequently, using the predicted C-terminal helix orientation and conformation, various oligomeric states (ranging from tetramer to heptamer) possibly forming the Vpr ion channel were built and further evaluated. Among these models, the pentameric form exhibited consistent stability in MD simulations and displayed a compatible conformation for a water-assisted ion transport mechanism. This study provides structural insights into the ion channel activity of the Vpr protein and the foundation for developing therapeutics against HIV-1 Vpr-related conditions.


Subject(s)
Ion Channels , Lipid Bilayers , Molecular Dynamics Simulation , vpr Gene Products, Human Immunodeficiency Virus , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , vpr Gene Products, Human Immunodeficiency Virus/chemistry , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Ion Channels/chemistry , Ion Channels/metabolism , Protein Conformation , HIV-1/chemistry
3.
Virol J ; 21(1): 97, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671522

ABSTRACT

BACKGROUND: Despite the existence of available therapeutic interventions for HIV-1, this virus remains a significant global threat, leading to substantial morbidity and mortality. Within HIV-1-infected cells, the accessory viral protein r (Vpr) exerts control over diverse biological processes, including cell cycle progression, DNA repair, and apoptosis. The regulation of gene expression through DNA methylation plays a crucial role in physiological processes, exerting its influence without altering the underlying DNA sequence. However, a thorough examination of the impact of Vpr on DNA methylation in human CD4 + T cells has not been conducted. METHODS: In this study, we employed base-resolution whole-genome bisulfite sequencing (WGBS), real-time quantitative RCR and western blot to explore the effect of Vpr on DNA methylation of host cells under HIV-1 infection. RESULTS: We observed that HIV-1 infection leads to elevated levels of global DNA methylation in primary CD4 + T cells. Specifically, Vpr induces significant modifications in DNA methylation patterns, particularly affecting regions within promoters and gene bodies. These alterations notably influence genes related to immune-related pathways and olfactory receptor activity. Moreover, Vpr demonstrates a distinct ability to diminish the levels of methylation in histone genes. CONCLUSIONS: These findings emphasize the significant involvement of Vpr in regulating transcription through the modulation of DNA methylation patterns. Together, the results of this investigation will considerably enhance our understanding of the influence of HIV-1 Vpr on the DNA methylation of host cells, offer potential avenues for the development of more effective treatments.


Subject(s)
CD4-Positive T-Lymphocytes , DNA Methylation , HIV Infections , HIV-1 , vpr Gene Products, Human Immunodeficiency Virus , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , HIV-1/genetics , HIV-1/physiology , HIV-1/immunology , vpr Gene Products, Human Immunodeficiency Virus/genetics , vpr Gene Products, Human Immunodeficiency Virus/metabolism , HIV Infections/virology , HIV Infections/immunology , HIV Infections/genetics , Promoter Regions, Genetic , Gene Expression Regulation
4.
Viruses ; 16(3)2024 03 09.
Article in English | MEDLINE | ID: mdl-38543785

ABSTRACT

HIV-1 encodes four accesory proteins in addition to its structural and regulatory genes. Uniquely amongst them, Vpr is abundantly present within virions, meaning it is poised to exert various biological effects on the host cell upon delivery. In this way, Vpr contributes towards the establishment of a successful infection, as evidenced by the extent to which HIV-1 depends on this factor to achieve full pathogenicity in vivo. Although HIV infects various cell types in the host organism, CD4+ T cells are preferentially targeted since they are highly permissive towards productive infection, concomitantly bringing about the hallmark immune dysfunction that accompanies HIV-1 spread. The last several decades have seen unprecedented progress in unraveling the activities Vpr possesses in the host cell at the molecular scale, increasingly underscoring the importance of this viral component. Nevertheless, it remains controversial whether some of these advances bear in vivo relevance, since commonly employed cellular models significantly differ from primary T lymphocytes. One prominent example is the "established" ability of Vpr to induce G2 cell cycle arrest, with enigmatic physiological relevance in infected primary T lymphocytes. The objective of this review is to present these discoveries in their biological context to illustrate the mechanisms whereby Vpr supports HIV-1 infection in CD4+ T cells, whilst identifying findings that require validation in physiologically relevant models.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , T-Lymphocytes/metabolism , vpr Gene Products, Human Immunodeficiency Virus/genetics , vpr Gene Products, Human Immunodeficiency Virus/metabolism , HIV-1/genetics , HIV Infections/metabolism , CD4-Positive T-Lymphocytes/metabolism
5.
BMC Infect Dis ; 23(1): 512, 2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37545000

ABSTRACT

HIV-associated neurocognitive disorders (HAND) are the result of the activity of HIV-1 within the central nervous system (CNS). While the introduction of antiretroviral therapy (ART) has significantly reduced the occurrence of severe cases of HAND, milder cases still persist. The persistence of HAND in the modern ART era has been linked to a chronic dysregulated inflammatory profile. There is increasing evidence suggesting a potential role of Viral protein R (Vpr) in dysregulating the neuroinflammatory processes in people living with HIV (PLHIV), which may contribute to the development of HAND. Since the role of Vpr in neuroinflammatory mechanisms has not been clearly defined, we conducted a scoping review of fundamental research studies on this topic. The review aimed to assess the size and scope of available research literature on this topic and provide commentary on whether Vpr contributes to neuroinflammation, as highlighted in fundamental studies. Based on the specified selection criteria, 10 studies (6 of which were cell culture-based and 4 that included both animal and cell culture experiments) were eligible for inclusion. The main findings were that (1) Vpr can increase neuroinflammatory markers, with studies consistently reporting higher levels of TNF-α and IL-8, (2) Vpr induces (neuro)inflammation via specific pathways, including the PI3K/AKT, p38-MAPk, JNK-SAPK and Sur1-Trpm4 channels in astrocytes and the p38 and JNK-SAPK in myeloid cells, and (3) Vpr-specific protein amino acid signatures (73R, 77R and 80A) may play an important role in exacerbating neuroinflammation and the neuropathophysiology of HAND. Therefore, Vpr should be investigated for its potential contribution to neuroinflammation in the development of HAND.


Subject(s)
HIV Infections , HIV-1 , Animals , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Neuroinflammatory Diseases , Phosphatidylinositol 3-Kinases/metabolism , HIV Infections/complications , HIV Infections/drug therapy , Inflammation/complications
6.
mBio ; 14(1): e0297322, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36602307

ABSTRACT

Gelsolin (GSN) is a structural actin-binding protein that is known to affect actin dynamics in the cell. Using mass spectrometry, we identified GSN as a novel Vpr-interacting protein. Endogenous GSN protein was expressed at detectable levels in monocyte-derived macrophages (MDM) and in THP-1 cells, but it was undetectable at the protein level in other cell lines tested. The HIV-1 infection of MDM was associated with a reduction in GSN steady-state levels, presumably due to the Vpr-induced degradation of GSN. Indeed, the coexpression of GSN and Viral protein R (Vpr) in transiently transfected HEK293T cells resulted in the Vpr-dependent proteasomal degradation of GSN. This effect was observed for Vprs from multiple virus isolates. The overexpression of GSN in HEK293T cells had no effect on Gag expression or particle release, but it reduced the expression and packaging of the HIV-1 envelope (Env) glycoprotein and reduced viral infectivity. An analysis of the HIV-1 splicing patterns did not reveal any GSN-dependent differences, suggesting that the effect of GSN on Env expression was regulated at a posttranscriptional level. Indeed, the treatment of transfected cells with lysosomal inhibitors reversed the effect of GSN on Env stability, suggesting that GSN reduced Env expression via enhanced lysosomal degradation. Our data identify GSN as a macrophage-specific host antiviral factor that reduces the expression of HIV-1 Env. IMPORTANCE Despite dramatic progress in drug therapies, HIV-1 infection remains an incurable disease that affects millions of people worldwide. The virus establishes long-lasting reservoirs that are resistant to currently available drug treatments and allow the virus to rebound whenever drug therapy is interrupted. Macrophages are long-lived cells that are relatively insensitive to HIV-1-induced cytopathicity and thus could contribute to the viral reservoir. Here, we identified a novel host factor, gelsolin, that is expressed at high levels in macrophages and inhibits viral infectivity by modulating the expression of the HIV-1 Env glycoprotein, which is critical in the spread of an HIV-1 infection. Importantly, the viral protein Vpr induces the degradation of gelsolin and thus counteracts its antiviral activity. Our study provides significant and novel insights into HIV-1 virus-host interactions and furthers our understanding of the importance of Vpr in HIV-1 infection and pathogenesis.


Subject(s)
HIV Infections , HIV-1 , Humans , vpr Gene Products, Human Immunodeficiency Virus/genetics , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Gelsolin/metabolism , Gene Products, env/metabolism , HEK293 Cells , Myeloid Cells/metabolism , Antiviral Agents/metabolism
7.
Eur J Clin Invest ; 53(5): e13943, 2023 May.
Article in English | MEDLINE | ID: mdl-36579370

ABSTRACT

BACKGROUND: The HIV viral protein R (Vpr) is a multifunction protein involved in the pathophysiology of HIV-1. Recent evidence has suggested that Vpr amino acid substitutions influence the pathophysiology of HIV-1 and clinical outcomes in people living with HIV (PLWH). Several studies have linked Vpr amino acid substitutions to clinical outcomes in PLWH; however, there is no clear consensus as to which amino acids or amino acid substitutions are most important in the pathophysiology and clinical outcomes in PLWH. We, therefore, conducted a systematic review of studies investigating Vpr amino acid substitutions and clinical outcomes in PLWH. METHODS: PubMed, Scopus and Web of Science databases were searched according to PRISMA guidelines using a search protocol designed specifically for this study. RESULTS: A total of 22 studies were included for data extraction, comprising 14 cross-sectional and 8 longitudinal studies. Results indicated that Vpr amino acid substitutions were associated with specific clinical outcomes, including disease progressions, neurological outcomes and treatment status. Studies consistently showed that the Vpr substitution 63T was associated with slower disease progression, whereas 77H and 85P were associated with no significant contribution to disease progression. CONCLUSIONS: Vpr-specific amino acid substitutions may be contributors to clinical outcomes in PLWH, and future studies should consider investigating the Vpr amino acid substitutions highlighted in this review.


Subject(s)
HIV Infections , HIV-1 , Humans , vpr Gene Products, Human Immunodeficiency Virus/genetics , vpr Gene Products, Human Immunodeficiency Virus/chemistry , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Substitution , Cross-Sectional Studies , HIV-1/genetics , HIV-1/metabolism , HIV Infections/drug therapy , Disease Progression
8.
Immunol Lett ; 249: 33-42, 2022 09.
Article in English | MEDLINE | ID: mdl-36055411

ABSTRACT

DCAF1 is considered to be a general substrate-recognizing subunit of E3 ligases, it has been implicated to be directly involved in different cellular processes. DCAF1 is also defined as a constitutive binding partner of viral protein R (Vpr) of the human immunodeficiency virus type 1 (HIV-1) and is essential for functions of Vpr. Here, we revealed that activation of NF-κB by virion-associated Vpr proteins highly depends on DCAF1, and that exogenous DCAF1 is capable of restraining NF-κB induction by external stimuli. Depletion of DCAF1 augments NF-κB activation. DCAF1 significantly inhibits the nuclear transportation of p65 through interactions with p65, after activation of the NF-κB pathway. Moreover, two main motifs of DCAF1 are identified to promote its inhibitory effects on the NF-κB pathway. Taken together, we propose a new role of DCAF1 in regulating cellular immune responses, beyond the function as a general adaptor for other cytokines or viral proteins.


Subject(s)
HIV-1 , vpr Gene Products, Human Immunodeficiency Virus , Carrier Proteins , Cytokines/metabolism , HIV-1/physiology , Humans , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism
9.
mBio ; 13(2): e0374821, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35384697

ABSTRACT

Integration site landscapes, clonal dynamics, and latency reversal with or without vpr were compared in HIV-1-infected Jurkat cell populations, and the properties of individual clones were defined. Clones differed in fractions of long terminal repeat (LTR)-active daughter cells, with some clones containing few to no LTR-active cells, while almost all cells were LTR active for others. Clones varied over 4 orders of magnitude in virus release per active cell. Proviruses in largely LTR-active clones were closer to preexisting enhancers and promoters than low-LTR-active clones. Unsurprisingly, major vpr+ clones contained fewer LTR-active cells than vpr- clones, and predominant vpr+ proviruses were farther from enhancers and promoters than those in vpr- pools. Distances to these marks among intact proviruses previously reported for antiretroviral therapy (ART)-suppressed patients revealed that patient integration sites were more similar to those in the vpr+ pool than to vpr- integrants. Complementing vpr-defective proviruses with vpr led to the rapid loss of highly LTR-active clones, indicating that the effect of Vpr on proviral populations occurred after integration. However, major clones in the complemented pool and its vpr- parent population did not differ in burst sizes. When the latency reactivation agents prostratin and JQ1 were applied separately or in combination, vpr+ and vpr- population-wide trends were similar, with dual-treatment enhancement being due in part to reactivated clones that did not respond to either drug applied separately. However, the expression signatures of individual clones differed between populations. These observations highlight how Vpr, exerting selective pressure on proviral epigenetic variation, can shape integration site landscapes, proviral expression patterns, and reactivation properties. IMPORTANCE A bedrock assumption in HIV-1 population modeling is that all active cells release the same amount of virus. However, the findings here revealed that when HIV-infected cells expand into clones, each clone differs in virus production. Reasoning that this variation in expression patterns constituted a population of clones from which differing subsets would prevail under differing environmental conditions, the cytotoxic HIV-1 protein Vpr was introduced, and population dynamics and expression properties were compared in the presence and absence of Vpr. The results showed that whereas most clones produced fairly continuous levels of virus in the absence of Vpr, its presence selected for a distinct subset of clones with properties reminiscent of persistent populations in patients, suggesting the possibility that the interclonal variation in expression patterns observed in culture may contribute to proviral persistence in vivo.


Subject(s)
HIV Seropositivity , HIV-1 , HIV-1/physiology , Humans , Jurkat Cells , Proviruses/genetics , vpr Gene Products, Human Immunodeficiency Virus/genetics , vpr Gene Products, Human Immunodeficiency Virus/metabolism
10.
Nat Commun ; 12(1): 6864, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824204

ABSTRACT

HIV-1 Vpr is a prototypic member of a large family of structurally related lentiviral virulence factors that antagonize various aspects of innate antiviral immunity. It subverts host cell DNA repair and protein degradation machineries by binding and inhibiting specific post-replication repair enzymes, linking them via the DCAF1 substrate adaptor to the Cullin 4 RING E3 ligase (CRL4DCAF1). HIV-1 Vpr also binds to the multi-domain protein hHR23A, which interacts with the nucleotide excision repair protein XPC and shuttles ubiquitinated proteins to the proteasome. Here, we report the atomic resolution structure of Vpr in complex with the C-terminal half of hHR23A, containing the XPC-binding (XPCB) and ubiquitin-associated (UBA2) domains. The XPCB and UBA2 domains bind to different sides of Vpr's 3-helix-bundle structure, with UBA2 interacting with the α2 and α3 helices of Vpr, while the XPCB domain contacts the opposite side of Vpr's α3 helix. The structure as well as biochemical results reveal that hHR23A and DCAF1 use overlapping binding surfaces on Vpr, even though the two proteins exhibit entirely different three-dimensional structures. Our findings show that Vpr independently targets hHR23A- and DCAF1- dependent pathways and highlight HIV-1 Vpr as a versatile module that interferes with DNA repair and protein degradation pathways.


Subject(s)
DNA Repair Enzymes/chemistry , DNA-Binding Proteins/chemistry , HIV-1/chemistry , vpr Gene Products, Human Immunodeficiency Virus/chemistry , Crystallography, X-Ray , DNA Repair , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , HIV-1/metabolism , Host-Pathogen Interactions , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Secondary , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism
11.
EMBO J ; 40(22): e108008, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34595758

ABSTRACT

The cullin-4-based RING-type (CRL4) family of E3 ubiquitin ligases functions together with dedicated substrate receptors. Out of the ˜29 CRL4 substrate receptors reported, the DDB1- and CUL4-associated factor 1 (DCAF1) is essential for cellular survival and growth, and its deregulation has been implicated in tumorigenesis. We carried out biochemical and structural studies to examine the structure and mechanism of the CRL4DCAF1 ligase. In the 8.4 Å cryo-EM map of CRL4DCAF1 , four CUL4-RBX1-DDB1-DCAF1 protomers are organized into two dimeric sub-assemblies. In this arrangement, the WD40 domain of DCAF1 mediates binding with the cullin C-terminal domain (CTD) and the RBX1 subunit of a neighboring CRL4DCAF1 protomer. This renders RBX1, the catalytic subunit of the ligase, inaccessible to the E2 ubiquitin-conjugating enzymes. Upon CRL4DCAF1 activation by neddylation, the interaction between the cullin CTD and the neighboring DCAF1 protomer is broken, and the complex assumes an active dimeric conformation. Accordingly, a tetramerization-deficient CRL4DCAF1 mutant has higher ubiquitin ligase activity compared to the wild-type. This study identifies a novel mechanism by which unneddylated and substrate-free CUL4 ligases can be maintained in an inactive state.


Subject(s)
Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cryoelectron Microscopy , Cullin Proteins/metabolism , Humans , Models, Molecular , Mutation , Protein Domains , Protein Multimerization , Protein Serine-Threonine Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination , vpr Gene Products, Human Immunodeficiency Virus/metabolism
12.
Chem Biodivers ; 18(12): e2100540, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34599555

ABSTRACT

Viral protein R (Vpr) is an accessory protein in Human immunodeficiency virus-1 (HIV-1) and has been suggested as an attractive target for HIV disease treatment. Investigations of the ethanolic extracts of twelve Thai herbs revealed that the extracts of the Punica granatum fruits, the Centella asiatica aerials, the Citrus hystrix fruit peels, the Caesalpinia sappan heartwoods, the Piper betel leaves, the Alpinia galangal rhizomes, the Senna tora seeds, the Zingiber cassumunar rhizomes, the Rhinacanthus nasutus leaves, and the Plumbago indica roots exhibited the anti-Vpr activity in HeLa cells harboring the TREx plasmid encoding full-length Vpr (TREx-HeLa-Vpr cells). Moreover, the investigation of the selected main constituents in Punica granatum, Centella asiatica, A. galangal, and Caesalpinia sappan indicated that punicalagin, asiaticoside, ellagic acid, madecassic acid, madecassoside, zingerone, brazilin, and asiatic acid possessed anti-Vpr activities at the 10 µM concentration. Among the tested extracts and compounds, the extracts from Centella asiatica and Citrus hystrix and the compounds, punicalagin and asiaticoside, showed the most potent anti-Vpr activities without any cytotoxicity, respectively.


Subject(s)
Hydrolyzable Tannins/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Triterpenes/pharmacology , vpr Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , HeLa Cells , Humans , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/isolation & purification , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Thailand , Triterpenes/chemistry , Triterpenes/isolation & purification , vpr Gene Products, Human Immunodeficiency Virus/metabolism
13.
Exp Cell Res ; 409(1): 112893, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34695436

ABSTRACT

Nuclear trafficking peptide (NTP), a cell-penetrating peptide (CPP) composed of 10 amino acids (aa) (RIFIHFRIGC), has potent nuclear trafficking activity. Recently, we established a protein-based cell engineering system by using NTP, but it remained elusive how NTP functions as a CPP with nuclear orientation. In the present study, we identified importin subunit ß1 (IMB1) and transportin 1 (TNPO1) as cellular proteins underlying the activity of NTP. These karyopherin nuclear transport receptors were identified as candidate molecules by liquid chromatography/mass spectrometry analysis, and downregulation of each protein by small interfering RNA significantly reduced NTP activity (P < 0.01). Biochemical analyses revealed that NTP bound directly to both molecules, and the forced expression of an IMB1 fragment (296-516 aa) or TNPO1 fragment (1-297 aa), which both contain binding sites to NTP, reduced nuclear NTP-green fluorescent protein (GFP) levels when it was added to cell culture medium. NTP is derived from viral protein R (Vpr) of human immunodeficiency virus-1, and Vpr enters the nucleus and exerts pleiotropic functions. Notably, Vpr bound directly to IMB1 and TNPO1, and its function was significantly impaired by the forced expression of the 296-516-aa fragment of IMB1 and 1-297-aa fragment of TNPO1. Interestingly, NTP completely blocked the physical association of Vpr with IMB1 and TNPO1. Although the nuclear localization mechanism of Vpr remains unknown, our data suggest that NTP functions as a novel nuclear localization signal of Vpr.


Subject(s)
Cell Nucleus/metabolism , Karyopherins/metabolism , Nuclear Localization Signals/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Active Transport, Cell Nucleus/physiology , Cell Line, Tumor , Cytoplasm/metabolism , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , beta Karyopherins/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism
14.
Mediators Inflamm ; 2021: 1267041, 2021.
Article in English | MEDLINE | ID: mdl-34483726

ABSTRACT

HIV-1 can incite activation of chemokine receptors, inflammatory mediators, and glutamate receptor-mediated excitotoxicity. The mechanisms associated with such immune activation can disrupt neuronal and glial functions. HIV-associated neurocognitive disorder (HAND) is being observed since the beginning of the AIDS epidemic due to a change in the functional integrity of cells from the central nervous system (CNS). Even with the presence of antiretroviral therapy, there is a decline in the functioning of the brain especially movement skills, noticeable swings in mood, and routine performance activities. Under the umbrella of HAND, various symptomatic and asymptomatic conditions are categorized and are on a rise despite the use of newer antiretroviral agents. Due to the use of long-lasting antiretroviral agents, this deadly disease is becoming a manageable chronic condition with the occurrence of asymptomatic neurocognitive impairment (ANI), symptomatic mild neurocognitive disorder, or HIV-associated dementia. In-depth research in the pathogenesis of HIV has focused on various mechanisms involved in neuronal dysfunction and associated toxicities ultimately showcasing the involvement of various pathways. Increasing evidence-based studies have emphasized a need to focus and explore the specific pathways in inflammation-associated neurodegenerative disorders. In the current review, we have highlighted the association of various HIV proteins and neuronal cells with their involvement in various pathways responsible for the development of neurotoxicity.


Subject(s)
AIDS Dementia Complex/immunology , AIDS Dementia Complex/virology , Central Nervous System/virology , HIV-1/metabolism , Viral Proteins/metabolism , AIDS Dementia Complex/physiopathology , Anti-Retroviral Agents/therapeutic use , Astrocytes/virology , Central Nervous System/physiopathology , Genome , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp41/metabolism , HIV Infections/complications , HIV Infections/metabolism , Human Immunodeficiency Virus Proteins/metabolism , Humans , Inflammation , Kynurenine/metabolism , Macrophages/virology , Microglia/virology , Neurons/virology , Oligodendroglia/virology , Receptors, N-Methyl-D-Aspartate/metabolism , Viral Load , Viral Regulatory and Accessory Proteins/metabolism , Viroporin Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , rev Gene Products, Human Immunodeficiency Virus/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism
15.
Nat Commun ; 12(1): 5543, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545078

ABSTRACT

N6,2'-O-dimethyladenosine (m6Am) is an abundant RNA modification located adjacent to the 5'-end of the mRNA 7-methylguanosine (m7G) cap structure. m6A methylation on 2'-O-methylated A at the 5'-ends of mRNAs is catalyzed by the methyltransferase Phosphorylated CTD Interacting Factor 1 (PCIF1). The role of m6Am and the function of PCIF1 in regulating host-pathogens interactions are unknown. Here, we investigate the dynamics and reprogramming of the host m6Am RNA methylome during HIV infection. We show that HIV infection induces a dramatic decrease in m6Am of cellular mRNAs. By using PCIF1 depleted T cells, we identify 2237 m6Am genes and 854 are affected by HIV infection. Strikingly, we find that PCIF1 methyltransferase function restricts HIV replication. Further mechanism studies show that HIV viral protein R (Vpr) interacts with PCIF1 and induces PCIF1 ubiquitination and degradation. Among the m6Am genes, we find that PCIF1 inhibits HIV infection by enhancing a transcription factor ETS1 (ETS Proto-Oncogene 1, transcription factor) stability that binds HIV promoter to regulate viral transcription. Altogether, our study discovers the role of PCIF1 in HIV-host interactions, identifies m6Am modified genes in T cells which are affected by viral infection, and reveals how HIV regulates host RNA epitranscriptomics through PCIF1 degradation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenosine/analogs & derivatives , HIV-1/metabolism , Nuclear Proteins/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism , 5' Untranslated Regions/genetics , Adenosine/metabolism , Genome, Viral , HIV Infections/virology , HIV-1/genetics , Humans , Methylation , Protein Stability , Proteolysis , Proto-Oncogene Mas , Proto-Oncogene Protein c-ets-1/metabolism , RNA/metabolism , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/genetics , Transcription, Genetic , Virus Replication
16.
Chem Pharm Bull (Tokyo) ; 69(9): 913-917, 2021.
Article in English | MEDLINE | ID: mdl-34470956

ABSTRACT

Two new trihydroxy derivative of Δ8(14),15-isopimarane diterpenoids, shanpanootols G (1) and H (2), along with three known analogues were isolated from the ethyl acetate-soluble extract of Kaempferia pulchra rhizomes collected in Shan State of Myanmar. The structures of these compounds including their absolute configurations were elucidated by the combination of one dimensional (1D) and 2D-NMR spectroscopic methods, high resolution mass spectrometric technique, and the experimental and the calculated electronic circular dichroism (ECD) data. The isopimarane diterpenoids (1-5) were tested for their Viral protein R (Vpr) inhibitory activities against TREx-HeLa-Vpr cells. Shanpanootol H (2) and (1R,2S,5S,9R,10S,13R)-1,2-dihydroxypimara-8(14),15-dien-7-one (4) exhibited anti-Vpr activities at the 5 µM treated dose.


Subject(s)
Diterpenes/pharmacology , Rhizome/chemistry , Zingiberaceae/chemistry , vpr Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , Diterpenes/chemistry , Diterpenes/isolation & purification , Molecular Conformation , Myanmar , vpr Gene Products, Human Immunodeficiency Virus/metabolism
17.
Diabetes ; 70(9): 2014-2025, 2021 09.
Article in English | MEDLINE | ID: mdl-34233931

ABSTRACT

Persons living with HIV (PLWH) manifest chronic disorders of brown and white adipose tissues that lead to diabetes and metabolic syndrome. The mechanisms that link viral factors to defective adipose tissue function and abnormal energy balance in PLWH remain incompletely understood. Here, we explored how the HIV accessory protein viral protein R (Vpr) contributes to adaptive thermogenesis in two mouse models and human adipose tissues. Uncoupling protein 1 (UCP1) gene expression was strongly increased in subcutaneous white adipose tissue (WAT) biopsy specimens from PLWH and in subcutaneous WAT of the Vpr mice, with nearly equivalent mRNA copy number. Histology and functional studies confirmed beige transformation in subcutaneous but not visceral WAT in the Vpr mice. Measurements of energy balance indicated Vpr mice displayed metabolic inflexibility and could not shift efficiently from carbohydrate to fat metabolism during day-night cycles. Furthermore, Vpr mice showed a marked inability to defend body temperature when exposed to 4°C. Importantly, Vpr couples higher tissue catecholamine levels with UCP1 expression independent of ß-adrenergic receptors. Our data reveal surprising deficits of adaptive thermogenesis that drive metabolic inefficiency in HIV-1 Vpr mouse models, providing an expanded role for viral factors in the pathogenesis of metabolic disorders in PLWH.


Subject(s)
Adipose Tissue, White/metabolism , Obesity/metabolism , Thermogenesis/physiology , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Adipose Tissue, Brown/metabolism , Adult , Body Temperature/physiology , Energy Metabolism/physiology , Female , Humans , Middle Aged , Uncoupling Protein 1/metabolism
18.
Chem Pharm Bull (Tokyo) ; 69(7): 702-705, 2021.
Article in English | MEDLINE | ID: mdl-34193719

ABSTRACT

A new brominated pyrrolactam stylissaol A (1) together with four known analogues, 2-bromoaldisine, aldisine, spongiacidin D, and Z-hymenialdisine, were isolated from the EtOAc extract of marine sponge Stylissa massa collected in Myanmar. The absolute configuration at C-10 of 1 was determined as R by the electronic circular dichroism (ECD) data. Among the isolated compounds, 2-bromoaldisine showed anti-Viral Protein R (Vpr) activity against TREx-HeLa-Vpr cells with an effective dose of 10 µM and its potency was comparable to that of positive control damnacanthal.


Subject(s)
Alkaloids/chemistry , Antiviral Agents/chemistry , Porifera/chemistry , Alkaloids/isolation & purification , Alkaloids/metabolism , Animals , Antiviral Agents/isolation & purification , Antiviral Agents/metabolism , Circular Dichroism , HeLa Cells , Humans , Molecular Conformation , Myanmar , Porifera/metabolism , vpr Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , vpr Gene Products, Human Immunodeficiency Virus/genetics , vpr Gene Products, Human Immunodeficiency Virus/metabolism
19.
Nat Commun ; 12(1): 3691, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140527

ABSTRACT

The HIV-1 accessory proteins Vif, Vpu, and Nef can promote infection by overcoming the inhibitory effects of the host cell restriction factors APOBEC3G, Tetherin, and SERINC5, respectively. However, how the HIV-1 accessory protein Vpr enhances infection in macrophages but not in CD4+ T cells remains elusive. Here, we report that Vpr counteracts lysosomal-associated transmembrane protein 5 (LAPTM5), a potent inhibitor of HIV-1 particle infectivity, to enhance HIV-1 infection in macrophages. LAPTM5 transports HIV-1 envelope glycoproteins to lysosomes for degradation, thereby inhibiting virion infectivity. Vpr counteracts the restrictive effects of LAPTM5 by triggering its degradation via DCAF1. In the absence of Vpr, the silencing of LAPTM5 precisely phenocopied the effect of Vpr on HIV-1 infection. In contrast, Vpr did not enhance HIV-1 infection in the absence of LAPTM5. Moreover, LAPTM5 was highly expressed in macrophages but not in CD4+ T lymphocytes. Re-expressing LAPTM5 reconstituted the Vpr-dependent promotion of HIV-1 infection in primary CD4+ T cells, as observed in macrophages. Herein, we demonstrate the molecular mechanism used by Vpr to overcome LAPTM5 restriction in macrophages, providing a potential strategy for anti-HIV/AIDS therapeutics.


Subject(s)
HIV Infections/metabolism , HIV-1/metabolism , Host Microbial Interactions , Macrophages/metabolism , Macrophages/virology , Membrane Proteins/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Gene Silencing , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , HIV-2/metabolism , HIV-2/pathogenicity , Host Microbial Interactions/genetics , Humans , Lysosomes/metabolism , Membrane Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Stability , Simian Immunodeficiency Virus/metabolism , Simian Immunodeficiency Virus/pathogenicity , Ubiquitin-Protein Ligases/metabolism , Up-Regulation , Virion/metabolism
20.
Viruses ; 13(6)2021 05 21.
Article in English | MEDLINE | ID: mdl-34064066

ABSTRACT

Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19), enters cells through attachment to the human angiotensin converting enzyme 2 (hACE2) via the receptor-binding domain (RBD) in the surface/spike (S) protein. Several pseudotyped viruses expressing SARS-CoV-2 S proteins are available, but many of these can only infect hACE2-overexpressing cell lines. Here, we report the use of a simple, two-plasmid, pseudotyped virus system comprising a SARS-CoV-2 spike-expressing plasmid and an HIV vector with or without vpr to investigate the SARS-CoV-2 entry event in various cell lines. When an HIV vector without vpr was used, pseudotyped SARS-CoV-2 viruses produced in the presence of fetal bovine serum (FBS) were able to infect only engineered hACE2-overexpressing cell lines, whereas viruses produced under serum-free conditions were able to infect a broader range of cells, including cells without hACE2 overexpression. When an HIV vector containing vpr was used, pseudotyped viruses were able to infect a broad spectrum of cell types regardless of whether viruses were produced in the presence or absence of FBS. Infection sensitivities of various cell types did not correlate with mRNA abundance of hACE2, TMPRSS2, or TMPRSS4. Pseudotyped SARS-CoV-2 viruses and replication-competent SARS-CoV-2 virus were equally sensitive to neutralization by an anti-spike RBD antibody in cells with high abundance of hACE2. However, the anti-spike RBD antibody did not block pseudotyped viral entry into cell lines with low abundance of hACE2. We further found that CD147 was involved in viral entry in A549 cells with low abundance of hACE2. Thus, our assay is useful for drug and antibody screening as well as for investigating cellular receptors, including hACE2, CD147, and tyrosine-protein kinase receptor UFO (AXL), for the SARS-CoV-2 entry event in various cell lines.


Subject(s)
HIV/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/physiology , Virus Internalization , Caco-2 Cells , Cell Line , Genetic Vectors , HEK293 Cells , Humans , Plasmids , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Transfection , vpr Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL