ABSTRACT
Field pea seeds have long been recognized as valuable feed ingredients for animal diets, due to their high-quality protein and starch digestibility. However, the chemical composition of pea cultivars can vary across different growing locations, consequently impacting their nutrient profiles. This study employs untargeted metabolomics in conjunction with the quantification of fatty acids and amino acids to explore the influence of three different growing locations in Spain (namely Andalusia, Aragon and Asturias), on the nutritional characteristics of seeds of various pea cultivars. Significant interactions between cultivar and environment were observed, with 121 metabolites distinguishing pea profiles. Lipids, lipid-like molecules, phenylpropanoids, polyketides, carbohydrates, and amino acids were the most affected metabolites. Fatty acid profiles varied across locations, with higher C16:0, C18:0, and 18:1 n-9 concentration in Aragón, while C18:2 n-6 predominated in Asturias and C18:3 n-3 in Andalusia. Amino acid content was also location-dependent, with higher levels in Asturias. These findings underscore the impact of environmental factors on pea metabolite profiles and emphasize the importance of selecting pea cultivars based on specific locations and animal requirements. Enhanced collaboration between research and industry is crucial for optimizing pea cultivation for animal feed production.
Subject(s)
Amino Acids , Animal Feed , Fatty Acids , Nutritive Value , Pisum sativum , Seeds , Pisum sativum/metabolism , Pisum sativum/chemistry , Pisum sativum/growth & development , Animal Feed/analysis , Amino Acids/metabolism , Amino Acids/analysis , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Fatty Acids/metabolism , Fatty Acids/analysis , Animals , Spain , MetabolomicsABSTRACT
The underlying toxicity mechanisms of microplastics on oysters have rarely been explored. To fill this gap, the present study investigated the metabolic profile and protein expression responses of oysters to microplastic stress through metabolomics and biochemical analyses. Oysters were exposed to microplastics for 21 days, and the results indicated that the microplastics induced oxidative stress, with a significant decrease in SOD activity in the 0.1 mg/L exposure group. Metabolomics revealed that exposure to microplastics disturbed many metabolic pathways, such as amino acid metabolism, lipid metabolism, biosynthesis of amino acids, aminoacyl-tRNA biosynthesis, and that different concentrations of microplastics induced diverse metabolomic profiles in oysters. Overall, the current study provides new reference data and insights for assessing food safety and consumer health risks caused by microplastic contamination.
Subject(s)
Crassostrea , Microplastics , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Animals , Crassostrea/metabolism , Crassostrea/drug effects , Crassostrea/chemistry , Microplastics/metabolism , Water Pollutants, Chemical/metabolism , Oxidative Stress/drug effects , Polystyrenes/chemistry , Polystyrenes/metabolism , Metabolome/drug effects , Shellfish/analysis , Metabolomics , Food Contamination/analysisABSTRACT
To improve the adsorption affinity and selectivity of fipronils (FPNs), including fipronil, its metabolites and analogs, a magnetic covalent organic framework (Fe3O4@COF-F) with copious fluorine affinity sites was innovatively designed as an adsorbent of magnetic solid-phase extraction (MSPE). The enhanced surface area, pore size, crystallinity of Fe3O4@COF-F and its exponential adsorption capacities (187.3-231.5 mg g-1) towards fipronils were investigated. Combining MSPE with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), an analytical method was established for the selective determination of fipronils in milk and milk powder samples. This method achieved high sensitivity (LODs: 0.004-0.075 ng g-1), satisfactory repeatability and accuracy with spiked recoveries ranging from 89.9% to 100.3% (RSDs≤5.1%). Overall, the constructed Fe3O4@COF-F displayed great potential for the selective enrichment of fipronils, which could be ascribed to fluorinefluorine interaction. This method proposed a feasible and promising strategy for the development of functionalized COF and broadened its application in fluorine containing hazards detection.
Subject(s)
Fluorine , Food Contamination , Metal-Organic Frameworks , Milk , Pyrazoles , Solid Phase Extraction , Tandem Mass Spectrometry , Pyrazoles/chemistry , Food Contamination/analysis , Fluorine/chemistry , Milk/chemistry , Animals , Metal-Organic Frameworks/chemistry , Adsorption , Chromatography, High Pressure Liquid , Insecticides/chemistry , Insecticides/analysis , Limit of DetectionABSTRACT
The use of direct injection ion mobility mass spectrometry (DI-IM-MS) to detect and identify betacyanin pigments in A. hortensis 'rubra' extracts was explored for the first time, with results compared to conventional LC-MS/MS analysis. The anti-inflammatory activities of leaf and seed extracts, alongside purified amaranthin and celosianin pigments, were investigated using a model of lipopolysaccharide (LPS)-activated murine macrophages. Extracts and purified pigments significantly inhibited the production of prostaglandin E2 and NO by up to 90% and 70%, respectively, and reduced the expression of Il6, Il1b, Nos2, and Cox2. Leaf and seed extracts also decreased secretion of Il6 and Il1b cytokines and reduced protein levels of Nos2 and Cox2. Furthermore, extracts and purified pigments demonstrated potent dose-dependent radical scavenging activity in a cellular antioxidant activity assay (CAA) without any cytotoxic effects. Our research highlights the promising biological potential of edible, climate-resilient A. hortensis 'rubra' as a valuable source of bioactive compounds.
Subject(s)
Lipopolysaccharides , Macrophages , Oxidative Stress , Plant Extracts , Mice , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , RAW 264.7 Cells , Oxidative Stress/drug effects , Macrophages/drug effects , Macrophages/immunology , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cyclooxygenase 2/genetics , Cyclooxygenase 2/immunology , Cyclooxygenase 2/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Tandem Mass SpectrometryABSTRACT
The quality of meat in prepared dishes deteriorates due to excessive protein denaturation resulting from precooking, freezing, and recooking. This study aimed to link the precooked state with chicken breast's recooked quality. Cooked Value (CV), based on protein denaturation kinetics, was established to indicate the doneness of meat during pre-heating. The effects of CVs after pre-heating on recooked qualities were investigated compared to fully pre-heated samples (control). Mild pre-heating reduced water migration and loss. While full pre-heating inhibited protein oxidation during freezing, intense oxidation during pre-heating led to higher oxidation levels. Surface hydrophobicity analysis revealed that mild pre-heating suppressed aggregation during recooking. These factors contributed to a better texture and microstructure of prepared meat with mild pre-heating. Finally, a potential mechanism of how pre-heating affects final qualities was depicted. This study underlines the need for finely controlling the industrial precooking process to regulate the quality of prepared meat.
Subject(s)
Chickens , Cooking , Hot Temperature , Meat , Oxidation-Reduction , Protein Denaturation , Water , Animals , Kinetics , Meat/analysis , Water/chemistry , Hydrophobic and Hydrophilic InteractionsABSTRACT
In this study, we focused on the successful construction of [(4,4'-bipy/P2Mo17Co)6] modified electrodes using the layer-by-layer assembly method for the sensitive detection of sulfathiazole (ST). The redox reaction between ST and the metal ions in the modified layer leads to the transfer of electrons, resulting in the generation of the electrical signal. The introduction of 4,4'-bipyridine (4,4'-bipy) enhanced the molecular recognition of ST by the modified electrode. Under the combined effect of P2Mo17Co and 4,4'-bipy, the sensor exhibited good performance for ST detection (LOD: 0.5616 µM, linear ST concentration range: 0-50 µM). The spiked recoveries of the two groups were 84.4%-103.2% and 90.9%-109.4% for the determination of ST residues in large yellow croaker and South American white shrimp, respectively. In addition, the electrode showed excellent performance in terms of stability, reproducibility, and anti-interference ability.
Subject(s)
Electrochemical Techniques , Electrodes , Sulfathiazole , Electrochemical Techniques/instrumentation , Animals , Sulfathiazole/chemistry , Food Contamination/analysis , Sulfathiazoles/chemistry , Sulfathiazoles/analysis , Limit of Detection , Penaeidae/chemistry , Oxidation-ReductionABSTRACT
Sturgeon, with 4 times higher lipid content than silver carp (ubiquitously applied for surimi production in China), affects surimi gelling properties. However, how the flesh lipids affect gelling properties remains unclear. This study investigated how flesh lipids impact surimi gelling properties and elucidated the interaction mechanism between lipids and proteins. Results revealed yellow meat contains 7 times higher lipids than white meat. Stronger ionic protein-protein interactions were replaced by weaker hydrophobic forces and hydrogen bonds in protein-lipid interaction. Protein-lipid interaction zones encapsulated lipid particles, changing protein structure from α-helix to ß-sheet structure thereby gel structure becomes flexible and disordered, significantly diminishing surimi gel strength. Docking analysis validated fatty acid mainly binding at Ala577, Ile461, Arg231, Phe165, His665, and His663 of myosin. This study first reported the weakened surimi gelling properties from the perspective of free fatty acids and myosin interactions, offering a theoretical basis for sturgeon surimi production.
Subject(s)
Fish Proteins , Fishes , Gels , Lipids , Animals , Gels/chemistry , Lipids/chemistry , Fish Proteins/chemistry , Fish Proteins/metabolism , Fish Products/analysis , Hydrophobic and Hydrophilic Interactions , Hydrogen Bonding , Myosins/chemistry , Myosins/metabolism , Molecular Docking Simulation , Fatty Acids/chemistry , Fatty Acids/metabolism , Carps/metabolism , Protein BindingABSTRACT
Fortification of human milk (HM) is often necessary to meet the nutritional requirements of preterm infants. The present experiment aimed to establish whether the supplementation of HM with either an experimental donkey milk-derived fortifier containing whole donkey milk proteins, or with a commercial bovine milk-derived fortifier containing hydrolyzed bovine whey proteins, affects peptide release differently during digestion. The experiment was conducted using an in vitro dynamic system designed to simulate the preterm infant's digestion followed by digesta analysis by means of LC-MS-MS. The different fortifiers did not appear to influence the cumulative intensity of HM peptides. Fortification had a differential impact on the release of either donkey or bovine bioactive peptides. Donkey milk peptides showed antioxidant/ACE inhibitory activities, while bovine peptides showed opioid, dipeptil- and propyl endo- peptidase inhibitory and antimicrobial activity. A slight delay in peptide release from human lactoferrin and α-lactalbumin was observed when HM was supplemented with donkey milk-derived fortifier.
Subject(s)
Digestion , Equidae , Milk Proteins , Milk, Human , Peptides , Humans , Animals , Milk, Human/chemistry , Milk, Human/metabolism , Milk Proteins/chemistry , Milk Proteins/metabolism , Milk Proteins/analysis , Cattle , Peptides/chemistry , Peptides/metabolism , Food, Fortified/analysis , Tandem Mass Spectrometry , Models, Biological , Whey Proteins/chemistry , Whey Proteins/metabolismABSTRACT
A modified QuEChERS method was developed to determine multi-class pesticide and veterinary residues in aquatic products. Chitosan microspheres were conveniently synthesized and utilized as the cleanup adsorbent in the QuEChERS procedure, showcasing rapid filtration one-step pretreatment ability for the determination of drug multi-residues in aquatic products. Compared to conventional synthetic sorbents, chitosan microspheres not only have good purification performance, but also have renewable and degradable properties. This novel sorbent worked well in the simultaneous determination of 95 pesticides and veterinary drug residues in aquatic products after being combined with an improved one-step vortex oscillating cleanup method. We achieved recoveries ranging from 64.0% to 115.9% for target drugs in shrimp and fish matrix. The limits of detection and quantification were 0.5-1.0 and 1.0-2.0 µg kg-1, respectively. Notably, hydrocortisone was detected with considerable frequency and concentration in the tested samples, underscoring the necessity for stringent monitoring of this compound in aquatic products.
Subject(s)
Chitosan , Fishes , Microspheres , Tandem Mass Spectrometry , Veterinary Drugs , Animals , Chitosan/chemistry , Chromatography, High Pressure Liquid , Veterinary Drugs/analysis , Veterinary Drugs/isolation & purification , Food Contamination/analysis , Drug Residues/analysis , Drug Residues/isolation & purification , Drug Residues/chemistry , Pesticides/isolation & purification , Pesticides/analysis , Pesticides/chemistry , Pesticide Residues/isolation & purification , Pesticide Residues/analysis , Pesticide Residues/chemistry , Adsorption , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Seafood/analysis , Shellfish/analysis , Liquid Chromatography-Mass SpectrometryABSTRACT
The storage and processing of Litopenaeus vannamei are often challenged by the freeze-thaw (F-T) cycle phenomenon. This study delved into the influence of pretreatment with l-arginine (Arg) and l-lysine (Lys) on the myofibrillar proteins oxidation and quality of shrimp subjected to F-T cycles. Arg and Lys pretreatment notably improved water-holding capacity (WHC), textural integrity as well as the myofibrillar structure of the shrimps. A lesser reduction in the amounts of immobile and bound water was found in the amino acid-treated groups, and the oxidation of lipids and proteins were both decelerated. Molecular simulation results indicated that Arg and Lys could form hydrogen and salt-bridge bonds with myosin, enhancing the stability of Litopenaeus vannamei. The study concludes that Arg and Lys are effective in alleviating the adverse effects of F-T cycles on the quality of Litopenaeus vannamei, and provides a new solution for the quality maintenance during storage and processing.
Subject(s)
Arginine , Lysine , Muscle Proteins , Oxidation-Reduction , Penaeidae , Animals , Penaeidae/chemistry , Arginine/chemistry , Lysine/chemistry , Muscle Proteins/chemistry , Freezing , Food Preservation/methods , Shellfish/analysis , Myofibrils/chemistryABSTRACT
Inflammatory bowel disease is a multifaceted condition that is influenced by nutritional, microbial, environmental, genetic, psychological, and immunological factors. Polyphenols and polysaccharides have gained recognition for their therapeutic potential. This review emphasizes the biological effects of polyphenols and polysaccharides, and explores their antioxidant, anti-inflammatory, and microbiome-modulating properties in the management of inflammatory bowel disease (IBD). However, polyphenols encounter challenges, such as low stability and low bioavailability in the colon during IBD treatment. Hence, polysaccharide-based encapsulation is a promising solution to achieve targeted delivery, improved bioavailability, reduced toxicity, and enhanced stability. This review also discusses the significance of covalent and non-covalent interactions, and simple and complex encapsulation between polyphenols and polysaccharides. The administration of these compounds in appropriate quantities has proven beneficial in preventing the development of Crohn's disease and ulcerative colitis, ultimately leading to the management of IBD. The use of polyphenols and polysaccharides has been found to reduce histological scores and colon injury associated with IBD, increase the abundance of beneficial microbes, inhibit the development of colitis-associated cancer, promote the production of microbial end-products, such as short-chain fatty acids (SCFAs), and improve anti-inflammatory properties. Despite the combined effects of polyphenols and polysaccharides observed in both in vitro and in vivo studies, further human clinical trials are needed to comprehend their effectiveness on inflammatory bowel disease.
Subject(s)
Anti-Inflammatory Agents , Inflammatory Bowel Diseases , Polyphenols , Polysaccharides , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/administration & dosage , Humans , Polysaccharides/chemistry , Polysaccharides/pharmacology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Gastrointestinal Microbiome/drug effects , Antioxidants/chemistry , Antioxidants/pharmacologyABSTRACT
Making health-enhancing tea from Forsythia suspensa leaves has been a tradition of Chinese folk culture for centuries. However, these leaves were not officially recognized as a new food source until 2017 by the Chinese government. In this study, ethyl acetate fractions from Forsythia suspensa fruit and leaves exhibited excellent antioxidant activity in vitro antioxidant assays and in vivo D-galactose-induced aging mice model. The antioxidant activity of the leaves was higher than that of fruit both in vitro and in vivo. The chemical constituents present in these ethyl acetate fractions were comprehensively analyzed using UHPLC-Q-Exactive-Orbitrap/MS. A total of 20 compounds were identified, among which forsythoside E, (+)-epipinoresinol, dihydromyricetin, chlorogenic acid, and ursolic acid were exclusively detected in the ethyl acetate fraction of Forsythia suspensa leaves, but absent in the ethyl acetate fraction derived from its fruit. This study provides theoretical support for the utilization of Forsythia suspensa fruit and leaves.
Subject(s)
Aging , Antioxidants , Forsythia , Fruit , Galactose , Plant Extracts , Plant Leaves , Animals , Forsythia/chemistry , Plant Leaves/chemistry , Mice , Fruit/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Antioxidants/chemistry , Antioxidants/pharmacology , Aging/drug effects , Male , Humans , Mass SpectrometryABSTRACT
In this study, covalent organic frameworks (COFs) were grown in situ on magnetic nitrogen-doped graphene foam (MNGF), and the resulting composite of COFs-modified MNGF (MNC) was wrapped by molecularly imprinted polymers (MNC@MIPs) for specifically capturing SAs. A magnetic solid phase extraction (MSPE) method for SAs was established using MNC@MIPs with good magnetic responsiveness. The adsorption performance of MNC@MIPs was superior to that of non-molecularly imprinted polymers (MNC@NIPs), with shorter adsorption/desorption time and higher imprinting factors. A high-efficiency SAs analytical method was developed by fusing HPLC and MNC@MIPs-based MSPE. This approach provides excellent precision, a low detection limit, and wide linearity. By analyzing fish samples, the feasibility of the approach was confirmed, with SAs recoveries and relative standard deviations in spiked samples in the ranges of 77.2-112.7 % and 2.0-7.2 %, respectively. This study demonstrated the potential use of MNC@MIPs-based MSPE for efficient extraction and quantitation of trace hazards in food.
Subject(s)
Fishes , Food Contamination , Metal-Organic Frameworks , Molecularly Imprinted Polymers , Solid Phase Extraction , Sulfonamides , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Animals , Molecularly Imprinted Polymers/chemistry , Adsorption , Food Contamination/analysis , Metal-Organic Frameworks/chemistry , Sulfonamides/isolation & purification , Sulfonamides/chemistry , Sulfonamides/analysis , Molecular Imprinting , Polymers/chemistryABSTRACT
Various strategies are being explored to reduce the formation of undesirable compounds during the thermal processing of foods. This study investigates the impact of incorporating annatto seed powder (Bixa orellana L.) into beef patties to reduce the formation of heterocyclic amines (HAs) during charcoal-grilling and pan-frying. A three-level full factorial design was used to assess the effect of both annatto seed powder concentration and cooking times on HAs formation. The results showed that HA formation increased with longer cooking times and decreased with higher concentrations of annatto seed powder. A significant reduction in HA content was observed in both charcoal-grilled and pan-fried beef patties when annatto seed powder was added, with a particularly notable 91 % reduction at the 1 % addition level. These findings demonstrate that the addition of annatto seed powder is a highly effective strategy for reducing HA formation in beef patties. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (PubChem CID: 62275); 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (PubChem CID: 104739); 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx) (PubChem CID: 104855); 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (PubChem CID: 1530); 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) (PubChem CID: 5284474); 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) (PubChem CID: 5284476); 2-amino-9H-pyrido[2,3-b]indole (AαC) (PubChem CID: 62805); 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) (PubChem CID: 62244); Bixin (PubChem CID: 5281226).
Subject(s)
Amines , Charcoal , Cooking , Plant Extracts , Seeds , Seeds/chemistry , Cattle , Animals , Amines/chemistry , Amines/analysis , Charcoal/chemistry , Plant Extracts/chemistry , Bixaceae/chemistry , Powders/chemistry , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/analysis , Hot Temperature , Meat Products/analysis , CarotenoidsABSTRACT
The Atlantic salmon is an extremely popular fish for its nutritional value and unique taste among several fish species. Researchers are focusing on the utilization of Atlantic salmon waste for generating protein hydrolysates rich in peptides and amino acids and investigating their health benefits. Several technological approaches, including enzymatic, chemical, and the recently developed subcritical water hydrolysis, are currently used for the production of Atlantic salmon waste protein hydrolysates. Hydrolyzing various wastes, e.g., heads, bones, skin, viscera, and trimmings, possessing antioxidant, blood pressure regulatory, antidiabetic, and anti-inflammatory properties, resulting in applications in human foods and nutraceuticals, animal farming, pharmaceuticals, cell culture, and cosmetics industries. Furthermore, future applications, constraints several challenges associated with industrial hydrolysate production, including sensory, safety, and economic constraints, which could be overcome by suggested techno processing measures. Further studies are recommended for developing large-scale, commercially viable production methods, focusing on eradicating sensory constraints and facilitating large-scale application.
Subject(s)
Fish Proteins , Protein Hydrolysates , Salmo salar , Animals , Salmo salar/metabolism , Protein Hydrolysates/chemistry , Fish Proteins/chemistry , Fish Proteins/metabolism , Humans , Hydrolysis , Waste Products/analysisABSTRACT
Type II collagen (Col II) and chondroitin sulfate (CS) are the main macromolecules in the extracellular matrix. This study investigated the characteristics of Col II and CS obtained from chicken sternal cartilage (CSC) via enzymatic hydrolysis for various treatment times. For Col II and CS, the highest efficiency of enzymatic hydrolysis was achieved after 24 and 6 h of treatment, respectively. The average molecular weights were α1 chain-130 kDa, ß chain-270 kDa for Col II, and 80.27 kDa for CS. Fourier transform infrared spectroscopy revealed that the Col II samples maintained their triple-helical structure and that the predominant type of CS was chondroitin-4-sulfate. Scanning electron microscopy revealed that the Col II and CS samples possessed fibrillar and clustered structures, respectively. This study suggests that collagen and CS obtained from CSC can be used as promising molecules for application in food and pharmaceutical industries.
Subject(s)
Cartilage , Chickens , Chondroitin Sulfates , Collagen Type II , Animals , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/isolation & purification , Cartilage/chemistry , Collagen Type II/chemistry , Collagen Type II/metabolism , Molecular Weight , Sternum/chemistry , Hydrolysis , Spectroscopy, Fourier Transform InfraredABSTRACT
High-moisture extrusion technique with the advantage of high efficiency and low energy consumption is a promising strategy for processing Antarctic krill meat. Consequently, this study aimed to prepare high-moisture textured Antarctic krill meat (HMTAKM) with a rich fiber structure at different water contents (53 %, 57 %, and 61 %) and to reveal the binding and distribution regularity of water molecules, which is closely related to the fiber structure of HMTAKM and has been less studied. The hydrogen-bond network results indicated the presence of at least two or more types of water molecules with different hydrogen bonds. Increasing the water content of HMTAKM promoted the formation of hydrogen bonds between the water molecules and protein molecules, leading to the transition of the ß-sheet to the α-helix. These findings offer a novel viable processing technique for Antarctic krill and a new understanding of the fiber formation of high-moisture textured proteins.
Subject(s)
Euphausiacea , Hydrogen Bonding , Water , Euphausiacea/chemistry , Animals , Water/chemistry , Water/metabolism , Antarctic Regions , Meat/analysis , Food HandlingABSTRACT
This study aimed to develop a double-layer film composed of an intelligent, gelatin-based film integrated with active polyvinyl alcohol electrospun nanofibers (PVANFs). Eggplant skin extract (ESE), a colorimetric indicator, was incorporated into the gelatin-based film at varying concentrations ranging from 0 % to 8 % w/w. The gelatin film containing 8 % ESE was identified as the optimal formulation based on its superior color indication, water barrier, and mechanical properties. Savory essential oil (SEO)-loaded PVANFs were electrospun onto the optimized gelatin film to fabricate the double-layer film. Analysis of the chemical and crystalline structures and the double-layer film's thermal properties confirmed the gelatin film's physical integration with PVANFs. Morphological examination revealed a smooth surface on the film and a uniform fibrillar structure within the PVANFs. Furthermore, the developed double-layer film effectively detected spoilage in trout fish while controlling pH, oxidation, and microbial changes during storage.
Subject(s)
Food Packaging , Gelatin , Nanofibers , Polyvinyl Alcohol , Gelatin/chemistry , Nanofibers/chemistry , Polyvinyl Alcohol/chemistry , Food Packaging/instrumentation , Animals , Fish Products/analysis , Food Preservation/instrumentation , Food Preservation/methodsABSTRACT
Hydrophobic bioactive compounds like astaxanthin (AST) exhibit poor water solubility and low bioavailability. Liposomes, which serve as nanocarriers, are known for their excellent biocompatibility and minimal immunogenicity. Traditionally, liposomes have been primarily constructed using phospholipids and cholesterol. However, the intake of cholesterol may pose a risk to human health. Phytosterol ester was reported to reduce level of cholesterol and improve properties of liposomes. In this study, phytosterol oleate was used to prepare liposomes instead of cholesterol to deliver AST (AST-P-Lip). The size range of AST-P-Lip was 100-220 nm, and the morphology was complete and uniform. In vitro studies showed that AST-P-Lip significantly enhanced the antioxidant activity and oral bioavailability of AST. During simulated digestion, AST-P-Lip protected AST from damage by gastric and intestinal digestive fluid. Additionally, AST-P-Lip had a good storage stability and safety. These results provide references for the preparation of novel liposomes and the delivery of bioactive compounds.
Subject(s)
Cholesterol , Liposomes , Phytosterols , Xanthophylls , Liposomes/chemistry , Xanthophylls/chemistry , Xanthophylls/pharmacology , Xanthophylls/administration & dosage , Humans , Phytosterols/chemistry , Phytosterols/pharmacology , Phytosterols/administration & dosage , Cholesterol/chemistry , Particle Size , Biological Availability , Oleic Acid/chemistry , Drug Compounding , Animals , Antioxidants/chemistry , Antioxidants/pharmacologyABSTRACT
Benzoic acids, which are commonly found in food, are also produced by human microbiota from other dietary phenolics. The aim was to investigate the interactions of 8 food-related benzoic acids with the physiological metals iron and copper under different (patho)physiologically relevant pH conditions in terms of chelation, reduction, impact on the metal-based Fenton chemistry, and copper-based hemolysis. Only 3,4-dihydroxybenzoic acid behaved as a protective substance under all conditions. It chelated iron, reduced both iron and copper, and protected against the iron and copper-based Fenton reaction. Conversely, 2,4,6-trihydroxybenzoic acid did not chelate iron and copper, reduced both metals, potentiated the Fenton reaction, and worsened copper-based hemolysis of rat red blood cells. The other tested compounds showed variable effects on the Fenton reaction. Interestingly, prooxidative benzoic acids mildly protected human erythrocytes against Cu-induced lysis. In conclusion, 3,4-dihydroxybenzoic acid seems to have a protective effect against copper and iron-based toxicity under different conditions.