Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32.758
1.
Cell Commun Signal ; 22(1): 301, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822356

BACKGROUND: Intrauterine adhesion (IUA) is one of the most severe causes of infertility in women of childbearing age with injured endometrium secondary to uterine performance. Stem cell therapy is effective in treating damaged endometrium. The current reports mainly focus on the therapeutic effects of stem cells through paracrine or transdifferentiation, respectively. This study investigates whether paracrine or transdifferentiation occurs preferentially in treating IUA. METHODS: Human amniotic mesenchymal stem cells (hAMSCs) and transformed human endometrial stromal cells (THESCs) induced by transforming growth factor beta (TGF-ß1) were co-cultured in vitro. The mRNA and protein expression levels of Fibronectin (FN), Collagen I, Cytokeratin19 (CK19), E-cadherin (E-cad) and Vimentin were detected by Quantitative real-time polymerase chain reaction (qPCR), Western blotting (WB) and Immunohistochemical staining (IHC). The Sprague-Dawley (SD) rats were used to establish the IUA model. hAMSCs, hAMSCs-conditional medium (hAMSCs-CM), and GFP-labeled hAMSCs were injected into intrauterine, respectively. The fibrotic area of the endometrium was evaluated by Masson staining. The number of endometrium glands was detected by hematoxylin and eosin (H&E). GFP-labeled hAMSCs were traced by immunofluorescence (IF). hAMSCs, combined with PPCNg (hAMSCs/PPCNg), were injected into the vagina, which was compared with intrauterine injection. RESULTS: qPCR and WB revealed that FN and Collagen I levels in IUA-THESCs decreased significantly after co-culturing with hAMSCs. Moreover, CK19, E-cad, and Vimentin expressions in hAMSCs showed no significant difference after co-culture for 2 days. 6 days after co-culture, CK19, E-cad and Vimentin expressions in hAMSCs were significantly changed. Histological assays showed increased endometrial glands and a remarkable decrease in the fibrotic area in the hAMSCs and hAMSCs-CM groups. However, these changes were not statistically different between the two groups. In vivo, fluorescence imaging revealed that GFP-hAMSCs were localized in the endometrial stroma and gradually underwent apoptosis. The effect of hAMSCs by vaginal injection was comparable to that by intrauterine injection assessed by H&E staining, MASSON staining and IHC. CONCLUSIONS: Our data demonstrated that hAMSCs promoted endometrial repair via paracrine, preferentially than transdifferentiation.


IUA is the crucial cause of infertility in women of childbearing age, and no satisfactory treatment measures have been found in the clinic. hAMSCs can effectively treat intrauterine adhesions through paracrine and transdifferentiation mechanisms. This study confirmed in vitro and in vivo that amniotic mesenchymal stem cells preferentially inhibited endometrial fibrosis and promoted epithelial repair through paracrine, thus effectively treating intrauterine adhesions. The level of fibrosis marker proteins in IUA-THESCs decreased significantly after co-culturing with hAMSCs for 2 days in vitro. However, the level of epithelial marker proteins in hAMSCs increased significantly, requiring at least 6 days of co-culture. hAMSCs-CM had the same efficacy as hAMSCs in inhibiting fibrosis and promoting endometrial repair in IUA rats, supporting the idea that hAMSCs promoted endometrial remodeling through paracrine in vivo. In addition, GFP-labeled hAMSCs continuously colonized the endometrial stroma instead of the epithelium and gradually underwent apoptosis. These findings prove that hAMSCs ameliorate endometrial fibrosis of IUA via paracrine, preferentially than transdifferentiation, providing the latest insights into the precision treatment of IUA with hAMSCs and a theoretical basis for promoting the "cell-free therapy" of MSCs.


Amnion , Cell Transdifferentiation , Endometrium , Mesenchymal Stem Cells , Paracrine Communication , Rats, Sprague-Dawley , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Endometrium/cytology , Endometrium/metabolism , Animals , Amnion/cytology , Amnion/metabolism , Rats , Mesenchymal Stem Cell Transplantation/methods , Coculture Techniques , Tissue Adhesions/pathology , Tissue Adhesions/metabolism
2.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38823920

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Acrylic Resins , Hydrogels , Spheroids, Cellular , beta-Cyclodextrins , Spheroids, Cellular/drug effects , Humans , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , HeLa Cells , Animals , Mice , Cross-Linking Reagents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Culture Techniques, Three Dimensional/methods , Methacrylates/chemistry , Coculture Techniques , Neoplasms/pathology
3.
Nat Commun ; 15(1): 4486, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802389

Bacterial-fungal interactions influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Here, we use a co-culture experimental evolution approach to investigate bacterial adaptation to the presence of a fungus, using a simple model of bacterial-fungal interactions encompassing the bacterium Bacillus subtilis and the fungus Aspergillus niger. We find in one evolving population that B. subtilis was selected for enhanced production of the lipopeptide surfactin and accelerated surface spreading ability, leading to inhibition of fungal expansion and acidification of the environment. These phenotypes were explained by specific mutations in the DegS-DegU two-component system. In the presence of surfactin, fungal hyphae exhibited bulging cells with delocalised secretory vesicles possibly provoking an RlmA-dependent cell wall stress. Thus, our results indicate that the presence of the fungus selects for increased surfactin production, which inhibits fungal growth and facilitates the competitive success of the bacterium.


Adaptation, Physiological , Aspergillus niger , Bacillus subtilis , Lipopeptides , Bacillus subtilis/physiology , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Aspergillus niger/metabolism , Aspergillus niger/physiology , Aspergillus niger/growth & development , Lipopeptides/metabolism , Peptides, Cyclic/metabolism , Hyphae/growth & development , Hyphae/metabolism , Microbial Interactions/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Coculture Techniques , Mutation , Cell Wall/metabolism
4.
Anticancer Res ; 44(6): 2567-2575, 2024 Jun.
Article En | MEDLINE | ID: mdl-38821612

BACKGROUND/AIM: Protein phosphatase and tensin homolog (PTEN) is a tumor suppressor protein with potential to be a new biotechnological drug for PTEN-deficient cancer treatment. This study aimed to develop PTEN-based chimeric proteins (CPP-PTEN-THP) for human epidermal growth factor receptor 2 (HER2)-positive breast cancer treatment, addressing current limitations like inadequate delivery, poor tumor penetration, and low selectivity, while assessing their potential HER2-specific anticancer effects. MATERIALS AND METHODS: pCEFL-EGFP vector was used for both TAT-PTEN-LTV and KLA-PTEN-LTV construction. Non-contact co-cultures were employed using HEK-293T cells for protein expression, and HCC-1954 and MCF-7 cell lines for cytotoxicity testing. Protein detection was analyzed by western blotting and a docking prediction analysis was performed to infer the interactions. RESULTS: Endogenous and recombinant PTEN protein expression was confirmed in cell lysates. A 54-kDa signal matching the theoretical size of PTEN was detected, showing a greater level in TAT-PTEN-LTV (215.1±26.45%) and KLA-PTEN-LTV (129.2±1.44%) compared to endogenous PTEN. After the noncontact co-culture method, cytotoxic studies showed HCC-1954 preferential cell inhibition growth, with 25.95±0.9% and 12.25±1.29% inhibition by KLA-PTEN-LTV and TAT-PTEN-LTV respectively, compared to MCF-7 cells. An LTV-HER2 interaction model was proposed, inferring that LTV interactions are mainly due to the Pro, Trp, and Tyr residues that target HER2. CONCLUSION: The developed PTEN-based chimeric proteins have HER2-specific anticancer activity against HCC-1954 cells.


PTEN Phosphohydrolase , Receptor, ErbB-2 , Recombinant Fusion Proteins , Humans , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , HEK293 Cells , MCF-7 Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Molecular Docking Simulation , Coculture Techniques
5.
Article En | MEDLINE | ID: mdl-38821675

Currently, there is no test system, whether in vitro or in vivo, capable of examining all endpoints required for genotoxicity evaluation used in pre-clinical drug safety assessment. The objective of this study was to develop a model which could assess all the required endpoints and possesses robust human metabolic activity, that could be used in a streamlined, animal-free manner. Liver-on-chip (LOC) models have intrinsic human metabolic activity that mimics the in vivo environment, making it a preferred test system. For our assay, the LOC was assembled using primary human hepatocytes or HepaRG cells, in a MPS-T12 plate, maintained under microfluidic flow conditions using the PhysioMimix® Microphysiological System (MPS), and co-cultured with human lymphoblastoid (TK6) cells in transwells. This system allows for interaction between two compartments and for the analysis of three different genotoxic endpoints, i.e. DNA strand breaks (comet assay) in hepatocytes, chromosome loss or damage (micronucleus assay) and mutation (Duplex Sequencing) in TK6 cells. Both compartments were treated at 0, 24 and 45 h with two direct genotoxicants: methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS), and two genotoxicants requiring metabolic activation: benzo[a]pyrene (B[a]P) and cyclophosphamide (CP). Assessment of cytochrome activity, RNA expression, albumin, urea and lactate dehydrogenase production, demonstrated functional metabolic capacities. Genotoxicity responses were observed for all endpoints with MMS and EMS. Increases in the micronucleus and mutations (MF) frequencies were also observed with CP, and %Tail DNA with B[a]P, indicating the metabolic competency of the test system. CP did not exhibit an increase in the %Tail DNA, which is in line with in vivo data. However, B[a]P did not exhibit an increase in the % micronucleus and MF, which might require an optimization of the test system. In conclusion, this proof-of-principle experiment suggests that LOC-MPS technology is a promising tool for in vitro hazard identification genotoxicants.


Hepatocytes , Micronucleus Tests , Mutagenicity Tests , Mutagens , Humans , Hepatocytes/drug effects , Hepatocytes/metabolism , Mutagens/toxicity , Micronucleus Tests/methods , Mutagenicity Tests/methods , Liver/drug effects , Liver/metabolism , Lab-On-A-Chip Devices , DNA Damage/drug effects , Comet Assay/methods , Cyclophosphamide/toxicity , Methyl Methanesulfonate/toxicity , Cell Line , Benzo(a)pyrene/toxicity , Coculture Techniques , Ethyl Methanesulfonate/toxicity , Mutation/drug effects
6.
Stem Cell Res Ther ; 15(1): 154, 2024 May 31.
Article En | MEDLINE | ID: mdl-38816862

BACKGROUND: Mesenchymal stromal cells (MSCs) isolated from the periodontal ligament (hPDL-MSCs) have a high therapeutic potential, presumably due to their immunomodulatory properties. The interaction between hPDL-MSCs and immune cells is reciprocal and executed by diverse cytokine-triggered paracrine and direct cell-to-cell contact mechanisms. For the first time, this study aimed to directly compare the contribution of various mechanisms on this reciprocal interaction using different in vitro co-culture models at different inflammatory milieus. METHODS: Three co-culture models were used: indirect with 0.4 µm-pored insert, and direct with or without insert. After five days of co-culturing mitogen-activated CD4+ T lymphocytes with untreated, interleukin (IL)-1ß, or tumor necrosis factor (TNF)-α- treated hPDL-MSCs, the CD4+ T lymphocyte proliferation, viability, and cytokine secretion were investigated. The gene expression of soluble and membrane-bound immunomediators was investigated in the co-cultured hPDL-MSCs. RESULTS: Untreated hPDL-MSCs decreased the CD4+ T lymphocyte proliferation and viability more effectively in the direct co-culture models. The direct co-culture model without inserts showed a strikingly higher CD4+ T lymphocyte cell death rate. Adding IL-1ß to the co-culture models resulted in substantial CD4+ T lymphocyte response alterations, whereas adding TNF resulted in only moderate effects. The most changes in CD4+ T lymphocyte parameters upon the addition of IL-1ß or TNF-α in a direct co-culture model without insert were qualitatively different from those observed in two other models. Additionally, the co-culture models caused variability in the immunomediator gene expression in untreated and cytokine-triggered hPDL-MSCs. CONCLUSION: These results suggest that both paracrine and cell-to-cell contact mechanisms contribute to the reciprocal interaction between hPDL-MSCs and CD4+ T lymphocytes. The inflammatory environment affects each of these mechanisms, which depends on the type of cytokines used for the activation of MSCs' immunomodulatory activities. This fact should be considered by comparing the outcomes of the different models.


CD4-Positive T-Lymphocytes , Coculture Techniques , Mesenchymal Stem Cells , Paracrine Communication , Periodontal Ligament , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Periodontal Ligament/cytology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Immunomodulation , Cell Proliferation/drug effects , Cells, Cultured , Cell Communication , Interleukin-1beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism
7.
Exp Dermatol ; 33(5): e15077, 2024 May.
Article En | MEDLINE | ID: mdl-38711200

Modelling atopic dermatitis (AD) in vitro is paramount to understand the disease pathophysiology and identify novel treatments. Previous studies have shown that the Th2 cytokines IL-4 and IL-13 induce AD-like features in keratinocytes in vitro. However, it has not been systematically researched whether the addition of Th2 cells, their supernatants or a 3D structure is superior to model AD compared to simple 2D cell culture with cytokines. For the first time, we investigated what in vitro option most closely resembles the disease in vivo based on single-cell RNA sequencing data (scRNA-seq) obtained from skin biopsies in a clinical study and published datasets of healthy and AD donors. In vitro models were generated with primary fibroblasts and keratinocytes, subjected to cytokine treatment or Th2 cell cocultures in 2D/3D. Gene expression changes were assessed using qPCR and Multiplex Immunoassays. Of all cytokines tested, incubation of keratinocytes and fibroblasts with IL-4 and IL-13 induced the closest in vivo-like AD phenotype which was observed in the scRNA-seq data. Addition of Th2 cells to fibroblasts failed to model AD due to the downregulation of ECM-associated genes such as POSTN. While keratinocytes cultured in 3D showed better stratification than in 2D, changes induced with AD triggers did not better resemble AD keratinocyte subtypes observed in vivo. Taken together, our comprehensive study shows that the simple model using IL-4 or IL-13 in 2D most accurately models AD in fibroblasts and keratinocytes in vitro, which may aid the discovery of novel treatment options.


Dermatitis, Atopic , Fibroblasts , Interleukin-13 , Interleukin-4 , Keratinocytes , Sequence Analysis, RNA , Single-Cell Analysis , Th2 Cells , Humans , Fibroblasts/metabolism , Interleukin-4/pharmacology , Interleukin-4/metabolism , Interleukin-13/metabolism , Interleukin-13/pharmacology , Cytokines/metabolism , Coculture Techniques , RNA-Seq , Cells, Cultured , Skin/pathology
8.
BMC Immunol ; 25(1): 31, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734625

BACKGROUND: Thyroid eye disease (TED) is an inflammatory process involving lymphocyte-mediated immune response and orbital tissue damage. The anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies produced by B lymphocytes are involved in the activation of orbital fibroblasts and the inflammatory process of orbital tissue damage in TED. The purpose of this study was to explore the role of IGF-1R in the mechanistic connection between orbital fibroblasts and B lymphocytes in TED. METHODS: Orbital fibroblasts sampled from orbital connective tissues and peripheral B lymphocytes isolated from peripheral blood, which were obtained from 15 patients with TED and 15 control patients, were co-cultured at a ratio of 1:20. The level of IGF-1R expression in orbital fibroblasts was evaluated by flow cytometry and confocal microscopy. Transient B lymphocyte depletion was induced with anti-CD20 monoclonal antibody rituximab, while the IGF-1R pathway was blocked by the IGF-1R binding protein. The expression levels of interleukin-6 (IL-6) and regulated upon activation, normal T cell expressed and secreted (RANTES) in the co-culture model were quantified via ELISA. RESULTS: IGF-1R expression was significantly elevated in TED orbital fibroblasts compared to that of controls. A 24-h co-culture of orbital fibroblasts with peripheral B lymphocytes induced elevated expression levels of IL-6 and RANTES in each group (TED patients and controls), with the highest levels occurring in TED patients (T + T group). Rituximab and IGF-1R binding protein significantly inhibited increased levels of IL-6 and RANTES in the co-culture model of TED patients. CONCLUSIONS: IGF-1R may mediate interaction between orbital fibroblasts and peripheral B lymphocytes; thus, blocking IGF-1R may reduce the local inflammatory response in TED. Rituximab-mediated B lymphocyte depletion played a role in inhibiting inflammatory responses in this in vitro co-culture model, providing a theoretical basis for the clinical application of anti-CD20 monoclonal antibodies in TED.


B-Lymphocytes , Coculture Techniques , Fibroblasts , Graves Ophthalmopathy , Receptor, IGF Type 1 , Humans , Graves Ophthalmopathy/metabolism , Graves Ophthalmopathy/immunology , Fibroblasts/metabolism , Receptor, IGF Type 1/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Female , Male , Middle Aged , Adult , Rituximab/pharmacology , Rituximab/therapeutic use , Orbit/metabolism , Orbit/immunology , Lymphocyte Depletion , Interleukin-6/metabolism , Cells, Cultured , Chemokine CCL5/metabolism , Cell Communication , Aged
9.
Appl Microbiol Biotechnol ; 108(1): 336, 2024 May 18.
Article En | MEDLINE | ID: mdl-38761182

To investigate the cell-cell interactions of intergeneric bacterial species, the study detected the survival of Enterococcus faecalis (Ef) under monospecies or coaggregation state with Fusobacterium nucleatum subsp. polymorphum (Fnp) in environmental stress. Ef and Fnp infected the human macrophages with different forms (Ef and Fnp monospecies, Ef-Fnp coaggregates, Ef + Fnp cocultures) for exploring the immunoregulatory effects and the relevant molecular mechanisms. Meanwhile, the transcriptomic profiles of coaggregated Ef and Fnp were analyzed. Ef was shown to coaggregate with Fnp strongly in CAB within 90 min by forming multiplexes clumps. Coaggregation with Fnp reinforced Ef resistance against unfavorable conditions including alkaline, hypertonic, nutrient-starvation, and antibiotic challenges. Compared with monospecies and coculture species, the coaggregation of Ef and Fnp significantly facilitates both species to invade dTHP-1 cells and aid Ef to survive within the cells. Compared with coculture species, dual-species interaction of Ef and Fnp significantly decreased the levels of pro-inflammatory cytokines IL-6, TNF-α, and chemokines MCP-1 secreted by dTHP-1 cells and lessened the phosphorylation of p38, JNK, and p65 signaling pathways. The transcriptome sequencing results showed that 111 genes were differentially expressed or Ef-Fnp coaggregated species compared to Ef monospecies; 651 genes were differentially expressed for Fnp when coaggregation with Ef. The analysis of KEGG pathway showed that Ef differentially expressed genes (DEGs) were enriched in quorum sensing and arginine biosynthesis pathway; Fnp DEGs were differentially concentrated in lipopolysaccharide (LPS) biosynthesis, biofilm formation, and lysine degradation pathway compared to monospecies. KEY POINTS: • Coaggregated with Fnp aids Ef's survival in environmental stress, especially in root canals after endodontic treatment. • The coaggregation of Ef and Fnp may weaken the pro-inflammatory response and facilitate Ef to evade killed by macrophages. • The coaggregation between Ef and Fnp altered interspecies transcriptional profiles.


Enterococcus faecalis , Fusobacterium nucleatum , Macrophages , Stress, Physiological , Fusobacterium nucleatum/physiology , Fusobacterium nucleatum/genetics , Enterococcus faecalis/genetics , Enterococcus faecalis/physiology , Humans , Macrophages/microbiology , Macrophages/immunology , Cytokines/metabolism , Cytokines/genetics , Bacterial Adhesion , Coculture Techniques , Gene Expression Profiling , Transcriptome , Cell Line , Interleukin-6/genetics , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Inflammation
10.
J Neuroimmune Pharmacol ; 19(1): 20, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758335

Neuroinflammation has emerged as a crucial factor in the development of depression. Despite the well-known anti-inflammatory properties of 6-gingerol, its potential impact on depression remains poorly understood. This study aimed to investigate the antidepressant effects of 6-gingerol by suppressing microglial activation. In vivo experiments were conducted to evaluate the effect of 6-gingerol on lipopolysaccharide (LPS)-induced behavioral changes and neuroinflammation in rat models. In vitro studies were performed to examine the neuroprotective properties of 6-gingerol against LPS-induced microglial activation. Furthermore, a co-culture system of microglia and neurons was established to assess the influence of 6-gingerol on the expression of synaptic-related proteins, namely synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), which are influenced by microglial activation. In the in vivo experiments, administration of 6-gingerol effectively alleviated LPS-induced depressive behavior in rats. Moreover, it markedly suppressed the activation of rat prefrontal cortex (PFC) microglia induced by LPS and the activation of the NF-κB/NLRP3 inflammatory pathway, while also reducing the levels of inflammatory cytokines IL-1ß and IL-18. In the in vitro experiments, 6-gingerol mitigated nuclear translocation of NF-κB p65, NLRP3 activation, and maturation of IL-1ß and IL-18, all of which were induced by LPS. Furthermore, in the co-culture system of microglia and neurons, 6-gingerol effectively restored the decreased expression of SYP and PSD95. The findings of this study demonstrate the neuroprotective effects of 6-gingerol in the context of LPS-induced depression-like behavior. These effects are attributed to the inhibition of microglial hyperactivation through the suppression of the NF-κB/NLRP3 inflammatory pathway.


Catechols , Depression , Fatty Alcohols , Lipopolysaccharides , Microglia , Neuronal Plasticity , Rats, Sprague-Dawley , Animals , Fatty Alcohols/pharmacology , Microglia/drug effects , Microglia/metabolism , Rats , Lipopolysaccharides/toxicity , Male , Catechols/pharmacology , Neuronal Plasticity/drug effects , Depression/drug therapy , Depression/chemically induced , Depression/metabolism , Coculture Techniques , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Disease Models, Animal , Neuroprotective Agents/pharmacology , Cells, Cultured , Antidepressive Agents/pharmacology
11.
Methods Mol Biol ; 2804: 237-251, 2024.
Article En | MEDLINE | ID: mdl-38753152

Organ-on-a-chip technology allows researchers to precisely monitor drug efficacy in 3D tissue culture systems that are physiologically more relevant to humans compared to 2D cultures and that allow better control over experimental conditions as compared to animal models. Specifically, the high control over microenvironmental conditions combined with the broad range of direct measurements that can be performed in these systems makes organ-on-a-chip devices a versatile tool to investigate tumor targeting and drug delivery. Here, we describe a detailed protocol for studying the cell-selective targeting of protein drugs to tumor cells on an organ-on-a-chip system using a co-culture consisting of BT-474 cancer cells and C5120 human fibroblasts as an example.


Coculture Techniques , Lab-On-A-Chip Devices , Humans , Coculture Techniques/methods , Cell Line, Tumor , Fibroblasts/metabolism , Tumor Microenvironment , Neoplasms/pathology , Neoplasms/drug therapy , Drug Delivery Systems/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Antineoplastic Agents/pharmacology , Microfluidics/methods , Microfluidics/instrumentation
12.
Methods Mol Biol ; 2807: 271-283, 2024.
Article En | MEDLINE | ID: mdl-38743235

The blood-brain barrier (BBB) is one of several barriers between the brain and the peripheral blood system to maintain homeostasis. Understanding the interactions between infectious agents such as human immunodeficiency virus type 1 (HIV-1), which are capable of traversing the BBB and causing neuroinflammation requires modeling an authentic BBB in vitro. Such an in vitro BBB model also helps develop means of targeting viruses that reside in the brain via natural immune effectors such as antibodies. The BBB consists of human brain microvascular endothelial cells (HBMECs), astrocytes, and pericytes. Here we report in vitro methods to establish a dual-cell BBB model consisting of primary HBMECs and primary astrocytes to measure the integrity of the BBB and antibody penetration of the BBB, as well as a method to establish a single cell BBB model to study the impact of HIV-1 infected medium on the integrity of such a BBB.


Astrocytes , Blood-Brain Barrier , Endothelial Cells , HIV Infections , HIV-1 , Blood-Brain Barrier/virology , Blood-Brain Barrier/metabolism , Humans , Astrocytes/virology , Astrocytes/metabolism , Astrocytes/immunology , Endothelial Cells/virology , Endothelial Cells/metabolism , Endothelial Cells/immunology , HIV-1/immunology , HIV-1/physiology , HIV Infections/virology , HIV Infections/immunology , Pericytes/virology , Pericytes/metabolism , Pericytes/immunology , Neuroinflammatory Diseases/virology , Neuroinflammatory Diseases/immunology , Coculture Techniques/methods , Cells, Cultured , Brain/virology , Brain/immunology , Brain/metabolism
13.
PLoS One ; 19(5): e0302913, 2024.
Article En | MEDLINE | ID: mdl-38728358

In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.


Chickens , Hepatocytes , Lipopolysaccharides , Poly I-C , Animals , Hepatocytes/drug effects , Hepatocytes/immunology , Hepatocytes/metabolism , Poly I-C/pharmacology , Lipopolysaccharides/pharmacology , Immunologic Factors/pharmacology , Teichoic Acids/pharmacology , Cells, Cultured , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Coculture Techniques , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Cytokines/metabolism , Antimicrobial Cationic Peptides/pharmacology
14.
FASEB J ; 38(9): e23637, 2024 May 15.
Article En | MEDLINE | ID: mdl-38720403

Vascular smooth muscle cell (VSMC) plasticity is fundamental in uterine spiral artery remodeling during placentation in Eutherian mammals. Our previous work showed that the invasion of trophoblast cells into uterine myometrium coincides with a phenotypic change of VSMCs. Here, we elucidate the mechanism by which trophoblast cells confer VSMC plasticity. Analysis of genetic markers on E13.5, E16.5, and E19.5 in the rat metrial gland, the entry point of uterine arteries, revealed that trophoblast invasion is associated with downregulation of MYOCARDIN, α-smooth muscle actin, and calponin1, and concomitant upregulation of Smemb in VSMCs. Myocardin overexpression or knockdown in VSMCs led to upregulation or downregulation of contractile markers, respectively. Co-culture of trophoblast cells with VSMCs decreased MYOCARDIN expression along with compromised expression of contractile markers in VSMCs. However, co-culture of trophoblast cells with VSMCs overexpressing MYOCARDIN inhibited their change in phenotype, whereas, overexpression of transactivation domain deleted MYOCARDIN failed to elicit this response. Furthermore, the co-culture of trophoblast cells with VSMCs led to the activation of NFκß signaling. Interestingly, despite producing IL-1ß, trophoblast cells possess only the decoy receptor, whereas, VSMCs possess the IL-1ß signaling receptor. Treatment of VSMCs with exogenous IL-1ß led to a decrease in MYOCARDIN and an increase in phosphorylation of NFκß. The effect of trophoblast cells in the downregulation of MYOCARDIN in VSMCs was reversed by blocking NFκß translocation to the nucleus. Together, these data highlight that trophoblast cells direct VSMC plasticity, and trophoblast-derived IL-1ß is a key player in downregulating MYOCARDIN via the NFκß signaling pathway.


Interleukin-1beta , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , NF-kappa B , Nuclear Proteins , Signal Transduction , Trans-Activators , Trophoblasts , Animals , Trophoblasts/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Trans-Activators/metabolism , Trans-Activators/genetics , Rats , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Signal Transduction/physiology , NF-kappa B/metabolism , Female , Myocytes, Smooth Muscle/metabolism , Interleukin-1beta/metabolism , Pregnancy , Coculture Techniques , Rats, Sprague-Dawley , Cells, Cultured , Cell Plasticity/physiology , Calponins
15.
Bull Exp Biol Med ; 176(5): 672-679, 2024 Mar.
Article En | MEDLINE | ID: mdl-38733483

A culture of cells expressing markers of mesenchymal stem cells (MSC) (CD73, CD90, CD44, CD29, and CD49b), but not hematopoietic cell markers, and capable of multilineage differentiation was isolated from the deciduous tooth pulp. Co-culturing with immature dendritic cells in the presence of LPS did not reveal an ability of the MSC to suppress the maturation of dendritic cells. On the contrary, co-culturing of MSC with monocytes in the presence of granulocyte-macrophage CSF and IL-4 led to complete suppression of monocyte differentiation into dendritic cells. However, long-term culturing of MSC from dental pulp showed that by the passage 11, they almost completely lose their suppressor ability. These results indicate that the immunological properties of MSC can change during culturing without changing their phenotypic markers. This should be taken into account when creating biomedical cell products.


Cell Differentiation , Coculture Techniques , Dendritic Cells , Dental Pulp , Mesenchymal Stem Cells , Tooth, Deciduous , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Dental Pulp/cytology , Dendritic Cells/cytology , Humans , Tooth, Deciduous/cytology , Cells, Cultured , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Monocytes/cytology , Monocytes/immunology , Interleukin-4/metabolism , Interleukin-4/pharmacology , Lipopolysaccharides/pharmacology
16.
Stem Cell Res Ther ; 15(1): 130, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702837

BACKGROUND: Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION: Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.


Cell Differentiation , Hyaluronic Acid , Mesenchymal Stem Cells , Pluripotent Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Culture Media, Serum-Free/pharmacology , Cell Lineage , Cells, Cultured , Cell Culture Techniques/methods , Coculture Techniques
17.
Anal Chim Acta ; 1306: 342615, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692795

The Caco-2 cells were used as intestinal epithelial cell model to illustrate the hyperuricemia (HUA) mechanism under the co-culture of the imbalanced intestinal microbiome in this work. The uric acid (UA) concentration in the HUA process was monitored, and could be up to 425 µmol/L at 8 h co-cultured with the imbalanced intestinal microbiome. Single-cell potentiometry based on ion-selective microelectrode was used to study extracellular calcium change, which is hypothesized to play an important role in the UA excretion. The potential signal of the calcium in the extremely limited microenvironment around single Caco-2 cell was recorded through the single-cell analysis platform. The potential signal of sharp decrease and slow increase followed within a few seconds indicates the sudden uptake and gradually excretion process of calcium through the cell membrane. Moreover, the value of the potential decrease increases with the increase of the time co-cultured with the imbalanced intestinal microbiome ranging from 0 to 8 h. The Ca2+ concentration around the cell membrane could decrease from 1.3 mM to 0.4 mM according to the potential decrease of 27.0 mV at the co-culture time of 8 h. The apoptosis ratio of the Caco-2 cells also exhibits time dependent with the co-culture of the imbalanced intestinal microbiome, and was 39.1 ± 3.6 % at the co-culture time of 8 h, which is much higher than the Caco-2 cells without any treatment (3.9 ± 2.9 %). These results firstly provide the links between the UA excretion with the apoptosis of the intestinal epithelial cell under the interaction of the imbalanced intestinal microbiome. Moreover, the apoptosis could be triggered by the calcium signaling.


Calcium , Carbon , Coculture Techniques , Gastrointestinal Microbiome , Microelectrodes , Potentiometry , Single-Cell Analysis , Humans , Caco-2 Cells , Calcium/metabolism , Carbon/chemistry , Apoptosis
18.
Am J Reprod Immunol ; 91(5): e13854, 2024 May.
Article En | MEDLINE | ID: mdl-38716832

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disorder characterized by oligo-anovulation, hyperandrogenism, and polycystic ovaries, with hyperandrogenism being the most prominent feature of PCOS patients. However, whether excessive androgens also exist in the ovarian microenvironment of patients with PCOS, and their modulatory role on ovarian immune homeostasis and ovarian function, is not clear. METHODS: Follicular fluid samples from patients participating in their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment were collected. Androgen concentration of follicular fluid was assayed by chemiluminescence, and the macrophage M1:M2 ratio was detected by flow cytometry. In an in vitro model, we examined the regulatory effects of different concentrations of androgen on macrophage differentiation and glucose metabolism levels using qRT-PCR, Simple Western and multi-factor flow cytometry assay. In a co-culture model, we assessed the effect of a hyperandrogenic environment in the presence or absence of macrophages on the function of granulosa cells using qRT-PCR, Simple Western, EdU assay, cell cycle assay, and multi-factor flow cytometry assay. RESULTS: The results showed that a significantly higher androgen level and M1:M2 ratio in the follicular fluid of PCOS patients with hyperandrogenism. The hyperandrogenic environment promoted the expression of pro-inflammatory and glycolysis-related molecules and inhibited the expression of anti-inflammatory and oxidative phosphorylation-related molecules in macrophages. In the presence of macrophages, a hyperandrogenic environment significantly downregulated the function of granulosa cells. CONCLUSION: There is a hyperandrogenic microenvironment in the ovary of PCOS patients with hyperandrogenism. Hyperandrogenic microenvironment can promote the activation of ovarian macrophages to M1, which may be associated with the reprogramming of macrophage glucose metabolism. The increased secretion of pro-inflammatory cytokines by macrophages in the hyperandrogenic microenvironment would impair the normal function of granulosa cells and interfere with normal ovarian follicle growth and development.


Androgens , Follicular Fluid , Granulosa Cells , Hyperandrogenism , Macrophages , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/immunology , Female , Granulosa Cells/metabolism , Macrophages/immunology , Macrophages/metabolism , Hyperandrogenism/metabolism , Adult , Follicular Fluid/metabolism , Androgens/metabolism , Cells, Cultured , Macrophage Activation , Cellular Microenvironment , Coculture Techniques , Cell Differentiation
19.
Front Immunol ; 15: 1361596, 2024.
Article En | MEDLINE | ID: mdl-38690266

Mesenchymal stromal/stem cells (MSCs), which are distributed in many tissues including bone marrow, have been reported to play a critical role in tumor development. While bone marrow, the primary site for hematopoiesis, is important for establishing the immune system, whether MSCs in the bone marrow can promote tumor growth via influencing hematopoiesis remains unclear. We observed that the numbers of MSCs and neutrophils were increased in bone marrow in tumor-bearing mice. Moreover, co-culture assay showed that MSCs strongly protected neutrophils from apoptosis and induced their maturation. G-CSF and GM-CSF have been well-documented to be associated with neutrophil formation. We found a remarkably increased level of G-CSF, but not GM-CSF, in the supernatant of MSCs and the serum of tumor-bearing mice. The G-CSF expression can be enhanced with inflammatory cytokines (IFNγ and TNFα) stimulation. Furthermore, we found that IFNγ and TNFα-treated MSCs enhanced their capability of promoting neutrophil survival and maturation. Our results indicate that MSCs display robustly protective effects on neutrophils to contribute to tumor growth in bone niches.


Cytokines , Mesenchymal Stem Cells , Neutrophils , Animals , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Mice , Cytokines/metabolism , Mice, Inbred C57BL , Coculture Techniques , Granulocyte Colony-Stimulating Factor/metabolism , Apoptosis , Tumor Necrosis Factor-alpha/metabolism , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/pathology
20.
Fluids Barriers CNS ; 21(1): 38, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693577

BACKGROUND: Blood-brain barrier (BBB) disruption is a central feature of cerebral malaria (CM), a severe complication of Plasmodium falciparum (Pf) infections. In CM, sequestration of Pf-infected red blood cells (Pf-iRBCs) to brain endothelial cells combined with inflammation, hemolysis, microvasculature obstruction and endothelial dysfunction mediates BBB disruption, resulting in severe neurologic symptoms including coma and seizures, potentially leading to death or long-term sequelae. In vitro models have advanced our knowledge of CM-mediated BBB disruption, but their physiological relevance remains uncertain. Using human induced pluripotent stem cell-derived brain microvascular endothelial cells (hiPSC-BMECs), we aimed to develop a novel in vitro model of the BBB in CM, exhibiting enhanced barrier properties. METHODS: hiPSC-BMECs were co-cultured with HB3var03 strain Pf-iRBCs up to 9 h. Barrier integrity was measured using transendothelial electrical resistance (TEER) and sodium fluorescein permeability assays. Localization and expression of tight junction (TJ) proteins (occludin, zonula occludens-1, claudin-5), cellular adhesion molecules (ICAM-1, VCAM-1), and endothelial surface markers (EPCR) were determined using immunofluorescence imaging (IF) and western blotting (WB). Expression of angiogenic and cell stress markers were measured using multiplex proteome profiler arrays. RESULTS: After 6-h of co-culture with Pf-iRBCs, hiPSC-BMECs showed reduced TEER and increased sodium fluorescein permeability compared to co-culture with uninfected RBCs, indicative of a leaky barrier. We observed disruptions in localization of occludin, zonula occludens-1, and claudin-5 by IF, but no change in protein expression by WB in Pf-iRBC co-cultures. Expression of ICAM-1 and VCAM-1 but not EPCR was elevated in hiPSC-BMECs with Pf-iRBC co-culture compared to uninfected RBC co-culture. In addition, there was an increase in expression of angiogenin, platelet factor-4, and phospho-heat shock protein-27 in the Pf-iRBCs co-culture compared to uninfected RBC co-culture. CONCLUSION: These findings demonstrate the validity of our hiPSC-BMECs based model of the BBB, that displays enhanced barrier integrity and appropriate TJ protein localization. In the hiPSC-BMEC co-culture with Pf-iRBCs, reduced TEER, increased paracellular permeability, changes in TJ protein localization, increase in expression of adhesion molecules, and markers of angiogenesis and cellular stress all point towards a novel model with enhanced barrier properties, suitable for investigating pathogenic mechanisms underlying BBB disruption in CM.


Blood-Brain Barrier , Induced Pluripotent Stem Cells , Malaria, Cerebral , Blood-Brain Barrier/metabolism , Humans , Malaria, Cerebral/metabolism , Endothelial Cells/metabolism , Cells, Cultured , Coculture Techniques , Models, Biological
...