Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35.460
1.
J Vis Exp ; (207)2024 May 17.
Article En | MEDLINE | ID: mdl-38829124

Functional genomics screening offers a powerful approach to probe gene function and relies on the construction of genome-wide plasmid libraries. Conventional approaches for plasmid library construction are time-consuming and laborious. Therefore, we recently developed a simple and efficient method, CRISPR-based modular assembly (CRISPRmass), for high-throughput construction of a genome-wide upstream activating sequence-complementary DNA/open reading frame (UAS-cDNA/ORF) plasmid library. Here, we present a protocol for CRISPRmass, taking as an example the construction of a GAL4/UAS-based UAS-cDNA/ORF plasmid library. The protocol includes massively parallel two-step test tube reactions followed by bacterial transformation. The first step is to linearize the existing complementary DNA (cDNA) or open reading frame (ORF) cDNA or ORF library plasmids by cutting the shared upstream vector sequences adjacent to the 5' end of cDNAs or ORFs using CRISPR/Cas9 together with single guide RNA (sgRNA), and the second step is to insert a UAS module into the linearized cDNA or ORF plasmids using a single step reaction. CRISPRmass allows the simple, fast, efficient, and cost-effective construction of various plasmid libraries. The UAS-cDNA/ORF plasmid library can be utilized for gain-of-function screening in cultured cells and for constructing a genome-wide transgenic UAS-cDNA/ORF library in Drosophila.


CRISPR-Cas Systems , Gene Library , Open Reading Frames , Plasmids , Plasmids/genetics , Animals , CRISPR-Cas Systems/genetics , Open Reading Frames/genetics , DNA, Complementary/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Drosophila melanogaster/genetics
2.
Fish Shellfish Immunol ; 149: 109599, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701990

Copper/zinc superoxide dismutase (Cu/Zn-SOD) can effectively eliminate reactive oxygen species (ROS),avoid damage from O2 to the body, and maintain O2 balance. In this study, multi-step high-performance liquid chromatography (HPLC), combined with Mass Spectrometry (MS), was used to isolate and identify Cu/Zn-SOD from the serum of Pinctada fucata martensii (P. f. martensii) and was designated as PmECSOD. With a length of 1864 bp and an open reading frame (ORF) of 1422 bp, the cDNA encodes a 473 amino acid protein. The PmECSOD transcript was detected in multiple tissues by quantitative real-time PCR (qRT-PCR), with its highest expression level being in the gills. Additionally, the temporal expression of PmECSOD mRNA in the hemolymph was highest at 48 h after in vivo stimulation with Escherichia coli and Micrococcus luteus. The results from this study provide a valuable base for further exploration of molluscan innate immunity and immune response.


Amino Acid Sequence , Immunity, Innate , Phylogeny , Pinctada , Superoxide Dismutase , Animals , Pinctada/immunology , Pinctada/genetics , Pinctada/enzymology , Superoxide Dismutase/genetics , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Superoxide Dismutase/immunology , Immunity, Innate/genetics , Gene Expression Profiling/veterinary , Base Sequence , Sequence Alignment/veterinary , Escherichia coli , DNA, Complementary/genetics , Micrococcus luteus/physiology , Gene Expression Regulation/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Methods Mol Biol ; 2799: 47-54, 2024.
Article En | MEDLINE | ID: mdl-38727902

Transfection allows the introduction of foreign nucleic acid into eukaryotic cells. It is an important tool in understanding the roles of NMDARs in neurons. Here we describe using lipofection-mediated transfection to introduce cDNA encoding NMDAR subunits into postmitotic rodent primary cortical neurons maintained in culture.


Neurons , Transfection , Neurons/metabolism , Neurons/cytology , Animals , Transfection/methods , Cells, Cultured , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Mice , Primary Cell Culture/methods , DNA, Complementary/genetics
4.
Viruses ; 16(5)2024 05 04.
Article En | MEDLINE | ID: mdl-38793610

APOBEC3G (A3G) restricts HIV-1 replication primarily by reducing viral cDNA and inducing G-to-A hypermutations in viral cDNA. HIV-1 encodes virion infectivity factor (Vif) to counteract A3G primarily by excluding A3G viral encapsidation. Even though the Vif-induced exclusion is robust, studies suggest that A3G is still detectable in the virion. The impact of encapsidated A3G in the HIV-1 replication is unclear. Using a highly sensitive next-generation sequencing (NGS)-based G-to-A hypermutation detecting assay, we found that wild-type HIV-1 produced from A3G-expressing T-cells induced higher G-to-A hypermutation frequency in viral cDNA than HIV-1 from non-A3G-expressing T-cells. Interestingly, although the virus produced from A3G-expressing T-cells induced higher hypermutation frequency, there was no significant difference in viral infectivity, revealing a disassociation of cDNA G-to-A hypermutation to viral infectivity. We also measured G-to-A hypermutation in the viral RNA genome. Surprisingly, our data showed that hypermutation frequency in the viral RNA genome was significantly lower than in the integrated DNA, suggesting a mechanism exists to preferentially select intact genomic RNA for viral packing. This study revealed a new insight into the mechanism of HIV-1 counteracting A3G antiviral function and might lay a foundation for new antiviral strategies.


APOBEC-3G Deaminase , DNA, Complementary , HIV-1 , Mutation , Virus Replication , vif Gene Products, Human Immunodeficiency Virus , HIV-1/genetics , HIV-1/physiology , HIV-1/pathogenicity , Humans , APOBEC-3G Deaminase/genetics , APOBEC-3G Deaminase/metabolism , Virus Replication/genetics , DNA, Complementary/genetics , vif Gene Products, Human Immunodeficiency Virus/genetics , vif Gene Products, Human Immunodeficiency Virus/metabolism , DNA, Viral/genetics , HIV Infections/virology , T-Lymphocytes/virology , High-Throughput Nucleotide Sequencing , HEK293 Cells
5.
Sci Adv ; 10(15): eadk8791, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38608016

Reverse transcriptase-Cas1 (RT-Cas1) fusion proteins found in some CRISPR systems enable spacer acquisition from both RNA and DNA, but the mechanism of RNA spacer acquisition has remained unclear. Here, we found that Marinomonas mediterranea RT-Cas1/Cas2 adds short 3'-DNA (dN) tails to RNA protospacers, enabling their direct integration into CRISPR arrays as 3'-dN-RNAs or 3'-dN-RNA/cDNA duplexes at rates comparable to similarly configured DNAs. Reverse transcription of RNA protospacers is initiated at 3' proximal sites by multiple mechanisms, including recently described de novo initiation, protein priming with any dNTP, and use of short exogenous or synthesized DNA oligomer primers, enabling synthesis of near full-length cDNAs of diverse RNAs without fixed sequence requirements. The integration of 3'-dN-RNAs or single-stranded DNAs (ssDNAs) is favored over duplexes at higher protospacer concentrations, potentially relevant to spacer acquisition from abundant pathogen RNAs or ssDNA fragments generated by phage defense nucleases. Our findings reveal mechanisms for site-specifically integrating RNA into DNA genomes with potential biotechnological applications.


RNA-Directed DNA Polymerase , RNA , DNA, Complementary/genetics , RNA/genetics , RNA-Directed DNA Polymerase/genetics , DNA/genetics , DNA, Single-Stranded
6.
Sci Rep ; 14(1): 9279, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654039

A simple and rapid electrochemical sensing method with high sensitivity and specificity of aptamers was developed for the detection of methylamphetamine (MAMP). A short anti-MAMP thiolated aptamer (Apt) with a methylene blue (MB) probe at 3'-end was immobilized on the surface of a gold electrode (MB-Apt-S/GE). The electrochemical signal appeared when MAMP presenting in the sample solution competed with cDNA for binding with MB-Apt-S. Under optimized conditions, the liner range of this signal-on electrochemical aptasensor for the detection of MAMP achieved from 1.0 to 10.0 nmol/L and 10.0-400 nmol/L. LOD 0.88 nmol/L were obtained. Satisfactory spiked recoveries of saliva and urine were also obtained. In this method, only 5 min were needed to incubate before the square wave voltammetry (SWV) analysis, which was much more rapid than other electrochemical sensors, leading to a bright and broad prospect for the detection of MAMP in biological sample. This method can be used for on-site rapid detection on special occasions, such as drug driving scenes, entertainment venues suspected of drug use, etc.


Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Methamphetamine , Electrochemical Techniques/methods , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Humans , Methamphetamine/urine , Methamphetamine/analysis , DNA, Complementary/genetics , Saliva/chemistry , Saliva/metabolism , Electrodes , Limit of Detection , Gold/chemistry , Methylene Blue/chemistry
7.
Biochem Biophys Res Commun ; 711: 149909, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38615573

RNA analysis has shown great value in forensic science, such as body fluids and tissue identification, postmortem interval estimation, biological age prediction, etc. Currently, most RNA follow-up experiments involve reverse transcription (RT) procedures. It has been shown that the RT step is variable and has a greater impact on subsequent data analysis, especially for forensic trace samples. However, the pattern of variation between different RNA template inputs and complementary DNA (cDNA) yield is unclear. In this study, a series of 2-fold gradient dilutions of RNA standards (1 µg/µL - 0.24 ng/µL) and forensic samples (including blood samples, saliva samples, bloodstains, and saliva stains) were reverse-transcribed using EasyQuick RT MasterMix. The obtained cDNA was quantified by droplet digital PCR (ddPCR) to assess the RT yield of the ACTB gene. The results showed that the 125 ng RNA template had the highest RT yield in a 10 µL RT reaction system with the selected kit. For all stain samples, the RT yield improved as the amount of RNA template input increased since RNA quantities were below 125 ng. As many commercialized reverse transcription kits using different kinds of enzymes are available for forensic RNA research, we recommend that systematic experiments should be performed in advance to determine the amount of RNA input at the optimum RT yield when using any kit for reverse transcription experiments.


RNA , Humans , RNA/genetics , RNA/analysis , Reverse Transcription , Saliva/metabolism , Saliva/chemistry , Forensic Genetics/methods , Forensic Genetics/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Reverse Transcriptase Polymerase Chain Reaction/methods , Reference Standards , DNA, Complementary/genetics , Blood Stains , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards
8.
Fish Shellfish Immunol ; 149: 109560, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615702

The JAK (Janus kinase)-STAT (Signal transducer and activator of transcription) is a well-known functional signaling pathway that plays a key role in several important biological activities such as apoptosis, cell proliferation, differentiation, and immunity. However, limited studies have explored the functions of STAT genes in invertebrates. In the present study, the gene sequences of two STAT genes from the Pacific oyster (Crassostrea gigas), termed CgSTAT-Like-1 (CgSTAT-L1) and CgSTAT-Like-2 (CgSTAT-L2), were obtained using polymerase chain reaction (PCR) amplification and cloning. Multiple sequence comparisons revealed that the sequences of crucial domains of these proteins were conserved, and the similarity with the protein sequence of other molluscan STAT is close to 90 %. The phylogenetic analyses indicated that CgSTAT-L1 and CgSTAT-L2 are novel members of the mollusk STAT family. Quantitative real-time PCR results implied that CgSTAT-L1 and CgSTAT-L2 mRNA expression was found in all tissues, and significantly induced after challenge with lipopolysaccharide (LPS), peptidoglycan (PGN), or poly(I:C). After that, dual-luciferase reporter assays denoted that overexpression of CgSTAT-L1 and CgSTAT-L2 significantly activated the NF-κB signaling, and, interestingly, the overexpressed CgSTAT proteins potentiated LPS-induced NF-κB activation. These results contributed a preliminary analysis of the immune-related function of STAT genes in oysters, laying the foundation for deeper understanding of the function of invertebrate STAT genes.


Amino Acid Sequence , Crassostrea , Phylogeny , STAT Transcription Factors , Sequence Alignment , Animals , Crassostrea/genetics , Crassostrea/immunology , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Sequence Alignment/veterinary , Lipopolysaccharides/pharmacology , Immunity, Innate/genetics , Peptidoglycan/pharmacology , Poly I-C/pharmacology , Base Sequence , Gene Expression Regulation/immunology , Gene Expression Regulation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA, Complementary/genetics , Cloning, Molecular , Signal Transduction
9.
Methods Mol Biol ; 2757: 289-306, 2024.
Article En | MEDLINE | ID: mdl-38668973

The functional screening of cDNA libraries (or functional cloning) enables isolation of cDNA genes encoding novel proteins with unknown amino acid sequences. This approach is the only way to identify a protein sequence in the event of shortage of biological material for obtaining pure target protein in amounts sufficient to determine its primary structure, since sensitive functional test for a target protein is only required to successfully perform functional cloning. Commonly, bioluminescent proteins from representatives belonging to different taxa significantly differ in sequences due to independent origin of bioluminescent systems during evolution. Nonetheless, these proteins are frequently similar in functions and can use even the same substrate of bioluminescence reaction, allowing the use of the same functional test for screening. The cDNA genes encoding unknown light-emitting proteins can be identified during functional screening with high sensitivity, which is provided by modern light recording equipment making possible the detection of a very small amount of a target protein. Here, we present the protocols for isolation of full-size cDNA genes for the novel bioluminescent protein family of light-sensitive Ca2+-regulated photoproteins in the absence of any sequence information by functional screening of plasmid cDNA expression library. The protocols describe all the steps from gathering animals to isolation of individual E. coli colonies carrying full-size cDNA genes using photoprotein berovin from ctenophore Beroe abyssicola as an illustrative example.


Cloning, Molecular , Ctenophora , DNA, Complementary , Gene Library , Luminescent Proteins , Animals , Ctenophora/genetics , Ctenophora/metabolism , Cloning, Molecular/methods , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , DNA, Complementary/genetics , Escherichia coli/genetics , Escherichia coli/metabolism
10.
BMC Vet Res ; 20(1): 162, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678249

BACKGROUND: Canine distemper virus (CDV) is a pathogen with the capability of cross-species transmission. It has crossed the species barrier to infect many other species, and its host range is expanding. The reverse genetic platform, a useful tool for scientific research, allows the generation of recombinant viruses from genomic cDNA clones in vitro. METHODS: To improve the reverse genetic system of CDV, a plasmid containing three independent expression cassettes was constructed for co-expression of the N, P, and L genes and then transfected with a full-length cDNA clone of CDV into Vero cells. RESULTS: The results indicated that the established rescue system has the advantages of being more convenient, easy to control the transfection ratio, and high rescue efficiency compared with the conventional reverse genetics system. CONCLUSION: This method not only reduces the number of transfection plasmids, but also improves the rescue efficiency of CDV, which could provide a reference for the recovery of other morbilliviruses.


Distemper Virus, Canine , Plasmids , Distemper Virus, Canine/genetics , Animals , Vero Cells , Chlorocebus aethiops , Plasmids/genetics , Transfection , Reverse Genetics/methods , DNA, Complementary/genetics , Distemper/virology
11.
Curr Protoc ; 4(3): e938, 2024 Mar.
Article En | MEDLINE | ID: mdl-38436133

The main challenge in the "post-GWAS" era is to determine the functional meaning of genetic variants and their contribution to disease pathogenesis. Development of suitable mouse models is critical because disease susceptibility is triggered by complex interactions between genetic, epigenetic, and environmental factors that cannot be modeled by in vitro models. Thyroglobulin (TG) is a key gene for autoimmune thyroid disease (AITD) and several single nucleotide polymorphisms (SNPs) in the TG coding region have been associated with AITD. The classical model of experimental autoimmune thyroiditis (EAT), based on immunization of genetically susceptible mouse strains with purified TG protein in adjuvant, does not allow testing the impact of TG sequence variants on the development of autoimmune thyroiditis. Here we describe a protocol for the induction of EAT by immunization of mice susceptible to thyroiditis with an adenovirus vector carrying full-length human TG cDNA (Ad-TG EAT). We also provide support protocols for evaluation of autoimmune thyroiditis including serological assessment of TG antibodies, in vitro splenocyte proliferation assay and cytokines secretion, thyroid histology, and evaluation of thyroid lymphocytic infiltration by immunostaining. This protocol for EAT induction allows manipulation of the TG cDNA to introduce variants associated with AITD, enabling the testing of the functional effects of susceptible variants and their haplotypes on the immunogenicity of TG. Furthermore, the Ad-TG EAT mouse model is a valuable model for studying the interactions of the TG variants with non-genetic factors influencing AITD development (e.g., cytokines, iodine exposure) or with variants of other susceptible genes (e.g., HLA-DRß1). © 2024 Wiley Periodicals LLC. Basic Protocol: Development of a mouse model of autoimmune thyroiditis induced by immunization with adenovirus containing full-length thyroglobulin cDNA Support Protocol 1: Splenocytes isolation Support Protocol 2: T cell stimulation and carboxyfluorescein diacetate succinimidyl ester (CFSE) based cell proliferation assay Support Protocol 3: Cytokine assays: measuring levels of interferon gamma (IFNγ) and interleukins IL-2, IL-4, and IL-10 in splenocyte supernatants Support Protocol 4: Evaluating thyroid histology and infiltration with immune cells: hematoxylin-eosin staining of mice thyroid glands Support Protocol 5: Immunohistochemistry of thyroid tissues: Immunofluorescence protocol of paraffin-embedded thyroid sections Support Protocol 6: Anti-thyroglobulin antibody measurement in mice sera by enzyme-linked immunosorbent assay (ELISA).


Adenoviridae Infections , Hashimoto Disease , Thyroiditis, Autoimmune , Humans , Animals , Mice , Thyroglobulin/genetics , Adenoviridae/genetics , DNA, Complementary/genetics , Immunization , Thyroiditis, Autoimmune/genetics , Cytokines , Disease Models, Animal
12.
Microbiol Spectr ; 12(4): e0387223, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38442427

In vitro reverse transcription of full-length HIV-1 RNA extracted from the blood plasma of people living with HIV-1 remains challenging. Here, we describe the initiation of reverse transcription of plasma-derived viral RNA in the absence of an exogenous primer. Real-time PCR and Sanger sequencing were applied to identify the source and to monitor the outcome of this reaction. Results demonstrated that during purification of viral RNA from plasma, tRNA(Lys-3) is co-extracted in a complex with the viral RNA. In the presence of a reverse transcription enzyme, this tRNA(Lys-3) can induce reverse transcription, a reaction that is not confined to transcription of the 5' end of the viral RNA. A range of cDNA products is generated, most of them indicative for the occurrence of in vitro strand transfer events that involve translocation of cDNA from the 5' end to random positions on the viral RNA. This process results in the formation of cDNAs with large internal deletions. However, near full-length cDNA and cDNA with sequence patterns resembling multiple spliced HIV-1 RNA were also detected. Despite its potential to introduce significant bias in the interpretation of results across various applications, tRNA(Lys-3)-driven reverse transcription has been overlooked thus far. A more in-depth study of this tRNA-driven in vitro reaction may provide new insight into the complex process of in vivo HIV-1 replication.IMPORTANCEThe use of silica-based extraction methods for purifying HIV-1 RNA from viral particles is a common practice, but it involves co-extraction of human tRNA(Lys-3) due to the strong interactions between these molecules. This co-extraction becomes particularly significant when the extracted RNA is used in reverse transcription reactions, as the tRNA(Lys-3) then serves as a primer. Reverse transcription from tRNA(Lys-3) is not confined to cDNA synthesis of the 5' end of the viral RNA but extends across various regions of the viral genome through in vitro strand transfer events. Co-extraction of tRNA(Lys-3) has been overlooked thus far, despite its potential to introduce bias in downstream, reverse transcription-related applications. The observed events in the tRNA(Lys-3)-induced in vitro reverse transcription resemble in vivo replication processes. Therefore, these reactions may offer a unique model to better understand the replication dynamics of HIV-1.


HIV-1 , Reverse Transcription , Humans , HIV-1/genetics , Artifacts , DNA, Complementary/genetics , Transcription, Genetic , Base Sequence , RNA, Viral/genetics , RNA, Transfer/genetics , Nucleic Acid Conformation
13.
Biosci Biotechnol Biochem ; 88(6): 620-629, 2024 May 22.
Article En | MEDLINE | ID: mdl-38479783

Human transglutaminase 1 (TG1) modulates skin development, while its involvement in diseases remains poorly understood, necessitating comprehensive exploration of its substrate interactions. To study the substrate profile of TG1, an in vitro selection system based on cDNA display technology was used to screen two peptide libraries with mutations at varying distance from the reactive glutamine. Next-generation sequencing and bioinformatics analysis of the selected DNA pools revealed a detailed TG1 substrate profile, indicating preferred and non-preferred amino acid sequences. The peptide sequence, AEQHKLPSKWPF, was identified showing high reactivity and specificity to TG1. The position weight matrix calculated from the per amino acid enrichment factors was employed to search human proteins using an in-house algorithm, revealing six known TG1 substrate proteins with high scores, alongside a list of candidate substrates currently under investigation. Our findings are expected to assist in future medical diagnoses and development of treatments for skin disorders.


DNA, Complementary , High-Throughput Nucleotide Sequencing , Transglutaminases , Humans , Transglutaminases/genetics , Transglutaminases/metabolism , Substrate Specificity , DNA, Complementary/genetics , Amino Acid Sequence , Peptide Library
14.
Molecules ; 29(4)2024 Feb 18.
Article En | MEDLINE | ID: mdl-38398650

Oysters contain significant amounts of the zinc element, which may also be found in their proteins. In this study, a novel zinc-binding protein was purified from the mantle of the oyster Magallana hongkongensis using two kinds of gel filtration chromatograms. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that its molecular weight was approximately 36 kDa. The protein identified by the Q-Exactive mass spectrometer shared the highest sequence identity with carbonic anhydrase derived from Crassostrea gigas concerning amino acid sequence similarity. Based on homologous cloning and RACE PCR, the full-length cDNA of carbonic anhydrase from Magallana hongkongensis (designated as MhCA) was cloned and sequenced. The cDNA of MhCA encodes a 315-amino-acid protein with 89.74% homology to carbonic anhydrase derived from Crassostrea gigas. Molecular docking revealed that the two zinc ions primarily form coordination bonds with histidine residues in the MhCA protein. These results strongly suggest that MhCA is a novel zinc-binding protein in Magallana hongkongensis.


Carbonic Anhydrases , Carrier Proteins , Crassostrea , Animals , DNA, Complementary/genetics , Molecular Docking Simulation , Cloning, Molecular , Crassostrea/metabolism , Carbonic Anhydrases/metabolism , Zinc
15.
Virology ; 593: 110010, 2024 05.
Article En | MEDLINE | ID: mdl-38364352

Tomato chlorosis virus (ToCV) is an emerging pathogen that cause severe yellow leaf disorder syndrome in tomato plants. In this study, we aimed to generate a recombinant ToCV tagged with green fluorescent protein (GFP) to enable real-time monitoring of viral infection in living plants. Transformation of the full-length cDNA construct of ToCV RNA1 into Escherichia coli resulted in instability issues, which were successfully overcome by inserting a plant intron into RNA1. Subsequently, a GFP tag was engineered into a cDNA construct of ToCV RNA2. The resulting recombinant ToCV-GFP could systemically infect Nicotiana benthamiana plants, and GFP expression was observed along the major veins. Utilizing ToCV-GFP, we also showed that ToCV engages in antagonistic relationships with two different tomato-infecting viruses in mixed infections in N. benthamiana. This study demonstrates the potential of ToCV-GFP as a valuable tool for the visual tracking of infection and movement of criniviruses in living plants.


Crinivirus , Solanum lycopersicum , Animals , Crinivirus/genetics , DNA, Complementary/genetics , Plant Diseases , Insect Vectors , Plants , Solanum lycopersicum/genetics
16.
Virology ; 593: 110013, 2024 05.
Article En | MEDLINE | ID: mdl-38373359

Tobacco streak virus induces severe diseases on a wide range of plants and becomes an emerging threat to crop yields. However, the infectious clones of TSV remain to be developed for reverse genetics studies. Here, we obtained the full genome sequence of a TSV-CNB isolate and analyzed the phylogenetic characteristics. Subsequently, we developed the full-length infectious cDNA clones of TSV-CNB driven by 35 S promoter using yeast homologous recombination. Furthermore, the host range of TSV-CNB isolate was determined by Agrobacterium infiltration and mechanical inoculation. The results reveal that TSV-CNB can infect 10 plant species in 5 families including Glycine max, Vigna radiate, Lactuca sativa var. Ramosa, Dahlia pinnate, E. purpurea, Calendula officinalis, Helianthus annuus, Nicotiana. Benthamiana, Nicotiana tabacum and Chenopodium quinoa. Taken together, the TSV infectious clones will be a useful tool for future studies on viral pathogenesis and host-virus interactions.


Echinacea , Ilarvirus , Humans , DNA, Complementary/genetics , Ilarvirus/genetics , Echinacea/genetics , Phylogeny , Plant Diseases , Nicotiana , Saccharomyces cerevisiae/genetics , Clone Cells , Host Specificity
17.
J Vis Exp ; (204)2024 Feb 02.
Article En | MEDLINE | ID: mdl-38372376

AQRNA-seq provides a direct linear relationship between sequencing read counts and small RNA copy numbers in a biological sample, thus enabling accurate quantification of the pool of small RNAs. The AQRNA-seq library preparation procedure described here involves the use of custom-designed sequencing linkers and a step for reducing methylation RNA modifications that block reverse transcription processivity, which results in an increased yield of full-length cDNAs. In addition, a detailed implementation of the accompanying bioinformatics pipeline is presented. This demonstration of AQRNA-seq was conducted through a quantitative analysis of the 45 tRNAs in Mycobacterium bovis BCG harvested on 5 selected days across a 20-day time course of nutrient deprivation and 6 days of resuscitation. Ongoing efforts to improve the efficiency and rigor of AQRNA-seq will also be discussed here. This includes exploring methods to obviate gel purification for mitigating primer dimer issues after PCR amplification and to increase the proportion of full-length reads to enable more accurate read mapping. Future enhancements to AQRNA-seq will be focused on facilitating automation and high-throughput implementation of this technology for quantifying all small RNA species in cell and tissue samples from diverse organisms.


High-Throughput Nucleotide Sequencing , RNA , High-Throughput Nucleotide Sequencing/methods , RNA/genetics , RNA, Transfer/genetics , Gene Library , DNA, Complementary/genetics , Sequence Analysis, RNA/methods
18.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article En | MEDLINE | ID: mdl-38396705

Various attempts to amplify an AQP11 cDNA from tissues of the spiny dogfish (Squalus acanthias) were made. Two pairs of deoxy-inosine-containing degenerate primers were designed based on conserved amino acid sequences from an AQP11 alignment. These primers yielded some faint bands from gill cDNA that were sequenced. Blast searches with the sequences showed they were not AQP11. An elasmobranch AQP11 nucleotide sequence alignment was produced to identify conserved regions to make further degenerate primers. One primer pair produced a short 148 bp fragment showing particularly strong amplification in gill and intestine. It was sequenced and represented a piece of the AQP11 gene. However, as the fragment may have resulted from contaminating genomic DNA (in total RNA used to make cDNA), 5' and 3' RACE were performed to amplify the two ends of the putative cDNA. Furthermore, 5' and 3' RACE amplifications depend on the presence of a 5' cap nucleotide and a poly A tail, respectively on the putative AQP11 mRNA. Hence, successful amplification was only possible from cDNA and not genomic DNA. Nested RACE amplifications were performed using gill and intestinal RACE cDNA, but none of the DNA fragments sequenced were AQP11. Consequently, the spiny dogfish AQP11 gene may represent a pseudogene.


Squalus acanthias , Animals , Squalus acanthias/genetics , DNA, Complementary/genetics , Pseudogenes/genetics , Base Sequence , DNA/genetics
19.
Exp Mol Med ; 56(2): 453-460, 2024 Feb.
Article En | MEDLINE | ID: mdl-38413820

The major drawbacks of RNA sequencing (RNA-seq), a remarkably accurate transcriptome profiling method, is its high cost and poor scalability. Here, we report a highly scalable and cost-effective method for transcriptomics profiling called Bulk transcriptOme profiling of cell Lysate in a single poT (BOLT-seq), which is performed using unpurified bulk 3'-end mRNA in crude cell lysates. During BOLT-seq, RNA/DNA hybrids are directly subjected to tagmentation, and second-strand cDNA synthesis and RNA purification are omitted, allowing libraries to be constructed in 2 h of hands-on time. BOLT-seq was successfully used to cluster small molecule drugs based on their mechanisms of action and intended targets. BOLT-seq competes effectively with alternative library construction and transcriptome profiling methods.


Gene Expression Profiling , RNA , RNA/genetics , RNA, Messenger/genetics , Gene Library , DNA, Complementary/genetics , Gene Expression Profiling/methods
20.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article En | MEDLINE | ID: mdl-38338897

Virus infections cause devastative economic losses for various plant species, and early diagnosis and prevention are the most effective strategies to avoid the losses. Exploring virus genomic evolution and constructing virus infectious cDNA clones is essential to achieve a deeper understanding of the interaction between host plant and virus. Therefore, this work aims to guide people to better prevent, control, and utilize the youcai mosaic virus (YoMV). Here, the YoMV was found to infect the Solanum nigrum under natural conditions. Then, an infectious cDNA clone of YoMV was successfully constructed using triple-shuttling vector-based yeast recombination. Furthermore, we established phylogenetic trees based on the complete genomic sequences, the replicase gene, movement protein gene, and coat protein gene using the corresponding deposited sequences in NCBI. Simultaneously, the evolutionary relationship of the YoMV discovered on S. nigrum to others was determined and analyzed. Moreover, the constructed cDNA infectious clone of YoMV from S. nigrum could systematically infect the Nicotiana benthamiana and S. nigrum by agrobacterium-mediated infiltration. Our investigation supplied a reverse genetic tool for YoMV study, which will also contribute to in-depth study and profound understanding of the interaction between YoMV and host plant.


Solanum nigrum , Tobamovirus , Humans , Virulence , Solanum nigrum/genetics , DNA, Complementary/genetics , Phylogeny , Tobamovirus/genetics , Plant Diseases
...