Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 93.046
1.
Sci Rep ; 14(1): 12613, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824206

The aim of the study was to assess healthy tissue metabolism (HTM) using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) during chemotherapy in Hodgkin lymphoma (HL) and the association of HTM with baseline metabolic tumour volume (MTV), haematological parameters, adverse events (AEs), early response and progression-free survival (PFS). We retrospectively identified 200 patients with advanced HL from the RATHL trial with [18F]FDG-PET/CT before (PET0) and following 2 cycles of chemotherapy (PET2). [18F]FDG-uptake was measured in bone marrow (BM), spleen, liver and mediastinal blood pool (MBP). Deauville score (DS) 1-3 was used to classify responders and DS 4-5, non-responders. [18F]FDG-uptake decreased significantly in BM and spleen and increased in liver and MBP at PET2 (all p < 0.0001), but was not associated with MTV. Higher BM uptake at PET0 was associated with lower baseline haemoglobin and higher absolute neutrophil counts, platelets, and white blood cells. High BM, spleen, and liver uptake at PET0 was associated with neutropenia after cycles 1-2. BM uptake at PET0 was associated with treatment failure at PET2 and non-responders with higher BM uptake at PET2 had significantly inferior PFS (p = 0.023; hazard ratio = 2.31). Based on these results, we concluded that the change in HTM during chemotherapy was most likely a direct impact of chemotherapy rather than a change in MTV. BM uptake has prognostic value in HL.


Fluorodeoxyglucose F18 , Hodgkin Disease , Positron Emission Tomography Computed Tomography , Humans , Hodgkin Disease/drug therapy , Hodgkin Disease/diagnostic imaging , Hodgkin Disease/metabolism , Hodgkin Disease/pathology , Positron Emission Tomography Computed Tomography/methods , Male , Female , Adult , Middle Aged , Prognosis , Retrospective Studies , Young Adult , Bone Marrow/diagnostic imaging , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Marrow/drug effects , Aged , Liver/diagnostic imaging , Liver/metabolism , Liver/pathology , Adolescent , Radiopharmaceuticals , Spleen/diagnostic imaging , Spleen/metabolism , Spleen/pathology
2.
J Cardiothorac Surg ; 19(1): 312, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824570

OBJECTIVE: About 10% of patients after cardiopulmonary bypass (CPB) would undergo acute liver injury, which aggravated the mortality of patients. Ac2-26 has been demonstrated to ameliorate organic injury by inhibiting inflammation. The present study aims to evaluate the effect and mechanism of Ac2-26 on acute liver injury after CPB. METHODS: A total of 32 SD rats were randomized into sham, CPB, Ac, and Ac/AKT1 groups. The rats only received anesthesia, and rats in other groups received CPB. The rats in Ac/AKT1 were pre-injected with the shRNA to interfere with the expression of AKT1. The rats in CPB were injected with saline, and rats in Ac and Ac/AKT1 groups were injected with Ac2-26. After 12 h of CPB, all the rats were sacrificed and the peripheral blood and liver samples were collected to analyze. The inflammatory factors in serum and liver were detected. The liver function was tested, and the pathological injury of liver tissue was evaluated. RESULTS: Compared with the sham group, the inflammatory factors, liver function, and pathological injury were worsened after CPB. Compared with the CPB group, the Ac2-26 significantly decreased the pro-inflammatory factors and increased the anti-inflammatory factor, improved liver function, and ameliorated the pathological injury. All the therapeutic effects of Ac2-26 were notably attenuated by the shRNA of AKT1. The Ac2-26 increased the GSK3ß and eNOS, and this promotion was inhibited by the shRNA. CONCLUSION: The Ac2-26 significantly treated the liver injury, inhibited inflammation, and improved liver function. The effect of Ac2-26 on liver injury induced by CPB was partly associated with the promotion of AKT1/GSK3ß/eNOS.


Cardiopulmonary Bypass , Glycogen Synthase Kinase 3 beta , Nitric Oxide Synthase Type III , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Animals , Cardiopulmonary Bypass/adverse effects , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Rats , Nitric Oxide Synthase Type III/metabolism , Male , Disease Models, Animal , Liver/pathology , Signal Transduction
3.
Narra J ; 4(1): e178, 2024 Apr.
Article En | MEDLINE | ID: mdl-38798852

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a disease newly discovered in December 2019 which affects coagulation cascade and liver functions. The aim of this study was to investigate the potential of hemostatic and liver function parameters as severity markers in COVID-19 patients. This study was an observational analytic with cohort retrospective design using total sampling method. Data were retrieved from medical record of COVID-19 patients admitted to provincial hospital in Banda Aceh, Indonesia from March 2020 to March 2022. There were 1208 data eligible for the study after applying certain criteria. Mann-Whitney, logistic regression, and receiving operating characteristic (ROC) analyses were used to analysis the data. Thrombocyte count (p<0.001), prothrombin time (p<0.001), activated partial thromboplastin time (p<0.001), D-dimer (p<0.001), fibrinogen (p<0.001), aspartate aminotransferase (p<0.001), and alanine transaminase (p<0.001) significantly increased in severe compared to mild COVID-19 patients. After being adjusted, age (odds ratio (OR); 1.026 (95% confidence interval (CI): 1.016-1.037) was the most significant factor in predicting COVID-19 severity. Fibrinogen (cut-off 526.5 mg/L) was the best parameter associated with COVID-19 severity with 70% sensitivity and 66.4% specificity. Meanwhile, D-dimer (cut-off 805 ng/mL) had a sensitivity of 72.3% and specificity of 66.4%. Combining the parameters resulted in improved sensitivity to 82.0% with a slight decline of specificity to 65.5%. In conclusion, fibrinogen and D-dimer level on admission could be used as biomarkers in predicting COVID-19 prognosis. Routine monitoring and evaluation of laboratory testing especially D-dimer and fibrinogen could be implemented in order to reduce morbidity and mortality rate of COVID-19.


Biomarkers , COVID-19 , Severity of Illness Index , Humans , COVID-19/blood , COVID-19/diagnosis , Male , Female , Biomarkers/blood , Retrospective Studies , Middle Aged , Adult , Liver Function Tests , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism , Indonesia/epidemiology , SARS-CoV-2 , Fibrinogen/analysis , Fibrinogen/metabolism , Aspartate Aminotransferases/blood , Hemostasis/physiology , Aged , Platelet Count , Liver/pathology , Alanine Transaminase/blood
4.
J Int Med Res ; 52(5): 3000605241253733, 2024 May.
Article En | MEDLINE | ID: mdl-38811356

OBJECTIVE: To investigate the hepatic effects of high-dose intravenous (IV) iron, including those on liver function and the degree of fibrosis, in a rat model of cirrhosis. METHODS: We evenly allocated 25 Sprague-Dawley rats into five groups: normal rats (control group), cirrhotic rats receiving IV normal saline (liver cirrhosis [LC] group), and cirrhotic rats receiving 20, 40, or 80 mg/kg IV ferric carboxymaltose (LC-iron20, LC-iron40, and LC-iron80 group, respectively). Biochemical parameters were compared at 0, 7, 14, 21, and 28 days. The degrees of hepatic fibrosis and iron deposition were evaluated. Inflammatory and oxidative stress markers were also compared. RESULTS: There were no significant differences in the 28-day serum alanine aminotransferase levels among the LC-iron20, LC-iron40, and LC-iron80 groups (69 ± 7, 1003 ± 127, 1064 ± 309, 919 ± 346, and 820 ± 195 IU/L in the control, LC, LC-iron20, LC-iron40, and LC-iron80 groups, respectively). Hepatic iron accumulation increased in a dose-dependent manner, but the degree of hepatic fibrosis was comparable among the groups. The inflammatory and oxidative stress marker levels did not differ significantly according to the IV iron dose. CONCLUSIONS: Administration of IV iron at various high doses appears safe in our rat model of cirrhosis.


Disease Models, Animal , Ferric Compounds , Iron , Liver Cirrhosis , Liver , Oxidative Stress , Rats, Sprague-Dawley , Animals , Liver/metabolism , Liver/drug effects , Liver/pathology , Oxidative Stress/drug effects , Male , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Rats , Ferric Compounds/administration & dosage , Ferric Compounds/pharmacology , Iron/metabolism , Injections, Intravenous , Alanine Transaminase/blood , Maltose/analogs & derivatives , Maltose/administration & dosage , Biomarkers/metabolism , Biomarkers/blood , Liver Function Tests , Dose-Response Relationship, Drug
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 652-659, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708497

OBJECTIVE: To investigate the protective effect of arbutin against CCl4-induced hepatic fibrosis in mice and explore the underlying mechanisms. METHODS: Twenty-four C57BL/6 mice were randomly divided into control group, model group, and low- and high-dose arbutin treatment (25 and 50 mg/kg, respectively) groups. Mouse models of liver fibrosis were established by intraperitoneal injection of CCl4, and arbutin was administered daily via gavage for 6 weeks. After the treatments, serum biochemical parameters of the mice were tested, and liver tissues were taken for HE staining, Sirius Red staining and immunohistochemical staining. RT-qPCR was used to detect the mRNA levels of α-SMA, Pdgfb, Col1α1, Timp-1, Ccl2 and Tnf-a, and Western blotting was performed to detect α-SMA protein expression in the liver tissues. In the cell experiment, the effect of arbutin treatment for 24 h on THP-1 and RAW264.7 cell migration and recruitment was examined using Transwell migration assay and DAPI staining; The changes in protein levels of Akt, p65, Smad3, p-Akt, p-p65, p-Smad3 and α-SMA in arbutintreated LX-2 cells were detected with Western blotting. RESULTS: Arbutin treatment significantly lowered serum alanine aminotransferase and aspartate aminotransferase levels, alleviated liver tissue damage and collagen deposition, and reduced macrophage infiltration and α-SMA protein expression in the liver of the mouse models (P < 0.05 or 0.001). Arbutin treatment also significantly reduced CCl4-induced elevation of a-SMA, Pdgfb, Col1α1, Timp-1, Ccl2 and Tnf-a mRNA levels in mice (P < 0.05). In the cell experiment, arbutin treatment obviously inhibited migration and recruitment of THP-1 and RAW264.7 cells and lowered the phosphorylation levels of Akt, p65 and Smad3 and the protein expression level of α-SMA in LX-2 cells. CONCLUSION: Arbutin ameliorates liver inflammation and fibrosis in mice by inhibiting hepatic stellate cell activation via reducing macrophage recruitment and infiltration and suppressing activation of the Akt/NF-κB and Smad signaling pathways.


Arbutin , Liver Cirrhosis , Macrophages , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Male , Mice , Arbutin/pharmacology , Arbutin/therapeutic use , Carbon Tetrachloride , Cell Movement/drug effects , Disease Models, Animal , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Smad Proteins/metabolism
6.
Cell Rep Methods ; 4(5): 100778, 2024 May 20.
Article En | MEDLINE | ID: mdl-38749443

Alcohol-associated liver disease (ALD) is a prevalent liver disease, yet research is hampered by the lack of suitable and reliable human ALD models. Herein, we generated human adipose stromal/stem cell (hASC)-derived hepatocellular organoids (hAHOs) and hASC-derived liver organoids (hALOs) in a three-dimensional system using hASC-derived hepatocyte-like cells and endodermal progenitor cells, respectively. The hAHOs were composed of major hepatocytes and cholangiocytes. The hALOs contained hepatocytes and nonparenchymal cells and possessed a more mature liver function than hAHOs. Upon ethanol treatment, both steatosis and inflammation were present in hAHOs and hALOs. The incubation of hALOs with ethanol resulted in increases in the levels of oxidative stress, the endoplasmic reticulum protein thioredoxin domain-containing protein 5 (TXNDC5), the alcohol-metabolizing enzymes ADH1B and ALDH1B1, and extracellular matrix accumulation, similar to those of liver tissues from patients with ALD. These results present a useful approach for understanding the pathogenesis of ALD in humans, thus facilitating the discovery of effective treatments.


Adipose Tissue , Ethanol , Hepatocytes , Liver Diseases, Alcoholic , Organoids , Humans , Organoids/pathology , Organoids/drug effects , Ethanol/pharmacology , Ethanol/adverse effects , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatocytes/metabolism , Adipose Tissue/pathology , Adipose Tissue/cytology , Alcohol Dehydrogenase/metabolism , Oxidative Stress/drug effects , Liver/pathology , Liver/drug effects , Liver/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/pathology , Models, Biological , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Stromal Cells/pathology , Stromal Cells/drug effects , Stromal Cells/metabolism , Thioredoxins/metabolism
7.
Front Immunol ; 15: 1400553, 2024.
Article En | MEDLINE | ID: mdl-38817615

Background and aims: Metabolic dysfunction-associated steatohepatitis (MASH) is a significant health concern with limited treatment options. AXL, a receptor tyrosine kinase activated by the GAS6 ligand, promotes MASH through activation of hepatic stellate cells and inflammatory macrophages. This study identified cell subsets affected by MASH progression and the effect of AXL inhibition. Methods: Mice were fed chow or different fat-enriched diets to induce MASH, and small molecule AXL kinase inhibition with bemcentinib was evaluated. Gene expression was measured by qPCR. Time-of-flight mass cytometry (CyTOF) used single cells from dissociated livers, acquired on the Fluidigm Helios, and cell populations were studied using machine learning. Results: In mice fed different fat-enriched diets, liver steatosis alone was insufficient to elevate plasma soluble AXL (sAXL) levels. However, in conjunction with inflammation, sAXL increases, serving as an early indicator of steatohepatitis progression. Bemcentinib, an AXL inhibitor, effectively reduced proinflammatory responses in MASH models, even before fibrosis appearance. Utilizing CyTOF analysis, we detected a decreased population of Kupffer cells during MASH while promoting infiltration of monocytes/macrophages and CD8+ T cells. Bemcentinib partially restored Kupffer cells, reduced pDCs and GzmB- NK cells, and increased GzmB+CD8+ T cells and LSECs. Additionally, AXL inhibition enhanced a subtype of GzmB+CD8+ tissue-resident memory T cells characterized by CX3CR1 expression. Furthermore, bemcentinib altered the transcriptomic landscape associated with MASH progression, particularly in TLR signaling and inflammatory response, exhibiting differential cytokine expression in the plasma, consistent with liver repair and decreased inflammation. Conclusion: Our findings highlight sAXL as a biomarker for monitoring MASH progression and demonstrate that AXL targeting shifted liver macrophages and CD8+ T-cell subsets away from an inflammatory phenotype toward fibrotic resolution and organ healing, presenting a promising strategy for MASH treatment.


Axl Receptor Tyrosine Kinase , Liver Cirrhosis , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Animals , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Mice , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Liver Cirrhosis/immunology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Male , Disease Models, Animal , Mice, Inbred C57BL , Benzocycloheptenes/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Liver/pathology , Liver/immunology , Liver/metabolism , Liver/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Triazoles
8.
World J Gastroenterol ; 30(19): 2488-2495, 2024 May 21.
Article En | MEDLINE | ID: mdl-38817660

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related mortality. This particular type of cancer has the distinctive characteristic of mostly happening in individuals with an underlying liver disease. This makes the management of patients more challenging, since physicians must take into consideration two different conditions, the chronic liver disease and the tumor. The underlying liver disease has several implications in clinical practice, because different kinds of chronic liver disease can lead to varying degrees of risk of developing HCC, obstacles in surveillance, and differences in the efficacy of the treatment against HCC. A shift in the prevalence of liver diseases has been evident over the last few years, with viral hepatitis gradually losing the leading position as cause of HCC and metabolic dysfunction-associated steatotic liver disease gaining importance. Therefore, in an era of personalized medicine, it is imperative that physicians are aware of the underlying liver disease of individuals with HCC and its impact in the management of their tumors.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Liver Neoplasms/epidemiology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/epidemiology , Risk Factors , Prevalence , Precision Medicine/methods , Liver Diseases/epidemiology , Liver Diseases/therapy , Liver Diseases/diagnosis , Liver/pathology
9.
World J Gastroenterol ; 30(19): 2553-2563, 2024 May 21.
Article En | MEDLINE | ID: mdl-38817658

BACKGROUND: The role of exosomes derived from HepG2.2.15 cells, which express hepatitis B virus (HBV)-related proteins, in triggering the activation of LX2 liver stellate cells and promoting liver fibrosis and cell proliferation remains elusive. The focus was on comprehending the relationship and influence of differentially expressed microRNAs (DE-miRNAs) within these exosomes. AIM: To elucidate the effect of exosomes derived from HepG2.2.15 cells on the activation of hepatic stellate cell (HSC) LX2 and the progression of liver fibrosis. METHODS: Exosomes from HepG2.2.15 cells, which express HBV-related proteins, were isolated from parental HepG2 and WRL68 cells. Western blotting was used to confirm the presence of the exosomal marker protein CD9. The activation of HSCs was assessed using oil red staining, whereas DiI staining facilitated the observation of exosomal uptake by LX2 cells. Additionally, we evaluated LX2 cell proliferation and fibrosis marker expression using 5-ethynyl-2'-deoxyuracil staining and western blotting, respectively. DE-miRNAs were analyzed using DESeq2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to annotate the target genes of DE-miRNAs. RESULTS: Exosomes from HepG2.2.15 cells were found to induced activation and enhanced proliferation and fibrosis in LX2 cells. A total of 27 miRNAs were differentially expressed in exosomes from HepG2.2.15 cells. GO analysis indicated that these DE-miRNA target genes were associated with cell differentiation, intracellular signal transduction, negative regulation of apoptosis, extracellular exosomes, and RNA binding. KEGG pathway analysis highlighted ubiquitin-mediated proteolysis, the MAPK signaling pathway, viral carcinogenesis, and the toll-like receptor signaling pathway, among others, as enriched in these targets. CONCLUSION: These findings suggest that exosomes from HepG2.2.15 cells play a substantial role in the activation, proliferation, and fibrosis of LX2 cells and that DE-miRNAs within these exosomes contribute to the underlying mechanisms.


Cell Proliferation , Exosomes , Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , Humans , Exosomes/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hep G2 Cells , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Hepatitis B virus/genetics , Signal Transduction , Liver/pathology , Liver/metabolism
10.
Int J Med Sci ; 21(6): 1037-1048, 2024.
Article En | MEDLINE | ID: mdl-38774758

Background: Inflammatory responses, apoptosis, and oxidative stress, are key factors that contribute to hepatic ischemia/reperfusion (I/R) injury, which may lead to the failure of liver surgeries, such as hepatectomy and liver transplantation. The N6-methyladenosine (m6A) modification has been implicated in multiple biological processes, and its specific role and mechanism in hepatic I/R injury require further investigation. Methods: Dot blotting analysis was used to profile m6A levels in liver tissues at different reperfusion time points in hepatic I/R mouse models. Hepatocyte-specific METTL3 knockdown (HKD) mice were used to determine the function of METTL3 during hepatic I/R. RNA sequencing and western blotting were performed to assess the potential signaling pathways involved with the deficiency of METTL3. Finally, AAV8-TBG-METTL3 was injected through the tail vein to further elucidate the role of METTL3 in hepatic I/R injury. Results: The m6A modification levels and the expression of METTL3 were upregulated in mouse livers during hepatic I/R injury. METTL3 deficiency led to an exacerbated inflammatory response and increased cell death during hepatic I/R, whereas overexpression of METTL3 reduced the extent of liver injury. Bioinformatic analysis revealed that the MAPK pathway was significantly enriched in the livers of METTL3-deficient mice. METTL3 protected the liver from I/R injury, possibly by inhibiting the phosphorylation of JNK and ERK, but not P38. Conclusions: METTL3 deficiency aggravates hepatic I/R injury in mice by activating the MAPK signaling pathway. METTL3 may be a potential therapeutic target in hepatic I/R injury.


Liver , MAP Kinase Signaling System , Methyltransferases , Reperfusion Injury , Animals , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Mice , Methyltransferases/genetics , Methyltransferases/metabolism , Liver/pathology , Liver/metabolism , MAP Kinase Signaling System/genetics , Disease Models, Animal , Male , Apoptosis/genetics , Mice, Knockout , Humans , Adenosine/metabolism , Adenosine/analogs & derivatives , Hepatocytes/metabolism , Hepatocytes/pathology , Mice, Inbred C57BL
11.
Chem Biol Drug Des ; 103(5): e14532, 2024 May.
Article En | MEDLINE | ID: mdl-38725089

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) that causes severe liver damage, fibrosis, and scarring. Despite its potential to progress to cirrhosis or hepatic failure, approved drugs or treatments are currently unavailable. We developed 4,4-diallyl curcumin bis(2,2-hydroxymethyl)propanoate, also known as 35e, which induces upregulation of mitochondrial proteins including carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II, heat shock protein 60, and translocase of the outer mitochondrial membrane 20. Among these proteins, the upregulated expression of CPT-I was most prominent. CPT-I plays a crucial role in transporting carnitine across the mitochondrial inner membrane, thereby initiating mitochondrial ß-oxidation of fatty acids. Given recent research showing that CPT-I activation could be a viable pathway for NASH treatment, we hypothesized that 35e could serve as a potential agent for treating NASH. The efficacy of 35e in treating NASH was evaluated in methionine- and choline-deficient (MCD) diet- and Western diet (WD)-induced models that mimic human NASH. In the MCD diet-induced model, both short-term (2 weeks) and long-term (7 weeks) treatment with 35e effectively regulated elevated serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) concentrations and histological inflammation. However, the antisteatotic effect of 35e was obtained only in the short-term treatment group. As a comparative compound in the MCD diet-induced model, curcumin treatment did not produce significant regulatory effects on the liver triglyceride/total cholesterol, serum ALT/AST, or hepatic steatosis. In the WD-induced model, 35e ameliorated hepatic steatosis and hepatic inflammation, while increasing serum AST and hepatic lipid content. A decrease in epididymal adipose tissue weight and serum free fatty acid concentration suggested that 35e may promote lipid metabolism or impede lipid accumulation. Overall, 35e displayed significant antilipid accumulation and antifibrotic effects in the two complementary mice models. The development of new curcumin derivatives with the ability to induce CPT-I upregulation could further underscore their efficacy as anti-NASH agents.


Curcumin , Disease Models, Animal , Methionine , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Methionine/metabolism , Methionine/deficiency , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/therapeutic use , Mice , Male , Diet, Western/adverse effects , Mice, Inbred C57BL , Carnitine O-Palmitoyltransferase/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Propionates/pharmacology , Propionates/therapeutic use , Propionates/metabolism , Humans , Choline/metabolism , Choline/pharmacology
12.
Mol Biol Rep ; 51(1): 643, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727775

BACKGROUND: Baicalein is the main active flavonoid in Scutellariae Radix and is included in shosaikoto, a Kampo formula used for treating hepatitis and jaundice. However, little is known about its hepatoprotective effects against hepatic ischemia-reperfusion injury (HIRI), a severe clinical condition directly caused by interventional procedures. We aimed to investigate the hepatoprotective effects of baicalein against HIRI and partial hepatectomy (HIRI + PH) and its potential underlying mechanisms. METHODS AND RESULTS: Male Sprague-Dawley rats received either baicalein (5 mg/kg) or saline intraperitoneally and underwent a 70% hepatectomy 15 min after hepatic ischemia. After reperfusion, liver and blood samples were collected. Survival was monitored 30 min after hepatic ischemia and hepatectomy. In interleukin 1ß (IL-1ß)-treated primary cultured rat hepatocytes, the influence of baicalein on inflammatory mediator production and the associated signaling pathway was analyzed. Baicalein suppressed apoptosis and neutrophil infiltration, which are the features of HIRI + PH treatment-induced histological injury. Baicalein also reduced the mRNA expression of the proinflammatory cytokine tumor necrosis factor-α (TNF-α). In addition, HIRI + PH treatment induced liver enzyme deviations in the serum and hypertrophy of the remnant liver, which were suppressed by baicalein. In the lethal HIRI + PH treatment group, baicalein significantly reduced mortality. In IL-1ß-treated rat hepatocytes, baicalein suppressed TNF-α and chemokine mRNA expression as well as the activation of nuclear factor-kappa B (NF-κB) and Akt. CONCLUSIONS: Baicalein treatment attenuates HIRI + PH-induced liver injury and may promote survival. This potential hepatoprotection may be partly related to suppressing inflammatory gene induction through the inhibition of NF-κB activity and Akt signaling in hepatocytes.


Apoptosis , Disease Models, Animal , Flavanones , Hepatectomy , Hepatocytes , Interleukin-1beta , Liver , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Flavanones/pharmacology , Flavanones/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Hepatectomy/methods , Male , Rats , Liver/drug effects , Liver/metabolism , Liver/pathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Apoptosis/drug effects , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Protective Agents/pharmacology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism
13.
Front Immunol ; 15: 1354349, 2024.
Article En | MEDLINE | ID: mdl-38707895

Antiphospholipid antibodies (aPL) are both laboratory evidence and causative factors for a broad spectrum of clinical manifestations of antiphospholipid syndrome (APS), with thrombotic and obstetric events being the most prevalent. Despite the aPL-triggered vasculopathy nature of APS, vasculitic-like manifestations rarely exist in APS and mainly appear associated with other concurrent connective tissue diseases like systemic lupus erythematous. Several studies have characterized pulmonary capillaritis related to pathogenic aPL, suggesting vasculitis as a potential associated non-thrombotic manifestation. Here, we describe a 15-year-old girl who develops hepatic infarction in the presence of highly positive aPL, temporally related to prior non-severe COVID-19 infection. aPL-related hepatic vasculitis, which has not been reported before, contributes to liver ischemic necrosis. Immunosuppression therapy brings about favorable outcomes. Our case together with retrieved literature provides supportive evidence for aPL-related vasculitis, extending the spectrum of vascular changes raised by pathogenic aPL. Differentiation between thrombotic and vasculitic forms of vascular lesions is essential for appropriate therapeutic decision to include additional immunosuppression therapy. We also perform a systematic review to characterize the prevalence and clinical features of new-onset APS and APS relapses after COVID-19 for the first time, indicating the pathogenicity of aPL in a subset of COVID-19 patients.


Antibodies, Antiphospholipid , Antiphospholipid Syndrome , COVID-19 , SARS-CoV-2 , Vasculitis , Humans , COVID-19/complications , COVID-19/immunology , Female , Adolescent , Antibodies, Antiphospholipid/blood , Antibodies, Antiphospholipid/immunology , Vasculitis/immunology , Vasculitis/etiology , Antiphospholipid Syndrome/complications , Antiphospholipid Syndrome/immunology , SARS-CoV-2/immunology , Liver/pathology
14.
Anat Histol Embryol ; 53(3): e13046, 2024 May.
Article En | MEDLINE | ID: mdl-38712731

The present study aims to evaluate the morphometric and histopathological properties of Modified Elnady's plastinated tissue after a period compared to non-plastinated tissue. The plastination technique is utilized in research and teaching due to the potential health risks associated with prolonged exposure to formalin. The tissues and organs are permanently dried during plastination and can be used for further anatomical, histopathological and surgical educational purposes. This method involves drying tissue and allowing synthetic materials like glycerin to permeate it. The study compared non-plastinated and plastinated tissue post-plastination to determine if structural alterations differed from those linked to plastination. The study examined the histopathological examination of dogs' skin, muscles, liver, lung, and intestine using formalin-fixed organs for paraffin embedding and previously plastinated organs for a plastinated group. The study examined non-plastinated and plastinated tissues, their histological composition and biometric parameters revealing typical structures in the non-plastinated group. Plasmodiumted tissues exhibited a compacted appearance, volume changes, nuclear clarity, and cytoplasmic hypereosinophilia, with statistical differences between the two groups. The study reveals that plastinated tissues, after 5 years of plastination, maintain their histological architecture well, with some exceptions. Plastinated tissues can be utilized in future microscopic and immunological studies and will be beneficial for teaching and research.


Liver , Lung , Plastination , Animals , Dogs , Plastination/methods , Lung/pathology , Liver/pathology , Skin/pathology , Skin/anatomy & histology , Intestines/anatomy & histology , Intestines/pathology , Paraffin Embedding/veterinary , Formaldehyde , Anatomy, Veterinary/education
15.
PLoS One ; 19(5): e0303189, 2024.
Article En | MEDLINE | ID: mdl-38768165

OBJECTIVES: To establish a rat model that accurately replicates the clinical characteristics of male infertility (MI) with Liver Depression and Kidney Deficiency (LD & KD) and investigate the pathogenesis. METHODS: After subjecting the rats to chronic restraint stress (CRS) and adenine treatment, a series of tests were conducted, including ethological assessments, evaluations of reproductive characteristics, measurements of biochemical parameters, histopathological examinations, and analyses of urinary metabolites. Additionally, bioinformatics predictions were performed for comprehensive analysis. RESULTS: Compared to the control, the model exhibited significant manifestations of MI with LD & KD, including reduced responsiveness, diminished frequency of capturing estrous female rats, and absence of mounting behavior. Additionally, the kidney coefficient increased markedly, while the coefficients of the testis and epididymis decreased significantly. Sperm counts and viabilities decreased notably, accompanied by an increase in sperm abnormalities. Dysregulation of reproductive hormone levels in the serum was observed, accompanied by an upregulation of proinflammatory cytokines expressions in the liver and kidney, as well as exacerbated oxidative stress in the penile corpus cavernosum and testis. The seminiferous tubules in the testis exhibited a loose arrangement, loss of germ cells, and infiltration of inflammatory cells. Furthermore, utilizing urinary metabolomics and bioinformatics analysis, 5 key biomarkers and 2 crucial targets most closely linked to MI were revealed. CONCLUSION: The study successfully established a clinically relevant animal model of MI with LD & KD. It elucidates the pathogenesis of the condition, identifies key biomarkers and targets, and provides a robust scientific foundation for the prediction, diagnosis, and treatment of MI with LD & KD.


Biomarkers , Disease Models, Animal , Infertility, Male , Animals , Male , Rats , Biomarkers/metabolism , Infertility, Male/metabolism , Infertility, Male/etiology , Testis/metabolism , Testis/pathology , Kidney/metabolism , Kidney/pathology , Rats, Sprague-Dawley , Liver/metabolism , Liver/pathology , Oxidative Stress , Liver Diseases/metabolism , Liver Diseases/pathology , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , Renal Insufficiency/etiology
16.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731494

Figs are the edible fruits of the fig tree, Ficus carica L., that have been used for centuries for human consumption and in traditional medicine, to treat skin problems, inflammation, and gastrointestinal disorders. Our previous study investigated the presence of phenolic compounds in aqueous extracts of two Algerian popular fig varieties, azendjar (Az) and taamriouth (Ta), as well as their in vitro antioxidant activity. In this study, we assessed hydroethanolic extracts of these fig varieties. The total phenolic content was measured, along with the phenolic profile. Rutin was determined to be the dominant phenolic compound, followed by vanillic acid, 3,4-dihydroxybenzoic acid, quercetin, 4-hydroxybenzoic acid, rosmarinic acid (in Az only), and cinnamic acid. The antioxidant activity of the extracts was evaluated both in vitro (DPPH and FRAP assays) and in vivo, in rats intoxicated with carbon tetrachloride. In all assays, the fig extract-especially the dark-peeled fig variety azendjar-showed antioxidant potency. The administration of fig extract resulted in a reduction in liver damage, expressed by both different biochemical markers and histopathological study (less degraded liver architecture, reduced fibrosis, and only mild inflammation). A dose-dependent therapeutic effect was observed. The extract from the dark-peeled fig variety, Az, was characterized by a higher phenolic content and a stronger antioxidant activity than the extract from the light-peeled variety-Ta. Our study justifies the use of figs in traditional healing and shows the potential of using fig extracts in natural medicines and functional foods.


Antioxidants , Carbon Tetrachloride , Ficus , Oxidative Stress , Plant Extracts , Animals , Ficus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Rats , Oxidative Stress/drug effects , Phenols/pharmacology , Phenols/chemistry , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats, Wistar
17.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731866

Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.


Fatty Liver , Liver Transplantation , Organ Preservation , Reperfusion Injury , Tissue Donors , Humans , Reperfusion Injury/prevention & control , Liver Transplantation/methods , Liver Transplantation/adverse effects , Organ Preservation/methods , Fatty Liver/pathology , Liver/pathology , Organ Preservation Solutions , Animals , Perfusion/methods
18.
World J Gastroenterol ; 30(18): 2387-2390, 2024 May 14.
Article En | MEDLINE | ID: mdl-38764762

Metabolic dysfunction-associated steatotic liver disease (MASLD), once known as non-alcoholic fatty liver disease (NAFLD), represents a spectrum of liver disorders characterized by lipid accumulation within hepatocytes. The redefinition of NAFLD in 2023 marked a significant reposition in terminology, emphasizing a broader understanding of liver steatosis and its associated risks. MASLD is now recognized as a major risk factor for liver cirrhosis, hepatocellular carcinoma, and systemic complications such as cardiovascular diseases or systemic inflammation. Diagnostic challenges arise, particularly in identifying MASLD in lean individuals, necessitating updated diagnostic protocols and investing in non-invasive diagnostic tools. Therapeutically, there is an urgent need for effective treatments targeting MASLD, with emerging pharmacological options focusing on, among others, carbohydrate and lipid metabolism. Additionally, understanding the roles of bile acid metabolism, the microbiome, and dietary interventions in MASLD pathogenesis and management holds promise for innovative therapeutic approaches. There is a strong need to emphasize the importance of collaborative efforts in understanding, diagnosing, and managing MASLD to improve physicians' approaches and patient outcomes.


Non-alcoholic Fatty Liver Disease , Terminology as Topic , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Risk Factors , Lipid Metabolism , Liver/pathology , Liver/metabolism , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/therapy , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Cirrhosis/diagnosis , Liver Cirrhosis/therapy , Liver Cirrhosis/pathology , Bile Acids and Salts/metabolism
19.
World J Gastroenterol ; 30(18): 2440-2453, 2024 May 14.
Article En | MEDLINE | ID: mdl-38764767

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) with hepatic histological NAFLD activity score ≥ 4 and fibrosis stage F ≥ 2 is regarded as "at risk" non-alcoholic steatohepatitis (NASH). Based on an international consensus, NAFLD and NASH were renamed as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), respectively; hence, we introduced the term "high-risk MASH". Diagnostic values of seven non-invasive models, including FibroScan-aspartate transaminase (FAST), fibrosis-4 (FIB-4), aspartate transaminase to platelet ratio index (APRI), etc. for high-risk MASH have rarely been studied and compared in MASLD. AIM: To assess the clinical value of seven non-invasive models as alternatives to liver biopsy for diagnosing high-risk MASH. METHODS: A retrospective analysis was conducted on 309 patients diagnosed with NAFLD via liver biopsy at Beijing Ditan Hospital, between January 2012 and December 2020. After screening for MASLD and the exclusion criteria, 279 patients were included and categorized into high-risk and non-high-risk MASH groups. Utilizing threshold values of each model, sensitivity, specificity, positive predictive value (PPV), and negative predictive values (NPV), were calculated. Receiver operating characteristic curves were constructed to evaluate their diagnostic efficacy based on the area under the curve (AUROC). RESULTS: MASLD diagnostic criteria were met by 99.4% patients with NAFLD. The MASLD population was analyzed in two cohorts: Overall population (279 patients) and the subgroup (117 patients) who underwent liver transient elastography (FibroScan). In the overall population, FIB-4 showed better diagnostic efficacy and higher PPV, with sensitivity, specificity, PPV, NPV, and AUROC of 26.9%, 95.2%, 73.5%, 72.2%, and 0.75. APRI, Forns index, and aspartate transaminase to alanine transaminase ratio (ARR) showed moderate diagnostic efficacy, whereas S index and gamma-glutamyl transpeptidase to platelet ratio (GPR) were relatively weaker. In the subgroup, FAST had the highest diagnostic efficacy, its sensitivity, specificity, PPV, NPV, and AUROC were 44.2%, 92.3%, 82.1%, 67.4%, and 0.82. The FIB-4 AUROC was 0.76. S index and GPR exhibited almost no diagnostic value for high-risk MASH. CONCLUSION: FAST and FIB-4 could replace liver biopsy as more effectively diagnostic methods for high-risk MASH compared to APRI, Forns index, ARR, S index, and GPR; FAST is superior to FIB-4.


Aspartate Aminotransferases , Elasticity Imaging Techniques , Liver , Non-alcoholic Fatty Liver Disease , Predictive Value of Tests , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/pathology , Male , Female , Middle Aged , Retrospective Studies , Aspartate Aminotransferases/blood , Elasticity Imaging Techniques/methods , Liver/pathology , Liver/diagnostic imaging , Adult , Biopsy , ROC Curve , Platelet Count , Sensitivity and Specificity , Severity of Illness Index , Aged , Biomarkers/blood , Risk Factors , Risk Assessment/methods
20.
World J Gastroenterol ; 30(18): 2391-2396, 2024 May 14.
Article En | MEDLINE | ID: mdl-38764773

This editorial contains comments on the article by Zhao et al in print in the World Journal of Gastroenterology. The mechanisms responsible for hepatic fibrosis are also involved in cancerogenesis. Here, we recapitulated the complexity of the renin-angiotensin system, discussed the role of hepatic stellate cell (HSC) autophagy in liver fibrogenesis, and analyzed the possible implications in the development of hepatocarcinoma (HCC). Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers definitively contribute to reducing hepatic fibrogenesis, whereas their involvement in HCC is more evident in experimental conditions than in human studies. Angiotensin-converting enzyme 2 (ACE2), and its product Angiotensin (Ang) 1-7, not only regulate HSC autophagy and liver fibrosis, but they also represent potential targets for unexplored applications in the field of HCC. Finally, ACE2 overexpression inhibits HSC autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. In this case, Ang 1-7 acts binding to the MasR, and its agonists could modulate this pathway. However, since AMPK utilizes different targets to suppress the mTOR downstream complex mTOR complex 1 effectively, we still need to unravel the entire pathway to identify other potential targets for the therapy of fibrosis and liver cancer.


AMP-Activated Protein Kinases , Angiotensin-Converting Enzyme 2 , Autophagy , Carcinoma, Hepatocellular , Hepatic Stellate Cells , Liver Cirrhosis , Liver Neoplasms , Renin-Angiotensin System , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , AMP-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Autophagy/drug effects , Hepatic Stellate Cells/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/enzymology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Angiotensin I/metabolism , Animals , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Peptide Fragments/metabolism , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin Receptor Antagonists/pharmacology , Liver/pathology , Liver/drug effects , Liver/metabolism
...