Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.961
1.
Cells ; 13(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38786029

O-linked-ß-D-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), which is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a post-translational modification involved in multiple cellular processes. O-GlcNAcylation of proteins can regulate their biological functions via crosstalk with other post-translational modifications, such as phosphorylation, ubiquitination, acetylation, and methylation. Liver diseases are a major cause of death worldwide; yet, key pathological features of the disease, such as inflammation, fibrosis, steatosis, and tumorigenesis, are not fully understood. The dysregulation of O-GlcNAcylation has been shown to be involved in some severe hepatic cellular stress, viral hepatitis, liver fibrosis, nonalcoholic fatty acid liver disease (NAFLD), malignant progression, and drug resistance of hepatocellular carcinoma (HCC) through multiple molecular signaling pathways. Here, we summarize the emerging link between O-GlcNAcylation and hepatic pathological processes and provide information about the development of therapeutic strategies for liver diseases.


Acetylglucosamine , Liver Diseases , N-Acetylglucosaminyltransferases , Humans , Liver Diseases/metabolism , Liver Diseases/pathology , Glycosylation , Animals , N-Acetylglucosaminyltransferases/metabolism , Acetylglucosamine/metabolism , Liver/metabolism , Liver/pathology , Stress, Physiological , Protein Processing, Post-Translational , Signal Transduction
2.
Int J Mol Sci ; 25(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38791491

The human genome encodes at least 500 protein kinases, and among them, there are at least 90 tyrosine kinases [...].


Liver Diseases , Humans , Liver Diseases/pathology , Liver Diseases/therapy , Liver Diseases/metabolism , Animals , Translational Research, Biomedical
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731968

Cluster of differentiation 44 (CD44), a multi-functional cell surface receptor, has several variants and is ubiquitously expressed in various cells and tissues. CD44 is well known for its function in cell adhesion and is also involved in diverse cellular responses, such as proliferation, migration, differentiation, and activation. To date, CD44 has been extensively studied in the field of cancer biology and has been proposed as a marker for cancer stem cells. Recently, growing evidence suggests that CD44 is also relevant in non-cancer diseases. In liver disease, it has been shown that CD44 expression is significantly elevated and associated with pathogenesis by impacting cellular responses, such as metabolism, proliferation, differentiation, and activation, in different cells. However, the mechanisms underlying CD44's function in liver diseases other than liver cancer are still poorly understood. Hence, to help to expand our knowledge of the role of CD44 in liver disease and highlight the need for further research, this review provides evidence of CD44's effects on liver physiology and its involvement in the pathogenesis of liver disease, excluding cancer. In addition, we discuss the potential role of CD44 as a key regulator of cell physiology.


Hyaluronan Receptors , Liver Diseases , Liver , Humans , Hyaluronan Receptors/metabolism , Liver/metabolism , Liver/pathology , Liver Diseases/metabolism , Liver Diseases/pathology , Animals , Cell Differentiation
4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 327-332, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710517

Objective To investigate the liver injury induced by chronic intermittent hypoxia (CIH) activation of NOD-like receptor pyrin domain containing protein 1 (NLRP1) inflammasome. Methods C57BL/6 male mice were randomly divided into control group and CIH group. Mice in CIH group were put into CIH chamber for molding (8 hours a day for 4 weeks). After 4 weeks of molding, liver tissue cells was observed by HE staining, and the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum of mice were detected by kit. The levels of reactive oxygen species (ROS) in liver tissue were detected by dihydroethidine (DHE). The expression and localization of NLRP1, apoptosis speck-like protein containing a caspase activation and recruiting domain (ASC) and caspase-1 were detected by immunohistochemical staining. The protein expressions of NLRP1, ASC, caspase-1, interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were detected by Western blot analysis. The serum levels of IL-1ß and TNF-α were detected by ELISA. Results Compared with the control group, the CIH group exhibited significant pathological changes in hepatocytes. Hepatocytes showed signs of rupture and necrosis, accompanied by inflammatory cell aggregation. Furthermore, the levels of ALT, AST, ROS, IL-1ß and TNF-α were elevated, along with increased protein expressions of NLRP1, ASC, caspase-1, IL-1ß and TNF-α. Conclusion CIH causes liver injury by activating NLRP1 inflammasome.


Caspase 1 , Hypoxia , Inflammasomes , Interleukin-1beta , Liver , Mice, Inbred C57BL , Reactive Oxygen Species , Animals , Male , Inflammasomes/metabolism , Hypoxia/metabolism , Hypoxia/complications , Reactive Oxygen Species/metabolism , Liver/metabolism , Liver/pathology , Caspase 1/metabolism , Interleukin-1beta/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Tumor Necrosis Factor-alpha/metabolism , Apoptosis Regulatory Proteins/metabolism , Alanine Transaminase/blood , CARD Signaling Adaptor Proteins/metabolism , Aspartate Aminotransferases/blood , Liver Diseases/etiology , Liver Diseases/metabolism , Liver Diseases/pathology
5.
Expert Rev Gastroenterol Hepatol ; 18(4-5): 147-153, 2024.
Article En | MEDLINE | ID: mdl-38743469

INTRODUCTION: Liver biopsy has become selective due to its invasiveness, potential adverse effects, patient acceptance and cost. Furthermore, the emergence of noninvasive tests (NITs) has challenged the necessity of liver biopsies in specific clinical situations. However, liver biopsy continues to play a crucial role in disease diagnosis, prognosis, and evaluating treatment compliance and response in selected patients. AREAS COVERED: In this narrative review, we discuss the errors and the shortcomings that can occur at various stages, from the initial patient selection for a liver biopsy to the final reporting phase, and strategies to address them. Clinicians and pathologists must take all necessary precautions to mitigate potential shortcomings that could compromise the value of liver biopsies. EXPERT OPINION: The increasing sophistication of NITs offers a safer, more convenient, and potentially more cost-effective approach to diagnosing chronic liver disease, especially for assessing the degree of liver fibrosis. As NITs continue to evolve, liver biopsy will likely transition to a more targeted role, ensuring optimal patient care in the ever-changing field of hepatology. However, liver biopsy will continue to have a pivotal role in assessing acute liver disease where the diagnostic yield of the liver biopsy still outweighs that of NITs.


Liver Diseases , Liver , Humans , Liver Diseases/pathology , Liver Diseases/therapy , Liver Diseases/diagnosis , Biopsy , Liver/pathology , Diagnostic Errors/prevention & control , Predictive Value of Tests , Prognosis , Patient Selection
7.
PLoS One ; 19(5): e0303189, 2024.
Article En | MEDLINE | ID: mdl-38768165

OBJECTIVES: To establish a rat model that accurately replicates the clinical characteristics of male infertility (MI) with Liver Depression and Kidney Deficiency (LD & KD) and investigate the pathogenesis. METHODS: After subjecting the rats to chronic restraint stress (CRS) and adenine treatment, a series of tests were conducted, including ethological assessments, evaluations of reproductive characteristics, measurements of biochemical parameters, histopathological examinations, and analyses of urinary metabolites. Additionally, bioinformatics predictions were performed for comprehensive analysis. RESULTS: Compared to the control, the model exhibited significant manifestations of MI with LD & KD, including reduced responsiveness, diminished frequency of capturing estrous female rats, and absence of mounting behavior. Additionally, the kidney coefficient increased markedly, while the coefficients of the testis and epididymis decreased significantly. Sperm counts and viabilities decreased notably, accompanied by an increase in sperm abnormalities. Dysregulation of reproductive hormone levels in the serum was observed, accompanied by an upregulation of proinflammatory cytokines expressions in the liver and kidney, as well as exacerbated oxidative stress in the penile corpus cavernosum and testis. The seminiferous tubules in the testis exhibited a loose arrangement, loss of germ cells, and infiltration of inflammatory cells. Furthermore, utilizing urinary metabolomics and bioinformatics analysis, 5 key biomarkers and 2 crucial targets most closely linked to MI were revealed. CONCLUSION: The study successfully established a clinically relevant animal model of MI with LD & KD. It elucidates the pathogenesis of the condition, identifies key biomarkers and targets, and provides a robust scientific foundation for the prediction, diagnosis, and treatment of MI with LD & KD.


Biomarkers , Disease Models, Animal , Infertility, Male , Animals , Male , Rats , Biomarkers/metabolism , Infertility, Male/metabolism , Infertility, Male/etiology , Testis/metabolism , Testis/pathology , Kidney/metabolism , Kidney/pathology , Rats, Sprague-Dawley , Liver/metabolism , Liver/pathology , Oxidative Stress , Liver Diseases/metabolism , Liver Diseases/pathology , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , Renal Insufficiency/etiology
8.
Cells ; 13(7)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38607018

Ductular reaction (DR) is a complex cellular response that occurs in the liver during chronic injuries. DR mainly consists of hyper-proliferative or reactive cholangiocytes and, to a lesser extent, de-differentiated hepatocytes and liver progenitors presenting a close spatial interaction with periportal mesenchyme and immune cells. The underlying pathology of DRs leads to extensive tissue remodeling in chronic liver diseases. DR initiates as a tissue-regeneration mechanism in the liver; however, its close association with progressive fibrosis and inflammation in many chronic liver diseases makes it a more complicated pathological response than a simple regenerative process. An in-depth understanding of the cellular physiology of DRs and their contribution to tissue repair, inflammation, and progressive fibrosis can help scientists develop cell-type specific targeted therapies to manage liver fibrosis and chronic liver diseases effectively.


Liver Diseases , Humans , Liver Diseases/pathology , Fibrosis , Disease Progression , Inflammation
9.
Zhonghua Gan Zang Bing Za Zhi ; 32(3): 279-283, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38584115

Hepatic sinusoidal obstruction syndrome (HSOS) is a type of secondary vascular disease of the liver that is mainly associated with the ingestion of pyrrole alkaloids (PAs) and hematopoietic stem cell transplantation (HSCT) treatment, resulting in severe liver dysfunction, multiple organ failure, and even death. Hepatic sinusoidal dilatation and obstruction, hepatocyte coagulative necrosis, and hepatic lobular inflammation are the main pathological manifestations of HSOS. The key initiating process for the pathogenesis of HSOS is damage to liver sinusoidal endothelial cells (LSECs). Currently, it is believed that LSECs are damaged by the involvement of multiple etiologies and mechanisms, and secondary coagulation and fibrinolysis disorders, oxidative stress, and inflammatory responses are the occurrence contributors to HSOS; however, the mechanism has not been fully elucidated. Therefore, the role of immune-inflammatory mechanisms has received increasing attention in LSEC damage. This article provides an overview of the epidemiology, etiology, and pathological changes of HSOS and reviews the physiological functions, common etiological damage mechanisms, and the key role of LSEC damage in the pathogenesis of HSOS, with a special focus on the role and research progress of immune-inflammatory mechanisms for LSEC damage in recent years. Furthermore, we believe that in-depth study and elucidation of the role of immune-inflammatory mechanisms in LSEC damage and the pathogenesis of HSOS and diagnosis will provide feasible research and development ideas for the screening and identification of new markers and drug treatment targets for HSOS.


Hepatic Veno-Occlusive Disease , Liver Diseases , Humans , Hepatic Veno-Occlusive Disease/etiology , Hepatic Veno-Occlusive Disease/diagnosis , Endothelial Cells , Liver Diseases/pathology , Liver/pathology , Necrosis/metabolism , Necrosis/pathology
10.
Nutrients ; 16(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38674881

Anorexia nervosa (AN) induces organ dysfunction caused by malnutrition, including liver damage leading to a rise in transaminases due to hepatocyte damage. The underlying pathophysiology of starvation-induced liver damage is poorly understood. We investigate the effect of a 25% body weight reduction on murine livers in a mouse model and examine possible underlying mechanisms of starvation-induced liver damage. Female mice received a restricted amount of food with access to running wheels until a 25% weight reduction was achieved. This weight reduction was maintained for two weeks to mimic chronic starvation. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured spectrophotometrically. Liver fat content was analyzed using an Oil Red O stain, and liver glycogen was determined using a Periodic acid-Schiff (PAS) stain. Immunohistochemical stains were used to investigate macrophages, proliferation, apoptosis, and autophagy. Starvation led to an elevation of AST and ALT values, a decreased amount of liver fat, and reduced glycogen deposits. The density of F4/80+ macrophage numbers as well as proliferating KI67+ cells were decreased by starvation, while apoptosis was not altered. This was paralleled by an increase in autophagy-related protein staining. Increased transaminase values suggest the presence of liver damage in the examined livers of starved mice. The observed starvation-induced liver damage may be attributed to increased autophagy. Whether other mechanisms play an additional role in starvation-induced liver damage remains to be investigated.


Alanine Transaminase , Aspartate Aminotransferases , Autophagy , Liver , Starvation , Animals , Female , Liver/metabolism , Liver/pathology , Mice , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Liver Diseases/etiology , Liver Diseases/pathology , Disease Models, Animal , Apoptosis , Macrophages/metabolism , Mice, Inbred C57BL , Liver Glycogen/metabolism
11.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38674122

NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) is an intracellular complex that upon external stimuli or contact with specific ligands, recruits other components, forming the NLRP3 inflammasome. The NLRP3 inflammasome mainly mediates pyroptosis, a highly inflammatory mode of regulated cell death, as well as IL-18 and IL-1ß production. Acute and chronic liver diseases are characterized by a massive influx of pro-inflammatory stimuli enriched in reactive oxygen species (ROS) and damage-associated molecular patterns (DAMPs) that promote the assemblage and activation of the NLRP3 inflammasome. As the major cause of inflammatory cytokine storm, the NLRP3 inflammasome exacerbates liver diseases, even though it might exert protective effects in regards to hepatitis C and B virus infection (HCV and HBV). Here, we summarize the current knowledge concerning NLRP3 inflammasome function in both acute and chronic liver disease and in the post liver transplant setting, focusing on the molecular mechanisms involved in NLRP3 activity.


Inflammasomes , Liver Diseases , Animals , Humans , Acute Disease , Chronic Disease , Inflammasomes/metabolism , Liver Diseases/metabolism , Liver Diseases/immunology , Liver Diseases/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism
12.
J Cell Mol Med ; 28(9): e18320, 2024 May.
Article En | MEDLINE | ID: mdl-38685684

Liver diseases include all types of viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cirrhosis, liver failure (LF) and hepatocellular carcinoma (HCC). Liver disease is now one of the leading causes of disease and death worldwide, which compels us to better understand the mechanisms involved in the development of liver diseases. Anoctamin 1 (ANO1), a calcium-activated chloride channel (CaCC), plays an important role in epithelial cell secretion, proliferation and migration. ANO1 plays a key role in transcriptional regulation as well as in many signalling pathways. It is involved in the genesis, development, progression and/or metastasis of several tumours and other diseases including liver diseases. This paper reviews the role and molecular mechanisms of ANO1 in the development of various liver diseases, aiming to provide a reference for further research on the role of ANO1 in liver diseases and to contribute to the improvement of therapeutic strategies for liver diseases by regulating ANO1.


Anoctamin-1 , Liver Diseases , Humans , Anoctamin-1/metabolism , Anoctamin-1/genetics , Liver Diseases/metabolism , Liver Diseases/pathology , Liver Diseases/genetics , Animals , Signal Transduction , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation
13.
Sci Transl Med ; 16(744): eadk6213, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38657025

The Fontan operation is the current standard of care for single-ventricle congenital heart disease. Individuals with a Fontan circulation (FC) exhibit central venous hypertension and face life-threatening complications of hepatic fibrosis, known as Fontan-associated liver disease (FALD). The fundamental biology and mechanisms of FALD are little understood. Here, we generated a transcriptomic and epigenomic atlas of human FALD at single-cell resolution using multiomic snRNA-ATAC-seq. We found profound cell type-specific transcriptomic and epigenomic changes in FC livers. Central hepatocytes (cHep) exhibited the most substantial changes, featuring profound metabolic reprogramming. These cHep changes preceded substantial activation of hepatic stellate cells and liver fibrosis, suggesting cHep as a potential first "responder" in the pathogenesis of FALD. We also identified a network of ligand-receptor pairs that transmit signals from cHep to hepatic stellate cells, which may promote their activation and liver fibrosis. We further experimentally demonstrated that activins A and B promote fibrotic activation in vitro and identified mechanisms of activin A's transcriptional activation in FALD. Together, our single-cell transcriptomic and epigenomic atlas revealed mechanistic insights into the pathogenesis of FALD and may aid identification of potential therapeutic targets.


Fontan Procedure , Hepatic Stellate Cells , Hepatocytes , Liver Diseases , Humans , Epigenomics , Fontan Procedure/adverse effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatocytes/metabolism , Liver/pathology , Liver/metabolism , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Liver Diseases/ethnology , Liver Diseases/pathology , Multiomics , Single-Cell Analysis , Transcriptome
14.
Cell Rep ; 43(3): 113918, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38451817

Maximizing the potential of human liver organoids (LOs) for modeling human septic liver requires the integration of innate immune cells, particularly resident macrophage Kupffer cells. In this study, we present a strategy to generate LOs containing Kupffer cells (KuLOs) by recapitulating fetal liver hematopoiesis using human induced pluripotent stem cell (hiPSC)-derived erythro-myeloid progenitors (EMPs), the origin of tissue-resident macrophages, and hiPSC-derived LOs. Remarkably, LOs actively promote EMP hematopoiesis toward myeloid and erythroid lineages. Moreover, supplementing with macrophage colony-stimulating factor (M-CSF) proves crucial in sustaining the hematopoietic population during the establishment of KuLOs. Exposing KuLOs to sepsis-like endotoxins leads to significant organoid dysfunction that closely resembles the pathological characteristics of the human septic liver. Furthermore, we observe a notable functional recovery in KuLOs upon endotoxin elimination, which is accelerated by using Toll-like receptor-4-directed endotoxin antagonist. Our study represents a comprehensive framework for integrating hematopoietic cells into organoids, facilitating in-depth investigations into inflammation-mediated liver pathologies.


Induced Pluripotent Stem Cells , Liver Diseases , Sepsis , Humans , Kupffer Cells , Liver/pathology , Liver Diseases/pathology , Organoids , Sepsis/pathology , Endotoxins , Cell Differentiation
16.
J Mater Chem B ; 12(16): 3840-3856, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38532706

Liver diseases are classified as acute liver damage and chronic liver disease, with recurring liver damage causing liver fibrosis and progression to cirrhosis and hepatoma. Liver transplantation is the only effective treatment for end-stage liver diseases; therefore, novel therapies are required. Extracellular vesicles (EVs) are endogenous nanocarriers involved in cell-to-cell communication that play important roles in immune regulation, tissue repair and regeneration. Native EVs can potentially be used for various liver diseases owing to their high biocompatibility, low immunogenicity and tissue permeability and engineered EVs with surface modification or cargo loading could further optimize therapeutic effects. In this review, we firstly introduced the mechanisms and effects of native EVs derived from different cells and tissues to treat liver diseases of different etiologies. Additionally, we summarized the possible methods to facilitate liver targeting and improve cargo-loading efficiency. In the treatment of liver disease, the detailed engineered methods and the latest delivery strategies were also discussed. Finally, we pointed out the limitations and challenges of EVs for future development and applications. We hope that this review could provide a useful reference for the development of EVs and promote the clinical translation.


Extracellular Vesicles , Liver Diseases , Humans , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Liver Diseases/therapy , Liver Diseases/pathology , Animals
17.
Liver Int ; 44(6): 1290-1297, 2024 Jun.
Article En | MEDLINE | ID: mdl-38451053

Since organoids were developed 15 years ago, they are now in their adolescence as a research tool. The ability to generate 'tissue in a dish' has created enormous opportunities for biomedical research. We examine the contributions that hepatic organoids have made to three areas of liver research: as a source of cells and tissue for basic research, for drug discovery and drug safety testing, and for understanding disease pathobiology. We discuss the features that enable hepatic organoids to provide useful models for human liver diseases and identify four types of advances that will enable them to become a mature (i.e., adult) research tool over the next 5 years. During this period, advances in single-cell RNA sequencing and CRISPR technologies coupled with improved hepatic organoid methodology, which enables them to have a wider range of cell types that are present in liver and to be grown in microwells, will generate discoveries that will dramatically advance our understanding of liver development and the pathogenesis of liver diseases. It will generate also new approaches for treating liver fibrosis, which remains a major public health problem with few treatment options.


Liver Diseases , Liver , Organoids , Humans , Liver/cytology , Liver/pathology , Liver Diseases/pathology , Liver Diseases/therapy , Drug Discovery , Biomedical Research , Single-Cell Analysis
18.
Hum Pathol ; 146: 35-42, 2024 Apr.
Article En | MEDLINE | ID: mdl-38460799

The classic findings have been well described for light-chain amyloid involving the liver. In addition to light chain, however, many additional proteins are now known to be amyloidogenic and can involve the liver. A total of 58 surgical pathology specimens with amyloid deposits were analyzed for patterns of amyloid deposition, including amyloid from light chain lambda (N = 17), light chain kappa (N = 15), transthyretin (N = 15), serum amyloid A (N = 4), apolipoprotein A1 (N = 4), fibrinogen alpha (N = 2), LECT2 (N = 1). Amyloid deposits predominately targeted the liver vasculature, including the walls of the hepatic arteries, portal veins, and sinusoids. While there was overlap, light chain amyloid predominately involved the sinusoids, while transthyretin amyloid predominately targeted the hepatic arteries, especially the larger ones in the hilum and larger portal tracts. Serum amyloid A formed nodular deposits that started in the portal vasculature but then extended into the portal tract stroma, leading to large, bulbous, portal-based amyloid deposits. Apolipoprotein A amyloid also formed large portal-based nodules. Fibrinogen was mild and subtle on H&E and predominately affected portal veins. Amyloid deposits in hilar nerves were prominent with amyloid light chain, transthyretin, and apolipoprotein A1. In conclusion, the histology of hepatic amyloid is diverse and shows several distinct clusters of findings that can aide in recognition in surgical pathology specimens.


Amyloid , Amyloidosis , Fibrinogen , Intercellular Signaling Peptides and Proteins , Liver , Prealbumin , Humans , Fibrinogen/analysis , Male , Female , Liver/pathology , Amyloid/metabolism , Amyloid/analysis , Prealbumin/analysis , Amyloidosis/pathology , Aged , Middle Aged , Apolipoprotein A-I , Liver Diseases/pathology , Serum Amyloid A Protein/analysis , Aged, 80 and over , Adult
20.
Transpl Immunol ; 84: 102033, 2024 Jun.
Article En | MEDLINE | ID: mdl-38484898

Piperine, the major active substance in black pepper, has been shown to have anti-inflammatory and antioxidant effects in several ischemic diseases. However, the role of piperine in hepatic ischemia/reperfusion injury (HIRI) and its underlying mechanisms remain unclear. In this study, the mice were administered piperine (30 mg/kg) intragastric administration before surgery. After 24 h of hepatic ischemia-reperfusion, liver histopathological evaluation, serum transaminase measurements, and TUNEL analysis were performed. The infiltration of inflammatory cells and production of inflammatory mediators in the liver tissue were determined by immunofluorescence and immunohistochemical staining. The protein levels of toll-like receptor 4 (TLR4) and related proteins such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin-1 receptor-associated kinase 1 (IRAK1), p65, and p38 were detected by western blotting. The results showed that plasma aminotransferase (ALT), aspartate aminotransferase (AST), hepatocyte apoptosis, oxidative stress, and inflammatory cell infiltration significantly increased in HIRI mice. Piperine pretreatment notably repaired liver function, improved the histopathology and apoptosis of liver cells, alleviated oxidative stress injury, and reduced inflammatory cell infiltration. Further analysis showed that piperine attenuated tumor necrosis factor-a (TNF-α) and interleukin 6 (IL-6) production and reduced TLR4 activation and phosphorylation of IRAK1, p38, and NF-κB in HIRI. Piperine has a protective effect against HIRI through the TLR4/IRAK1/NF-κB signaling pathway and may be a safer option for future clinical treatment and prevention of ischemia-related diseases.


Alkaloids , Benzodioxoles , Liver , Piperidines , Polyunsaturated Alkamides , Reperfusion Injury , Signal Transduction , Toll-Like Receptor 4 , Animals , Polyunsaturated Alkamides/therapeutic use , Polyunsaturated Alkamides/pharmacology , Benzodioxoles/pharmacology , Benzodioxoles/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Alkaloids/pharmacology , Alkaloids/therapeutic use , Toll-Like Receptor 4/metabolism , Mice , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Signal Transduction/drug effects , Liver/pathology , Liver/drug effects , Liver/metabolism , Male , Apoptosis/drug effects , NF-kappa B/metabolism , Oxidative Stress/drug effects , Interleukin-1 Receptor-Associated Kinases/metabolism , Liver Diseases/drug therapy , Liver Diseases/metabolism , Liver Diseases/pathology , Humans , Mice, Inbred C57BL , Disease Models, Animal
...