ABSTRACT
The storage and processing of Litopenaeus vannamei are often challenged by the freeze-thaw (F-T) cycle phenomenon. This study delved into the influence of pretreatment with l-arginine (Arg) and l-lysine (Lys) on the myofibrillar proteins oxidation and quality of shrimp subjected to F-T cycles. Arg and Lys pretreatment notably improved water-holding capacity (WHC), textural integrity as well as the myofibrillar structure of the shrimps. A lesser reduction in the amounts of immobile and bound water was found in the amino acid-treated groups, and the oxidation of lipids and proteins were both decelerated. Molecular simulation results indicated that Arg and Lys could form hydrogen and salt-bridge bonds with myosin, enhancing the stability of Litopenaeus vannamei. The study concludes that Arg and Lys are effective in alleviating the adverse effects of F-T cycles on the quality of Litopenaeus vannamei, and provides a new solution for the quality maintenance during storage and processing.
Subject(s)
Arginine , Lysine , Muscle Proteins , Oxidation-Reduction , Penaeidae , Animals , Penaeidae/chemistry , Arginine/chemistry , Lysine/chemistry , Muscle Proteins/chemistry , Freezing , Food Preservation/methods , Shellfish/analysis , Myofibrils/chemistryABSTRACT
The effects of preharvest methyl jasmonate (MeJA) spray application on the physicochemical quality, metabolism of phenolics, and cell wall components in raspberries were investigated during a 10-day cold storage period. MeJA spray reduced firmness loss, decay incidence, and weight loss, while maintained higher levels of soluble solids content, ascorbic acid, anthocyanins and flavonoids in raspberries. Furthermore, MeJA application resulted in increased total pectin and protopectin levels, as well as lowered water-soluble pectin, and activities of pectin methyl esterase, polygalacturonase and cellulase enzymes. Additionally, MeJA treatment upregulated the phenylpropanoid pathway, leading to higher endogenous phenolics and activities of phenylalanine-ammonia lyase and shikimate dehydrogenase. In conclusion, preharvest MeJA spray application could be adopted to enhance the storage potential of cold-stored raspberries for 10 days by maintaining higher firmness, assuring better physicochemical quality, and increasing phenolic metabolism, while reducing cell wall hydrolysis.
Subject(s)
Acetates , Antioxidants , Cell Wall , Cyclopentanes , Food Storage , Fruit , Oxylipins , Phenols , Rubus , Oxylipins/pharmacology , Oxylipins/metabolism , Cell Wall/metabolism , Cell Wall/drug effects , Cell Wall/chemistry , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Phenols/metabolism , Antioxidants/metabolism , Acetates/pharmacology , Acetates/metabolism , Fruit/metabolism , Fruit/chemistry , Fruit/drug effects , Rubus/metabolism , Rubus/chemistry , Food Preservation/methods , Cold Temperature , Plant Proteins/metabolismABSTRACT
This study aimed to develop a double-layer film composed of an intelligent, gelatin-based film integrated with active polyvinyl alcohol electrospun nanofibers (PVANFs). Eggplant skin extract (ESE), a colorimetric indicator, was incorporated into the gelatin-based film at varying concentrations ranging from 0 % to 8 % w/w. The gelatin film containing 8 % ESE was identified as the optimal formulation based on its superior color indication, water barrier, and mechanical properties. Savory essential oil (SEO)-loaded PVANFs were electrospun onto the optimized gelatin film to fabricate the double-layer film. Analysis of the chemical and crystalline structures and the double-layer film's thermal properties confirmed the gelatin film's physical integration with PVANFs. Morphological examination revealed a smooth surface on the film and a uniform fibrillar structure within the PVANFs. Furthermore, the developed double-layer film effectively detected spoilage in trout fish while controlling pH, oxidation, and microbial changes during storage.
Subject(s)
Food Packaging , Gelatin , Nanofibers , Polyvinyl Alcohol , Gelatin/chemistry , Nanofibers/chemistry , Polyvinyl Alcohol/chemistry , Food Packaging/instrumentation , Animals , Fish Products/analysis , Food Preservation/instrumentation , Food Preservation/methodsABSTRACT
Chlorogenic acid (CGA) is a well-known plant secondary metabolite exhibiting multiple physiological functions. The present study focused on screening for synergistic antibacterial combinations containing CGA. The combination of CGA and p-coumaric acid (pCA) exhibited remarkably enhanced antibacterial activity compared to that when administering the treatment only. Scanning electron microscopy revealed that a low-dose combination treatment could disrupt the Shigella dysenteriae cell membrane. A comprehensive analysis using nucleic acid and protein leakage assay, conductivity measurements, and biofilm formation inhibition experiments revealed that co-treatment increased the cell permeability and inhibited the biofilm formation substantially. Further, the polyacrylamide protein- and agarose gel-electrophoresis indicated that the proteins and DNA genome of Shigella dysenteriae severely degraded. Finally, the synergistic bactericidal effect was established for fresh-cut tomato preservation. This study demonstrates the remarkable potential of strategically selecting antibacterial agents with maximum synergistic effect and minimum dosage exhibiting excellent antibacterial activity in food preservation.
Subject(s)
Anti-Bacterial Agents , Chlorogenic Acid , Coumaric Acids , Drug Synergism , Shigella dysenteriae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Shigella dysenteriae/drug effects , Microbial Sensitivity Tests , Biofilms/drug effects , Propionates/pharmacology , Solanum lycopersicum/chemistry , Solanum lycopersicum/microbiology , Food Preservation/methodsABSTRACT
Electrospun zein-based eugenol nanofibers (ZEnF) with diameters (148.19-631.52 nm) were fabricated. Thermal degradation was found as <15 % until 300 °C while the nanofiber diffraction pattern presented three main peaks among the 5o and 45o positions. ZEnF was not only evaluated as non-toxic to cells but also possessed anticancer characteristics revealing with the MCF-7 cell line at 800 µg/mL (reduction: 18.08 %) and 1600 µg/mL (reduction: 41.64 %). Allium tests revealed that ZEnF did not have any adverse impact on the health status (chromosomes-DNA) of exposed organisms. Following the nanofiber coating for chicken meat parts (thigh and breast), it was observed up to 1.25 log CFU/g limitation in total viable bacteria counts (p < 0.05). The sensory score (difference: 3.64 in 10 points scoring on the 6th day of the cold storage) and odor score of chicken meat samples were found to be as higher than control samples (p < 0.05).
Subject(s)
Chickens , Eugenol , Meat , Nanofibers , Zein , Animals , Zein/chemistry , Nanofibers/chemistry , Meat/analysis , Humans , Eugenol/chemistry , Eugenol/pharmacology , MCF-7 Cells , Allium/chemistry , Food PreservationABSTRACT
The impact of premade beef patty (BBP) with red onion skin powder (OSP) at 0, 1, 2, and 3% levels on color, lipid, and protein oxidative stability, and infection degree of microorganisms during cold storage was investigated. The objective was to determine the effect of color by L*, a*, b*, and the content of MetMb. The inhibitory effect of OSP on the oxidation of lipid and protein was studied based on TBARS and the carbonyl content of protein in samples at different storage times. TVB-N content was used to characterize the degree of infection of microorganisms and their effect on meat quality. The results showed that the addition of OSP reduced the pH, L *, a*, and b * values of BBP, and improved the hardness, springiness, gumminess, and cohesiveness of BBP, but had no significant effect on the chewiness of BBP (p > 0.05). After 12 days of storage, the carbonyl group and TBARS content in the BBP supplemented with 3%OSP was significantly lower than that in the control group (p < 0.05). Furthermore, the addition of OSP significantly inhibited the TVB-N increase during beef patty storage. These results indicated that OSP has a good research prospect as a natural antioxidant or preservative.
Subject(s)
Color , Food Storage , Onions , Oxidation-Reduction , Onions/chemistry , Animals , Cattle , Food Storage/methods , Powders , Lipids/chemistry , Red Meat/analysis , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/analysis , Cold Temperature , Food Preservation/methodsABSTRACT
BACKGROUND: The Mexican lime (Citrus aurantifolia cv.), widely consumed in Iran and globally, is known for its high perishability. Edible coatings have emerged as a popular method to extend the shelf life of fruits, with xanthan gum-based coatings being particularly favored for their environmental benefits. This study aims to evaluate the effectiveness of an edible coating formulated from xanthan gum, enriched with Spirulina platensis (Sp) and pomegranate seed oil (PSO), in improving the quality and reducing the weight loss of Mexican lime fruit under conditions of 20 ± 2 °C and 50-60% relative humidity. RESULTS: Based on the results, the application of coatings was generally effective in reducing fruit weight loss, with the least weight loss observed in the xanthan gum 0.2%+ Spirulina platensis extract (1%) treatment. Additionally, the levels of total phenols and flavonoids in the treated fruits exceeded those in the control group, with xanthan gum 0.2%+ Spirulina platensis extract (1%) and xanthan gum 0.2% exhibiting the highest concentrations of these compounds. The antioxidant capacity of the fruits was also enhanced by the coatings, surpassing that of the control group, with xanthan gum 0.2%+ Spirulina platensis extract (1%) achieving the highest levels. The treatments significantly suppressed the activity of the polyphenol oxidase (PPO) enzyme, with xanthan gum 0.2% demonstrating the most potent inhibitory effect. Furthermore, the treatments resulted in increased activities of catalase (CAT) and peroxidase (POD) enzymes compared to the control. Except for xanthan gum 0.2%+ pomegranate seed oil (0.05%), all treatments maintained the fruit's greenness (a*) more effectively than the control. CONCLUSIONS: Peel browning is a major factor contributing to the decline in quality and shelf life of lime fruit. The application of 0.1% and 0.2% xanthan gum coatings, as well as a combination of 0.2% xanthan gum and Spirulina platensis extract, significantly inhibited PPO activity and enhanced the activity of CAT and POD and phenolic compound in Mexican lime fruits stored at of 20 ± 2 °C for 24 days. Consequently, these treatments comprehensively preserved lime fruit quality by significantly reducing browning, maintaining green color, and preserving internal quality parameters such as TA, thereby enhancing both visual appeal and overall fruit quality.
Subject(s)
Plant Oils , Polysaccharides, Bacterial , Pomegranate , Seeds , Spirulina , Spirulina/chemistry , Plant Oils/pharmacology , Pomegranate/chemistry , Seeds/chemistry , Fruit/chemistry , Citrus aurantiifolia , Food Preservation/methods , Food Storage , AntioxidantsABSTRACT
Targeted metabolomics and flavouromics combined with relative odor activity value were performed to explore the effect of degradation and oxidation of matrix mediated by pH on the formation of characteristic volatiles in preserved egg yolk (PEY) during pickling. It was found that the oxidation of proteins and lipids in PEY induced by pH sequentially occurred in early and later periods, and degradation both mainly occurred in early stage. Moreover, 1-octen-3-one, heptanal, trimethylamine, etc., compounds and 5-HETrE, proline, etc., components were confirmed as up-regulated characteristic volatiles and differential metabolites in PEY during pickling. The formation of octanal-M/D and benzeneacetaldehyde-M was attributed to ß-oxidation of hydroxyeicosapentaenoic acid and L-isoleucine catalyzed by strong alkali at early period based on correlation network between them, respectively. Meanwhile, the generation of 1-octen-3-one-M/D mainly depended on L-serine and could be promoted by phosphatidylcholines oxidation. At later stage, the formation of heptanal-M/D was primarily attributed to phosphatidylethanolamines oxidation induced by alkali, and the enrichment of heptanal-M/D and nonanal were both enhanced by oxidized lipids. Lastly, trimethylamine was derived from L-lysine under alkaline conditions and promoted by protein oxidation during the whole process. This manuscript provided insight into the differential contribution of oxidation and degradation from matrix regulated by exogenous factors on the formation pathway for characteristic volatiles in foods.
Subject(s)
Egg Yolk , Metabolomics , Oxidation-Reduction , Volatile Organic Compounds , Egg Yolk/chemistry , Egg Yolk/metabolism , Hydrogen-Ion Concentration , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Odorants/analysis , Egg Proteins/metabolism , Methylamines/metabolism , Food Handling/methods , Food Preservation/methods , Lipids/chemistry , AnimalsABSTRACT
Nowadays, with the diversification of nutritious and healthy foods, consumers are increasingly seeking clean-labeled products. High hydrostatic pressure (HHP) as a cold sterilization technology can effectively sterilize and inactivate enzymes, which is conducive to the production of high-quality and safe food products with extended shelf life. This technology reduces the addition of food additives and contributes to environmental protection. Moreover, HHP enhances the content and bioavailability of nutrients, reduces the anti-nutritional factors and the risk of food allergen concerns. Therefore, HHP is widely used in the processing of fruit and vegetable juice drinks, alcoholic, meat products and aquatic products, etc. A better understanding of the influence of HHP on food composition and applications can guide the development of food industry and contribute to the development of non-thermally processed and environmentally friendly foods.
Subject(s)
Food Handling , Food Industry , Hydrostatic Pressure , Food Handling/methods , Food Preservation/methods , Food Analysis , Nutritive Value , Sterilization/methods , HumansABSTRACT
Fresh-cut fruits and vegetables (F&V) play a pivotal role in modern diets due to their convenience and nutritional value. However, their perishable nature renders them susceptible to rapid spoilage, causing quality deterioration, safety risks, and economic losses along the supply chain. Traditional preservation methods, while effective to some extent, often fall short in maintaining the quality and safety of fresh-cut F&V. This comprehensive review examines the utilization of slightly acidic electrolyzed water (SAEW) as a novel preservation technique for fresh-cut F&V. The review encompasses the production mechanisms, sterilization principles, classifications and application of SAEW. It explores the effects of SAEW on microbial inactivation, quality parameters, and metabolic pathways in fresh-cut F&V. Additionally, it assesses the synergistic effects of SAEW when combined with other preservation methods. SAEW demonstrates remarkable potential in extending the shelf life of fresh-cut F&V by effectively inhibiting microbial growth, suppressing browning, preserving chemical content, and influencing various metabolic processes. Moreover, its synergy with different treatments enhances its overall efficacy in maintaining fresh-cut F&V quality. The review highlights the promising role of SAEW as an innovative preservation approach for fresh-cut F&V. However, challenges regarding its widespread implementation and potential limitations require further exploration. Overall, SAEW stands as a significant contender in ensuring the safety and quality of fresh-cut F&V paving the way for future research and application in the food industry.
Subject(s)
Electrolysis , Food Preservation , Fruit , Vegetables , Water , Fruit/chemistry , Food Preservation/methods , Vegetables/chemistry , Water/chemistry , Hydrogen-Ion Concentration , Food MicrobiologyABSTRACT
In order to explore the application prospects of static magnetic field (SMF) combined with supercooling in meat preservation, this study proposed a novel method of supercooling assisted by a stationary magnetic field (SMF + supercooling) for the preservation of chilled pork, evaluating its cooling rate and quality changes (e.g., water holding capacity, color, pH, and TVB-N), as well as the evolution trend of the microbiota. The results showed that SMF + supercooling significantly (P < 0.05) improved the cooling rate of pork. Compared to chilling and supercooling, SMF + supercooling significantly delayed the increase of TVB-N and TVC on the 12th day of storage (P < 0.05). SMF + supercooling treatment achieves the maintenance of pork water-holding capacity by inhibiting water migration, reducing drip loss, cooking loss, and centrifugal loss of pork. The 16S rDNA bacteria flora analysis demonstrated that SMF + supercooling treatment reduced the relative abundance of spoilage bacteria such as Acinetobacter, Streptococcus, and Pseudomonas, delaying the deterioration of pork quality caused by microbial growth. The SMF + supercooling treatment can be considered a novel refrigeration preservation method that delays the deterioration of pork quality and extends its shelf life.
Subject(s)
Cold Temperature , Food Storage , Magnetic Fields , Animals , Swine , Food Storage/methods , Food Preservation/methods , Food Microbiology , Microbiota , Pork Meat/microbiology , Pork Meat/analysis , Bacteria/growth & development , Bacteria/classification , Food Quality , Refrigeration , Hydrogen-Ion Concentration , WaterABSTRACT
Over the years, the production of eggs has increased tremendously, with an estimated global egg production of 9.7 billion by 2050. Further processing of shell eggs to egg products has gained growing popularity. Liquid egg yolks, an innovative form of egg replacement, still suffer from short shelf-life issues, and freezing has been applied to maintain freshness. An undesirable phenomenon called "gelation" was found during the production of frozen egg yolks, which has attracted numerous scholars to study its mechanism and quality control methods. Therefore, we comprehensively reviewed the history of the studies on frozen egg yolks, including the production procedure, the fundamentals of freezing, the gelation mechanism, the factors affecting gelation behaviors, and the techniques to control the gelation behaviors of frozen egg yolks. Reporting the production procedure and freezing fundamentals of frozen egg yolks will give readers a better understanding of the science and technological aspects of frozen egg yolks. Furthermore, a comprehensive summary of the mechanism of egg yolk gel formation induced by freeze-thawing and relevant control techniques will provide insights to researchers and manufacturers in the field of frozen egg processing.
Subject(s)
Egg Yolk , Freezing , Egg Yolk/chemistry , Gels/chemistry , Food Preservation/methods , Food Handling/methods , AnimalsABSTRACT
Effectively controlling ice recrystallization (IR) during the frozen storage of food remains highly challenging. Inspired by the structural characteristics of antifreeze proteins in nature, silk fibroin (SF) derived from silk fibers has been developed. Through dual validation using the "splat" assay and "sucrose sandwich" assay, the IR inhibition activity of SF at various concentrations was confirmed, revealing that its regular alternating hydrophilic/hydrophobic domains endow SF with the potential to inhibit the axial growth of single ice crystal and significantly reduce the average maximum crystal size by approximately 67%. Additionally, the quality stability of frozen muscle foods treated with SF was comprehensively evaluated. In stark contrast to traditional commercial antifreeze agents (4% sucrose and 4% sorbitol), prepared steaks with the addition of 2% SF maintained rich juiciness and excellent color acceptability over a three-month frozen storage period. Thus, SF holds promise as a potential protective agent for frozen muscle foods, enhancing their quality during storage.
Subject(s)
Crystallization , Fibroins , Food Preservation , Food Storage , Freezing , Ice , Fibroins/chemistry , Animals , Food Preservation/methods , Bombyx/chemistry , Meat/analysis , Swine , HumansABSTRACT
Chitosan-based biomass packaging materials are a promising material for food preservation, but their limited solubility, antioxidant capacity, UV resistance, and mechanical properties severely restrict their application. In this study, we developed a novel chitosan-based coating/packaging composite (QCTO) using quaternary ammonium salt and tannic acid (TA)-modified chitosan (QCS-TA) and oxidized chitosan (OCS). The introduction of quaternary ammonium salt and TA effectively improves the water solubility and antibacterial, antioxidant, and UV-resistant properties of chitosan. The Schiff-base bond formed between OCS and QCS-TA, along with the TA-mediated multiple interactions, conferred the prepared composite film with good mechanical properties (69.9 MPa tensile strength) and gas barrier performance to water (14.3 g·h-1·m-2) and oxygen (3.5 g·mm·m-2·h-1). Meanwhile, the prepared QCTO composites demonstrate excellent biocompatibility and safety and are applied as coatings for strawberries and bananas as well as packaging films for mushrooms. These preservation experiments demonstrated that the prepared composites are able to effectively reduce weight loss, prevent microbial growth, maintain color, and significantly prolong the shelf life of fresh products (bananas, strawberries, and mushrooms extended shelf life by 6, 5, and 6 days, respectively). Therefore, the developed QCTO coating/packaging film shows great potential for applications in the field of food preservation and packaging.
Subject(s)
Anti-Bacterial Agents , Antioxidants , Chitosan , Food Packaging , Food Preservation , Ultraviolet Rays , Chitosan/chemistry , Chitosan/pharmacology , Food Preservation/methods , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tannins/chemistry , Tannins/pharmacologyABSTRACT
During storage and transportation, the reduction of microbial contamination and management of the exudation of fluids from the fish can effectively mitigate spoilage and degradation of fish fillets. In this work, the coaxial electrospinning films loaded with natural plant preservatives, namely laurel essential oil (LEO) and clove essential oil (CEO), were prepared by the coaxial electrospinning method synergistic with nanoemulsion techniques, and the hydrophilic preservation pads were prepared. The morphology of the film fiber is clear, without beads or damage, with fiber diameters falling within the 230-260 nm range. It has a distinct core-shell structure, exceptional thermal stability, and strong antibacterial and antioxidant properties. The core-shell structure of the fiber subtly regulates the release of preservatives and significantly improves the utilization efficiency. At the same time, the synergistic use of two essential oils can reduce the amount while amplifying their effectiveness. The pads significantly slowed down the increase of key indicators of spoilage, such as total viable count (TVC), pH, thiobarbituric acid reactive substances (TBA), and total volatile base nitrogen (TVB-N), during the storage of the fish fillets. Furthermore, the pads effectively slowed down the decline in water-holding capacity, the deterioration of textural qualities, and the negative changes in the microstructure of the fish muscle. Ultimately, the pads notably delayed the spoilage of fish fillets, extending their shelf life from 5 d to 9 d. The efficient utilization of biological preservatives in this film can provide technical support for the development of food preservation materials.
Subject(s)
Clove Oil , Emulsions , Clove Oil/chemistry , Clove Oil/pharmacology , Food Preservation/methods , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Animals , Polyesters/chemistry , Food Packaging/methods , Food Preservatives/chemistry , Food Preservatives/pharmacology , FishesABSTRACT
Food packaging plays a crucial role in the food supply chain by aiding in food preservation and reducing food losses throughout the distribution process. The extensive, unregulated utilization, and waste mismanagement of food packaging materials made up of conventional petroleum-based plastics has led to a significant environmental crisis. Egg components-based food packaging has attracted considerable attention from the global packaging industry as a viable alternative to synthetic polymers due to its biodegradability, sustainability, and health-related benefits. This comprehensive review explores the composition and properties of egg components (eggshell, eggshell membrane, egg white, and egg yolk), and recent advancements in biodegradable packaging films derived from them. Additionally, it introduces the characteristics of these films and their applications in food, highlighting their biodegradability, sustainability, and suitable mechanical, barrier, thermal, optical, antioxidant, and antimicrobial properties as substitutes for traditional synthetic polymers. The utilization of various egg components in the packaging industry is a safe, non-toxic, cost-effective, and economical approach. However, it was found that incorporating active compounds from natural sources into packaging films, as well as composite films composed of egg components combined with other biopolymers, resulted in superior properties, compared to single component films. Moreover, the application of novel technologies in film development has proven to be more effective than conventional methods. These innovative egg components-based packaging films can be optimized and commercialized for use as packaging materials for food products.
Subject(s)
Food Packaging , Food Packaging/methods , Eggs , Animals , Egg Shell/chemistry , Biodegradation, Environmental , Egg Yolk/chemistry , Food Preservation/methods , Egg White/chemistryABSTRACT
Pulsed vacuum drying (PVD) is a novel vacuum drying method that has demonstrated significant potential in improving energy efficiency and product quality in the drying of foods and agricultural products. The current work provides a comprehensive analysis of the latest advancements in PVD technology, including its historical development, fundamental principles, and mechanistic aspects. The impact of periodic pulsed pressure changes between vacuum and atmospheric pressure on heat and moisture transfer, as well as structural changes in foods at micro- and macro-scales, is thoroughly discussed. The article also highlights the influential drying parameters, the integration of novel auxiliary heaters, and the applications of PVD across various fruits, vegetables, and herbs. Furthermore, the review examines the current status and needs for mathematical modeling of PVD processes, identifying key challenges, research opportunities, and future trends for industrial application. The findings suggest that PVD not only enhances drying efficiency and reduces energy consumption but also preserves the nutritional value, color, and texture of dried products better than traditional methods. Future research should focus on optimizing process parameters and integrating advanced control systems to further improve the scalability and applicability of PVD technology in the food industry.
Subject(s)
Desiccation , Fruit , Vegetables , Vegetables/chemistry , Vacuum , Fruit/chemistry , Desiccation/methods , Food Preservation/methods , Food Handling/methodsABSTRACT
Foodborne harmful bacteria not only cause waste of fresh food, but also pose a major threat to human health. Among many new sterilization and preservation technologies, photodynamic inactivation (PDI) has the advantages of low-cost, broad-spectrum, energy-saving, nontoxic, and high efficiency. In particular, PDI based on edible photosensitizers (PSs) has a broader application prospect due to edible, accessible, and renewable features, it also can maximize the retention of the nutritional characteristics and sensory quality of the food. Therefore, it is meaningful and necessary to review edible PSs and edible PSs-mediated PDI, which can help to arouse interest and concern and promote the further development of edible PSs-mediated PDI in the future field of nonthermally sterilized food preservation. Herein, the classification and modification of edible PSs, PS-mediated in vivo and PS-mediated in vitro mechanism of PDI, strengthening strategy to improve PDI efficiency by the structure change synergistic and multitechnical means, as well as the application in fresh food preservation were reviewed systematically. Finally, the deficiency and possible future perspectives of edible PSs-mediated PDI were articulated. This review aimed to provide new perspective for the future food preservation and microbial control.
Subject(s)
Food Preservation , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Food Preservation/methods , Food Microbiology , Bacteria/drug effects , Bacteria/radiation effectsABSTRACT
Frozen and thawed meat plays an important role in stabilizing the meat supply chain and extending the shelf life of meat. However, traditional methods of research and development (R&D) struggle to meet rising demands for quality, nutritional value, innovation, safety, production efficiency, and sustainability. Frozen and thawed meat faces specific challenges, including quality degradation during thawing. Artificial intelligence (AI) has emerged as a promising solution to tackle these challenges in R&D of frozen and thawed meat. AI's capabilities in perception, judgment, and execution demonstrate significant potential in problem-solving and task execution. This review outlines the architecture of applying AI technology to the R&D of frozen and thawed meat, aiming to make AI better implement and deliver solutions. In comparison to traditional R&D methods, the current research progress and promising application prospects of AI in this field are comprehensively summarized, focusing on its role in addressing key challenges such as rapid optimization of thawing process. AI has already demonstrated success in areas such as product development, production optimization, risk management, and quality control for frozen and thawed meat. In the future, AI-based R&D for frozen and thawed meat will also play an important role in promoting personalization, intelligent production, and sustainable development. However, challenges remain, including the need for high-quality data, complex implementation, volatile processes, and environmental considerations. To realize the full potential of AI that can be integrated into R&D of frozen and thawed meat, further research is needed to develop more robust and reliable AI solutions, such as general AI, explainable AI, and green AI.