ABSTRACT
Crustaceans are a valuable resource globally, both ecologically and economically, and investigations into their health are becoming increasingly important as exploitation rises. The microbiome plays a crucial role in crustacean immunity, and understanding its composition and structure can provide insights into the health of an organism and its interactions with various factors. In this study, we investigated the hepatopancreas microbiome of the velvet swimming crab, Necora puber, and compared its composition and structure with several study factors, including two different sampling points and infection with a paramyxid parasite, Paramarteilia canceri. To our knowledge, we provide the first description of a velvet crab microbiome, highlighting the dominance of a single microorganism, Candidatus hepatoplasma. We identified variations in microbiome composition between sampling points and discussed the possible processes affecting microbiome assembly. We also outline a core microbiome for the velvet crab hepatopancreas, consisting of 12 core phyla. Our study adds to the growing literature on crustacean microbiomes and provides a baseline for future investigations into the velvet crab microbiome and the health of this crustacean species.
Subject(s)
Hepatopancreas , Microbiota , Animals , Hepatopancreas/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny , Brachyura/microbiology , RNA, Ribosomal, 16S/geneticsABSTRACT
A green protocol to extract chitin from crab shells using water soluble ionic liquids (ILs) is here reported. Compared to conventional multistep acid-base extraction methods, this one-pot procedure achieves pulping of recalcitrant crustacean waste shells by employing ammonium acetate, ammonium formate and hydroxylammonium acetate as water-soluble, low-cost and easy to prepare ILs. An extensive parametric analysis of the pulping process has been carried out with different ILs, different ratios, temperature and time. The optimized protocol provides a high-quality chitin comparable, if not better, to commercial chitin. The best results were obtained at 150 °C with ammonium formate prepared in-situ from aqueous ammonia and formic acid: chitin was isolated in a 17 wt% yield (based on dried crab shells as starting biowaste), a degree of acetylation (DA) > 94 %, a crystallinity index of 39-46 %, a molecular weight up to 6.6 × 105 g/mol and a polydispersity of ca 2.0.
Subject(s)
Animal Shells , Brachyura , Chitin , Animals , Chitin/chemistry , Chitin/isolation & purification , Animal Shells/chemistry , Brachyura/chemistry , Ionic Liquids/chemistry , Green Chemistry Technology/methods , Acetylation , Temperature , Formates/chemistry , Spiders/chemistryABSTRACT
Coastal ecosystems are characterized by various human activities with potential adverse impacts. This study aimed to evaluate the potential oxidative stress effects in representative aquatic biota deployed in situ at a sawmill wastes dump (test site) and reference site in a coastal ecosystem for a short term (28 days) period. PAHs and OCPs were analysed using GC-FID and GC-MS respectively in surface water and sediments. Oxidative stress indices (malondialdehyde, glutathione-s-transferase, reduced glutathione, catalase and superoxide dismutase) were evaluated following standard methods in Coptodon guineensis (Guinean Tilapia) and Callinectes amnicola (Blue crab) over a period of 28 days. Sum PAHs in the test site sediments, oxidative stress indices in C. guineensis liver and C. amnicola haemolymph after 28 days exposure were significantly higher (p < 0.0.5) compared to the reference site. The results showed the adverse impacts to biota of sawmill wastes which are continuously burnt at the test site with potential for long-term effects. Sustainable sawmill wastes management at the test site are recommended to sustain life below water (UNSDG 14).
Subject(s)
Brachyura , Environmental Monitoring , Oxidative Stress , Tilapia , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Ecosystem , Superoxide Dismutase/metabolism , Catalase/metabolismABSTRACT
Fuel spills in marine environments pose significant threats to aquatic ecosystems, evidencing the intricate relationship between fuel utilization and its impact on benthic species of commercial value for human consumption. This interconnectedness of human, animal and environmental welfare falls within the One Health framework. The aim of the present study was to evaluate the toxicological effects of diesel oil on the green crab Carcinus maenas, and make a parallelism between tested concentrations and petrogenic hydrocarbon levels in natural environments. Mortality, locomotion and feeding behavior, molting, somatic growth, morphological malformations, stress biomarkers, and nutritional variables were analyzed in three different bioassays. In Bioassay 1, prepuberal females were exposed to diesel oil water accommodated fraction (WAF) to determine the median lethal concentration (LC50) at different periods. In Bioassay 2, prepuberal females were exposed to 168 h LC50 and LC25 of diesel oil WAF for 7 days, and were subsequently exposed to clean water. In Bioassay 3, prepuberal females were exposed to 168 h LC12 and LC6 of diesel oil WAF for 30 days. Petrogenic hydrocarbon levels in the field were quantified at a port and a nature reserve, with concentrations of aromatic hydrocarbons being 1.92 µg/g in the former and below 0.01 µg/g in the latter. In Bioassay 1, the 168 h LC50 was estimated to be 1.04 % of diesel oil. The results obtained in Bioassays 2 (LC50 and LC25) and Bioassays 3 (LC12 and LC6) suggest that environmental exposure to petrogenic hydrocarbons produces high mortality or interferes with the molting process of crabs, leading to reduced growth and developmental abnormalities. Such malformations were observed in chelipeds, pereiopods, gills chambers and eye peduncles, and affected feeding and locomotion behaviors. Overall, this could impact on population size and health, and consequently alter the ecological role and commercial exploitation of economically important species like C. maenas.
Subject(s)
Brachyura , Gasoline , Water Pollutants, Chemical , Animals , Brachyura/drug effects , Brachyura/physiology , Brachyura/growth & development , Gasoline/toxicity , Water Pollutants, Chemical/toxicity , Female , Petroleum Pollution/adverse effectsABSTRACT
The blue crab (Callinectes sapidus), originally from the western Atlantic Ocean, has recently spread to the Mediterranean and is now considered one of the one hundred most invasive species in that region. This opportunistic species, known for its adaptability to different temperatures and salinities, negatively impacts biodiversity and human activities such as fishing and tourism in the Mediterranean. However, the blue crab is gaining interest as a potential food resource due to its high nutritional value and delicate, sweet flavor. Its meat is rich in protein (14% to 30%), omega-3 fatty acids (EPA and DHA) and other essential nutrients beneficial for human health such as vitamins, and minerals. Utilizing this species in the production of new foods could help mitigate the negative impact of its invasiveness and offer economic opportunities. One challenge with this potential resource is the generation of waste. Approximately 6-8 million tonnes of crab shells are produced worldwide each year, leading to disposal problems and concerns regarding environmental sustainability. To improve economic and environmental sustainability, there is a need to valorize these residues, which are an important source of proteins, lipids, chitin, minerals, and pigments that can be processed into high-value-added products. However, especially in areas with industrial pollution, attention should be paid to the heavy metal (Cd and As) contents of blue crab shells. Studies suggest that blue crab by-products can be used in various sectors, reducing environmental impacts, promoting a circular economy, and creating new industrial opportunities.
Subject(s)
Brachyura , Nutritive Value , Animals , Humans , Introduced Species , Shellfish , Mediterranean Sea , Conservation of Natural ResourcesABSTRACT
Selenium is a vital trace mineral that is crucial for maintaining regular biological processes in aquatic animals. In this study, a four-week dietary trial was carried out to assess the impact of bio-fermented selenium (Bio-Se) on the growth and immune response of Chinese mitten crabs, Eriocheir sinensis. The crabs were randomly allocated to five dietary treatment groups, each receiving a different dose of Bio-Se. The doses included 0, 0.3, 0.6, 1.5, and 3.0 mg/kg and were accurately measured in basal diet formulations. The results showed the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) in the 1.5 mg/kg Bio-Se group were the highest, and 3.0 mg/kg of Bio-Se has an inhibitory effect on the WGR, SGR, and SR. The activities of the immune enzymes, including glutathione peroxidase (GPX), superoxide dismutase (SOD), and acid phosphatase (ACP), of the hepatopancreas were significantly (p < 0.05) increased in the 1.5 mg/kg Bio-Se group, while they decreased (p < 0.05) in the 3.0 mg/kg feeding group compared to the 0 mg/kg feeding group. The concentration of maleic dialdehyde (MDA) exhibited the opposite pattern. Similarly, the mRNA expression levels of antimicrobial peptides (ALF-1, Crus-1, and LYS), ERK, and Relish genes were also observed to be the highest in the 1.5 mg/kg Bio-Se group compared with the other groups. Furthermore, the administration of 1.5 mg/kg of Bio-Se resulted in an increase in the thickness of the intestinal plica and mucosal layer, as well as in alterations in the intestinal microbial profile and bacterial diversity compared to the dose of 0 mg/kg of Bio-Se. Notably, the population of the beneficial bacterial phylum Fusobacteria was increased after crabs were fed the 1.5 mg/kg Bio-Se diet. In conclusion, the oral administration of 1.5 mg/kg of Bio-Se improved the growth efficiency, antioxidant capabilities, immunity, and intestinal health of E. sinensis. Through a broken-line analysis of the WGR against dietary Bio-Se levels, optimal dietary Bio-Se levels were determined to be 1.1 mg/kg. These findings contribute valuable insights to the understanding of crab cultivation and nutrition.
Subject(s)
Brachyura , Dietary Supplements , Gastrointestinal Microbiome , Selenium , Animals , Selenium/pharmacology , Brachyura/growth & development , Brachyura/microbiology , Brachyura/immunology , Brachyura/drug effects , Gastrointestinal Microbiome/drug effects , Fermentation , Animal Feed , Glutathione Peroxidase/metabolism , Superoxide Dismutase/metabolism , Hepatopancreas/metabolism , Hepatopancreas/drug effectsABSTRACT
Nectonema nematomorphs utilize marine crustacean hosts in their life cycle; 16 decapod and 1 isopod genera have been reported to date as host genera. This study reports the first case of Nectonema parasitic in the Tanner crab Chionoecetes bairdi, adding another known host genus. A single nematomorph juvenile was recovered from the body cavity of each of 2 ovigerous female crabs. A nucleotide sequence for the 18S rRNA gene (1854 bp) was determined from 1 Nectonema individual. The 18S sequence showed Kimura 2-parameter (K2P) distances of 10.0, 2.0, and 1.7% from 18S sequences from Nectonema sp. from an isopod host, N. agile, and N. munidae, respectively. In an 18S-based tree, the unknown species was the sister taxon to a clade comprising N. agile and N. munidae, both of which also utilize decapod hosts. The phylogenetic relationships among the 3 Nectonema species parasitic in decapods were not congruent with the phylogeny of the hosts, not supporting a hypothesis of nematomorph-host co-evolution.
Subject(s)
Brachyura , Host-Parasite Interactions , Phylogeny , Animals , Brachyura/parasitology , Female , RNA, Ribosomal, 18S/geneticsABSTRACT
Introduction: This study aimed to evaluate the efficiency of tea polyphenols (TP) and medicinal plant mixtures (Astragalus membranaceus + Lonicera japonica, Rheum officinale Bail + Scutellaria baicalensis + Platycladus orientalis) combined with astaxanthin (AST), benzoic acid (BA), and yeast complex on the health status of Eriocheir sinensis. Method: A total of 630 crabs (male crabs: 41.51 ± 1.63 g; female crabs: 47.27 ± 0.79 g) were randomly distributed into seven groups with three replicates (male: female, 1:1). These crabs were fed as follows for 8 weeks: basal diet (M1), M2 (M1 + 100 mg/kg TP), M3 (M1 + 2.0 g/kg A. membranaceus + 20 g/kg L. japonica), M4 (M1 + 2.5 g/kg R. officinale Bail + 1.5 g/kg S. baicalensis + 1.0 g/kg P. orientalis), and M5, M6, M7 (M2, M3 and M4 with 600 mg/kg AST +1.0 g/kg BA + 20 mg/kg yeast complex added, respectively). Results and discussion: The results showed that the activities of acid phosphatase (ACP), alkaline phosphatase (AKP), and lysosome (LZM) in the hemolymph were significantly increased in M5, M6, and M7 (P < 0.05), and the highest phagocytosis index (PI) and LZM activity were observed in M7 of female crabs. Moreover, the antioxidant indicators superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT) of hepatopancreas were also significantly improved in M5, M6, and M7 (P < 0.05), while the malondialdehyde (MDA) contents showed an opposite trend. Furthermore, a morphological examination also showed the improved histological structure of hepatopancreas in M7, especially as seen in the clear lumens, no vacuolation, and integrity of the basal membrane of the hepatopancreatic tubule. Taken together, these results suggested that 2.5 g/kg R. officinale Bail, 1.5 g/kg S. baicalensis, and 1.0 g/kg P. orientalis in combination with 600 mg/kg AST, 1.0 g/kg BA, and 20 mg/kg yeast complex could improve the non-specific immunity, antioxidant capacity, and hepatopancreatic health of E. sinensis.
Subject(s)
Antioxidants , Brachyura , Dietary Supplements , Hepatopancreas , Plants, Medicinal , Animals , Brachyura/immunology , Antioxidants/pharmacology , Male , Female , Plants, Medicinal/chemistry , Hepatopancreas/drug effects , Hepatopancreas/immunology , Hepatopancreas/metabolism , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Animal Feed/analysisABSTRACT
This experiment was conducted to explore the effects of dietary vitamin C supplementation on non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab (Scylla paramamosain). Mud crabs with an initial weight of 14.67 ± 0.13 g were randomly divided into 6 treatments and fed diets with 0.86 (control), 44.79, 98.45, 133.94, 186.36 and 364.28 mg/kg vitamin C, respectively. The experiment consisted of 6 treatments, each treatment was designed with 4 replicates and each replicate was stocked with 8 crabs. After 42 days of feeding experiment, 2 crabs were randomly selected from each replicate, and a total of 8 crabs in each treatment were carried out 72 h low-temperature challenge experiment. The results showed that crabs fed diets with 186.36 and 364.28 mg/kg vitamin C significantly improved the activities of alkaline phosphatase (AKP) and acid phosphatase (ACP) in hemolymph and hepatopancreas (P < 0.05). Crabs fed diet with 133.94 mg/kg vitamin C significantly decreased the concentration of nitric oxide (NO) and the activity of nitric oxide synthase (NOS) in hemolymph (P < 0.05). Diet with 133.94 mg/kg vitamin C was improved the activity of polyphenol oxidase (PPO) and the concentration of albumin (ALB) in hemolymph. Crabs fed diet with 133.94 mg/kg vitamin C showed lower concentration of malondialdehyde (MDA) in hemolymph and hepatopancreas than those fed the other diets. Meanwhile, crabs fed diet with 98.45 mg/kg vitamin C showed higher activity of total superoxide dismutase (T-SOD) in hemolymph, and crabs fed diet with 133.94 mg/kg vitamin C showed higher activity of T-SOD in hepatopancreas. Crabs fed diet with 186.36 mg/kg vitamin C significantly decreased the concentration of reduced glutathione (GSH) and the activity of glutathione peroxidase (GSH-PX) in hepatopancreas (P < 0.05). In normal temperature, crabs fed diets with 133.94 mg/kg vitamin C significantly up-regulated the expression levels of gpx (glutathione peroxidase) and trx (thioredoxin) in hepatopancreas compared with the control treatment (P < 0.05). The highest expression levels of relish, il16 (interleukin 16), caspase 2 (caspase 2), p38 mapk (p38 mitogen-activated protein kinases) and bax (bcl-2 associated x protein) in hepatopancreas were found at crabs fed control diet (P < 0.05). Moreover, crabs fed diet with 133.94 mg/kg vitamin C showed higher expression levels of alf-3 (anti-lipopolysaccharide factor 3) and bcl-2 (B-cell lymphoma 2) in hepatopancreas than those fed the other diets (P < 0.05). Under low-temperature stress, crabs fed diet with 133.94 mg/kg vitamin C significantly improved the expression levels of hsp90 (heat shock protein 90), cat (catalase), gpx, prx (thioredoxin peroxidase) and trx in hepatopancreas (P < 0.05). In addition, dietary with 133.94 vitamin C significantly up-regulated the expression levels of alf-3 and bcl-2 (P < 0.05). Based on two slope broken-line regression analysis of activity of PPO against the dietary vitamin C level, the optimal dietary vitamin C requirement was estimated to be 144.81 mg/kg for juvenile mud crab. In conclusion, dietary 133.94-144.81 mg/kg vitamin C significantly improved the non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab.
Subject(s)
Animal Feed , Antioxidants , Ascorbic Acid , Brachyura , Cold Temperature , Diet , Dietary Supplements , Immunity, Innate , Animals , Brachyura/immunology , Brachyura/drug effects , Ascorbic Acid/administration & dosage , Ascorbic Acid/pharmacology , Animal Feed/analysis , Diet/veterinary , Immunity, Innate/drug effects , Dietary Supplements/analysis , Antioxidants/metabolism , Random Allocation , Stress, Physiological/drug effects , Dose-Response Relationship, DrugABSTRACT
Vibrio parahaemolyticus (V. parahaemolyticus) is a major bacterial pathogen found in brackish environments, leading to disease outbreaks and great economic losses in the mud crab industry. This study investigated the molecular mechanism of V. parahaemolyticus infecting mud crabs through genome sequencing analysis, survival experiments, and the expression patterns of related functional genes. A strain of V. parahaemolyticus with high pathogenicity and lethality was isolated from diseased mud crab in South China. The genome sequencing results showed that the genome size of V. parahaemolyticus was a circular chromosome of 3,357,271 bp, with a GC content of 45 %, containing 2985 protein-coding genes, denoted as V. parahaemolyticus LG2206. Genome analysis data revealed that a total of 113 adherence coding genes were obtained, including 120 virulence factor coding genes, 37 type III secretion system (T3SS) coding genes, and 277 sequences of T3SS effectors. Survival experiments showed that the mortality was 20 % within 96 h in the 1 × 104 CFU/mL infection group, 90 % in the 3.2 × 105 CFU/mL treatment group, and 100 % in the 1 × 106 CFU/mL treatment group. The LD50 of V. parahaemolyticus LG2206 was determined as 4.6 × 104 CFU/mL. Six genes of znuA and fliD (flagellin encoding genes), yscE and yscR (T3SS encoding genes), and nfuA and htpX (virulence factor encoding genes) were selected and validated by quantitative real-time PCR analysis after infection with 4.6 × 104 CFU/mL of V. parahaemolyticus LG2206 for 96 h. The expression of the six genes exhibited a significant up-regulation trend at all tested time points. The results indicated that the infestation-related genes screened in the experiment play important roles in the infestation process. This study provides timely and effective information to further analyze the molecular mechanism of V. parahaemolyticus infection and develop comprehensive measures for disease prevention and control.
Subject(s)
Brachyura , Hepatopancreas , Vibrio parahaemolyticus , Vibrio parahaemolyticus/physiology , Animals , Brachyura/microbiology , Brachyura/genetics , Brachyura/immunology , Hepatopancreas/microbiology , China , Genome, BacterialABSTRACT
Molting is a key biological process of crustaceans, which is mainly regulated by 20-hydroxyecdyone (20E). The molting cycle could be divided into three main stages including pre-molt, post-molt and inter-molt stages. The mechanism of immune regulation during molting process still requires further exploration. Yorkie (Yki) is a pivotal transcription factor in the Hippo signaling pathway, and it plays an essential role in regulating cell growth and immune response. In the present study, a Yki gene was identified from Eriocheir sinensis (designed as EsYki), and the regulatory role of EsYki in controlling the expression of antimicrobial peptide genes throughout the molting process was investigated. The mRNA expression level of EsYki was higher at the pre-molt stage compared to the post-molt stage and inter-molt stage. Following the injection of 20E, there was a notable and consistent rise in the EsYki mRNA expression in haemocytes. The increase was observed from 3 h to 48 h with the maximum level at 12 h. And the phosphorylation of Yki in the haemocytes was also significantly up-regulated at 3 h post 20E injection. Moreover, the levels of EsYki mRNA expression at three molting stages were significantly increased post Aeromonas hydrophila stimulation. The maximum level was detected at post-molt stage following A. hydrophila stimulation, while the lowest level was observed at inter-molt stage. The expression pattern of EsCrus was in contrast to EsCrus. After EsYki mRNA transcripts were inhibited by Yki inhibitor (CA3), the mRNA expression levels of EsCrus1 and EsCrus2 following A. hydrophila stimulation were significantly elevated. Furthermore, the phosphorylation level of NF-κB was also increased following the inhibition of Yki. Collectively, our findings indicated that EsYki could be induced by 20E and has a suppressive effect on the expression of EsCrus via inhibiting NF-κB during molting process. This research contributes to the understanding of the immunological regulation mechanism during molting process in crustaceans.
Subject(s)
Aeromonas hydrophila , Arthropod Proteins , Brachyura , Hemocytes , Molting , Animals , Brachyura/immunology , Brachyura/genetics , Arthropod Proteins/metabolism , Arthropod Proteins/genetics , Hemocytes/metabolism , Hemocytes/immunology , Aeromonas hydrophila/physiology , Aeromonas hydrophila/immunology , YAP-Signaling Proteins/metabolism , Signal Transduction , Trans-Activators/metabolism , Trans-Activators/genetics , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/genetics , Ecdysterone/metabolism , Gene Expression Regulation, Developmental , Immunity, InnateABSTRACT
While temperature fluctuations pose significant challenges to the nervous system, many vital neuronal systems in poikilothermic animals function over a broad temperature range. Using the gastric mill pattern generator in the Jonah crab, we previously demonstrated that temperature-induced increases in leak conductance disrupt neuronal function and that neuropeptide modulation provides thermal protection. Here, we show that neuropeptide modulation also increases temperature robustness in Dungeness and green crabs. As in Jonah crabs, higher temperatures increased leak conductance in both species' pattern-generating lateral gastric neuron and terminated rhythmic gastric mill activity. Likewise, increasing descending modulatory projection neuron activity or neuropeptide transmitter application rescued rhythms at elevated temperatures. However, decreasing input resistance using dynamic clamp only restored the rhythm in half of the experiments. Thus, neuropeptide modulation increased temperature robustness in both species, demonstrating that neuropeptide-mediated temperature compensation is not limited to one species, although the underlying cellular compensation mechanisms may be distinct.
Subject(s)
Brachyura , Neuropeptides , Animals , Brachyura/physiology , Neuropeptides/metabolism , Temperature , Neurotransmitter Agents/metabolism , Neurons/physiology , Species Specificity , MaleABSTRACT
Ionic current levels of identified neurons vary substantially across individual animals. Yet, under similar conditions, neural circuit output can be remarkably similar, as evidenced in many motor systems. All neural circuits are influenced by multiple neuromodulators, which provide flexibility to their output. These neuromodulators often overlap in their actions by modulating the same channel type or synapse, yet have neuron-specific actions resulting from distinct receptor expression. Because of this different receptor expression pattern, in the presence of multiple convergent neuromodulators, a common downstream target would be activated more uniformly in circuit neurons across individuals. We therefore propose that a baseline tonic (non-saturating) level of comodulation by convergent neuromodulators can reduce interindividual variability of circuit output. We tested this hypothesis in the pyloric circuit of the crab, Cancer borealis Multiple excitatory neuropeptides converge to activate the same voltage-gated current in this circuit, but different subsets of pyloric neurons have receptors for each peptide. We quantified the interindividual variability of the unmodulated pyloric circuit output by measuring the activity phases, cycle frequency, and intraburst spike number and frequency. We then examined the variability in the presence of different combinations and concentrations of three neuropeptides. We found that at mid-level concentration (30â nM) but not at near-threshold (1â nM) or saturating (1â µM) concentrations, comodulation by multiple neuropeptides reduced the circuit output variability. Notably, the interindividual variability of response properties of an isolated neuron was not reduced by comodulation, suggesting that the reduction of output variability may emerge as a network effect.
Subject(s)
Brachyura , Neurons , Neuropeptides , Animals , Brachyura/physiology , Neuropeptides/metabolism , Neurons/physiology , Male , Ganglia, Invertebrate/physiology , Action Potentials/physiology , Pylorus/physiologyABSTRACT
Cuticle proteins (CPs) are the vital components of the cuticle and chitin lining covering the digestive tract of crustaceans. In this study, four new CP genes (designated as EsCP3, EsCP4, EsCP5, and EsCP8) were initially cloned and identified from the Chinese mitten crab Eriocheir sinensis. EsCP3/4/5/8 included 375, 411, 381, and 570 bp open reading frame encoding 124, 136, 126, and 189 amino acid proteins, respectively. Except for EsCP8, EsCP3/4/5 all contained a Chitin_bind_4 domain. EsCP3/4/5/8 were clustered into different groups in the phylogenetic tree. Quantitative real-time PCR results indicated that four EsCP genes have different patterns of tissue distribution. Changes in the expression levels of these four EsCP genes were observed in the intestine of crabs under Vibrio parahaemolyticus challenge. RNA interference assay showed that the knockdown of EsCPs in the intestine could inhibit the expression of antimicrobial peptides (AMPs), including crustins and anti-lipopolysaccharide factors. In addition, the knockdown of EsRelish in the intestine decreased the expression levels of these four EsCP genes. These results indicated that EsCPs were involved in regulating the expression of AMPs, and EsCPs were regulated by EsRelish.
Subject(s)
Arthropod Proteins , Brachyura , Gene Expression Regulation , Vibrio parahaemolyticus , Animals , Amino Acid Sequence , Antimicrobial Peptides/genetics , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/immunology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Base Sequence , Brachyura/genetics , Brachyura/immunology , Brachyura/microbiology , Cloning, Molecular , DNA, Complementary/genetics , Gene Expression Profiling , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Phylogeny , Sequence Alignment/veterinary , Vibrio parahaemolyticus/physiologyABSTRACT
Atlantic ghost crabs (Ocypode quadrata) are predators of beach-nesting shorebird nests and chicks on the United States' Atlantic and Gulf coasts. Ghost crabs may also disturb birds, altering foraging, habitat use, or nest and brood attendance patterns. Shorebird conservation strategies often involve predator and disturbance management to improve reproductive success, but efforts rarely target ghost crabs. Despite the threat to shorebird reproductive success, ghost crabs are a poorly understood part of the beach ecosystem and additional knowledge about ghost crab habitat selection is needed to inform shorebird conservation. We monitored ghost crab activity, defined as burrow abundance, throughout the shorebird breeding season on Metompkin Island, Virginia, an important breeding site for piping plovers (Charadrius melodus) and American oystercatchers (Haematopus palliatus). We counted burrows at shorebird nests and random locations throughout the breeding season and investigated whether ghost crab activity was greater at nest sites relative to random locations without shorebird nests. While we observed burrows at all nest sites (n = 63 nests), we found that burrow counts were lower at piping plover nests with shell cover, relative to random locations with no shell cover. Ghost crabs may avoid piping plover nest sites due to anti-predator behaviors from incubating adults or differences in microhabitat characteristics selected by piping plovers. We also investigated the effects of habitat type, date, and air temperature on the abundance of ghost crab burrows. We found that while crab burrows were present across the barrier island landscape, there were more burrows in sandy, undisturbed habitats behind the dunes, relative to wave-disturbed beach. Additionally, ghost crab activity increased later in the shorebird breeding season. Understanding when and where ghost crabs are most likely to be active in the landscape can aid decision-making to benefit imperiled shorebird populations.
Subject(s)
Brachyura , Ecosystem , Nesting Behavior , Animals , Virginia , Brachyura/physiology , Nesting Behavior/physiology , Seasons , Birds/physiology , Predatory Behavior/physiologyABSTRACT
Metal concentrations were determined in tissues of finfish, crabs, and bivalve molluscs collected from marine waters near Port Pirie, South Australia, the site of a long-standing multi-metals smelter and refinery. A general trend of tissue metal concentrations in order of highest to lowest was observed in bivalves > crabs > finfish. A lead concentration of 158 ± 6.6 mg/kg (wet wt.) was observed in blue mussels (Mytilus galloprovincialis) sampled close to the smelter. Lead concentrations correlated positively with proximity to the smelter in all biota analysed. Similar relationships were observed for cadmium, copper, zinc and selenium in all biota except razorfish (Pinna bicolor; Bivalvia: Pinnidae), which showed no correlation with proximity to the smelter for these metals. Inorganic arsenic concentrations were below the limit of reporting in the majority of the analysed samples, however inorganic arsenic concentrations in blue swimmer crabs (Portunus armatus) and blue mussels correlated with proximity to the smelter. Mercury concentrations in the biota analysed were generally low and showed variable relationships with proximity to the smelter, with no significant correlation observed in finfish and razorfish, a significant positive correlation in blue mussels, and a significant negative correlation in blue swimmer crabs. This is the first major study of metal concentrations in recreationally-targeted marine species near Port Pirie species for more than two decades. Comparison with data from previous studies conducted shows little change in tissue metal concentrations in marine biota near Port Pirie over the past 40 years.
Subject(s)
Bivalvia , Brachyura , Environmental Monitoring , Fishes , Metals , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Brachyura/metabolism , Bivalvia/metabolism , Metals/metabolism , Metals/analysis , Fishes/metabolism , South Australia , Metallurgy , Metals, Heavy/analysis , Metals, Heavy/metabolismABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: 'Karkataka Taila (KT), an ancient Ayurvedic Rasayana comprising the edible freshwater crab Scylla serrata Forskal flesh, is still used by local traditional practitioners in Kerala state to treat tremors and palsy. In the scientific community, it becomes less exposed due to the lack of adequate scientific validations and brief reports. There has been no published research on the effectiveness of KT in treating Parkinson's disease (PD). PURPOSE: The purpose of the current research work was to investigate the anti-Parkison's potential of KT against rotenone-induced neurotoxicity in SH-SY5Y cell lines and rat model of PD and investigate underlying molecular mechanisms. MATERIALS AND METHODS: The components of KT have been identified by gas chromatography-mass spectroscopy (GC-MS). The neuroprotective activity of KT was assessed using SH-SY5Y cell lines and rats against rotenone-induced PD. The parameters used for asses the neuroprotection are antioxidant markers (ROS and SOD), anti-inflammatory markers (IL-6, IL-1ß, TNF-α, and nitrite), and dopamine levels. Behavioral evaluation and rat brain histopathology were carried out to further support the neuroprotection. RESULT: Analysis using GC-MS revealed 36 constituents in KT. In vitro, the KT displayed considerable neuroprotective effects in terms of decreasing oxidative stress (ROS and SOD), neuroinflammation (IL-6, IL-1ß, TNF-α, and nitrite), and elevating dopamine concentration. In vivo data showing improvements in histopathological and biochemical parameters confirmed the in vitro study findings, and in terms of behavioral assays, KT displayed significant activity. CONCLUSION: GC-MS profiling was used to identify the bioactive compounds of KT with antioxidant, anti-inflammatory, and neuroprotective properties. As a result, they may be responsible for the therapeutic effects of KT on PD.
Subject(s)
Neuroprotective Agents , Rotenone , Animals , Rotenone/toxicity , Humans , Cell Line, Tumor , Neuroprotective Agents/pharmacology , Neuroprotective Agents/isolation & purification , Rats , Male , Brachyura , Antioxidants/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Rats, Wistar , Oxidative Stress/drug effects , Disease Models, Animal , Dopamine/metabolism , Plant Extracts/pharmacology , Gas Chromatography-Mass Spectrometry , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/chemically induced , Behavior, Animal/drug effects , Parkinson Disease/drug therapy , EthnopharmacologyABSTRACT
In recent years, microplastics (MPs) have been widely found in the environment and pose potential risks to ecosystems, which attracted people's attention. Using bioindicators has been a great approach to understanding the pollution levels, bioavailability, and ecological risks of pollutants. However, only few studies have investigated MPs in mangrove ecosystems, with few bioindicators of MPs. Herein, the distribution of MPs in mangrove sediments and fiddler crabs (Tubuca arcuata) in mangroves was investigated. Results showed that the abundance values of MPs are 1160â12,120 items/kg and 11-100 items/ind. in mangrove sediments and fiddler crabs, respectively. The dominant shape of MPs detected in mangrove sediments and fiddler crabs was fragments with sizes of 20â1000 µm, larger MPs of 50-1000 µm were found in abundance. Polypropylene (PP), which is one of the most commonly used plastic materials, was the main polymer type. The distribution of MPs in fiddler crabs closely resembled that in surface mangrove sediments with a strong linear correlation (R2 > 0.8 and p < 0.05) between their abundance. Therefore, the MP contamination level in mangrove sediments can be determined by studying MP pollution in fiddler crabs. Moreover, the results of the target group index (TGI) indicated that fiddler crabs prefer feeding specific MPs in mangrove sediments. Our findings demonstrate the suitability of fiddler crabs as bioindicators for assessing MP pollution in mangrove sediments.
Subject(s)
Brachyura , Environmental Monitoring , Geologic Sediments , Microplastics , Water Pollutants, Chemical , Wetlands , Animals , Brachyura/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Microplastics/analysis , EcosystemABSTRACT
Introduction: Vibrio alginolyticus is a Gram-negative, rod-shaped bacterium belonging to the family of Vibrionaceae, a common pathogen in aquaculture animals, However, studies on its impact on Scylla serrata (mud crabs) are limited. In this study, we isolated V. alginolyticus SWS from dead mud crab during a disease outbreak in a Hong Kong aquaculture farm, which caused up to 70% mortality during summer. Methods: Experimental infection and histopathology were used to investigate the pathogenicity of V. alginolyticus SWS in S. serrata and validate Koch's postulates. Comprehensive whole-genome analysis and phylogenetic analysis antimicrobial susceptibility testing, and biochemical characterization were also performed. Results: Our findings showed that V. alginolyticus SWS caused high mortality (75%) in S. serrata with infected individuals exhibiting inactivity, loss of appetite, decolored and darkened hepatopancreas, gills, and opaque muscle in the claw. Histopathological analysis revealed tissue damage and degeneration in the hepatopancreas, gills, and claw muscle suggesting direct and indirect impacts of V. alginolyticus SWS infection. Conclusions: This study provides a comprehensive characterization of V. alginolyticus SWS as an emerging pathogen in S. serrata aquaculture. Our findings underscore the importance of ongoing surveillance, early detection, and the development of targeted disease management strategies to mitigate the economic impact of vibriosis outbreaks in mud crab aquaculture.
Subject(s)
Aquaculture , Brachyura , Phylogeny , Vibrio alginolyticus , Animals , Vibrio alginolyticus/genetics , Vibrio alginolyticus/pathogenicity , Vibrio alginolyticus/isolation & purification , Vibrio alginolyticus/classification , Brachyura/microbiology , Hong Kong/epidemiology , Vibrio Infections/microbiology , Vibrio Infections/veterinary , Gills/microbiology , Gills/pathology , Virulence , Whole Genome Sequencing , Genome, Bacterial/genetics , Hepatopancreas/microbiology , Hepatopancreas/pathology , Disease Outbreaks , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacologyABSTRACT
OBJECTIVE: Metals have been reported to alter the oxidative status of both redox-active and redox-inactive metals accompanying oxidative stress induction. In aquatic ecosystems, metal contamination is regarded as serious pollutants and bioaccumulation, especially when aquatic seafood products are involved, which results in human risk. The blue swimming crab Portunus pelagicus is a highly popular crab species for consumption as seafood in Thailand. The meat parts and the hepatopancreas (HP) together with gonad are consumed and in high demand. Therefore, the present study aimed to investigate bioaccumulation of cadmium (Cd) and lead (Pb) along with tissue oxidative responses in P. pelagicus. METHODS: Sixty-seven samples of P. pelagicus were obtained from small-scale fishers along the coastline of Trang Province. Bioaccumulation of Cd and Pb and oxidative response in gill, muscle, and HP + gonad were evaluated. RESULT: Cadmium and Pb accumulation levels were highest in the HP and gonad, followed by the gill and then muscle, indicating that Cd and Pb have a high affinity to be concentrated in the HP and gonad. An organ-specific oxidative response to Cd and Pb accumulation was demonstrated in which Cd significantly activated superoxide dismutase (SOD) activity in the gills and muscle tissue, while Pb significantly activated the SOD activity only in the HP and gonad. Only Cd accumulation in gill tissue represented a significant activation of lipid peroxidation, as indicated by the malondialdehyde level. CONCLUSION: This study implied that P. pelagicus exhibits an "adaptive stage" in the oxidative response of tissue due to metal accumulation. Additionally, the data presented here further indicate that the consumption of only the meat parts and removal of the HP and gonad would reduce human exposure to metal toxicity.