Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 62.587
1.
Int J Biol Sci ; 20(7): 2555-2575, 2024.
Article En | MEDLINE | ID: mdl-38725861

Staphylococcus aureus (S. aureus) persistence in macrophages, potentially a reservoir for recurrence of chronic osteomyelitis, contributes to resistance and failure in treatment. As the mechanisms underlying survival of S. aureus in macrophages remain largely unknown, there has been no treatment approved. Here, in a mouse model of S. aureus osteomyelitis, we identified significantly up-regulated expression of SLC7A11 in both transcriptomes and translatomes of CD11b+F4/80+ macrophages, and validated a predominant distribution of SLC7A11 in F4/80+ cells around the S. aureus abscess. Importantly, pharmacological inhibition or genetic knockout of SLC7A11 promoted the bactericidal function of macrophages, reduced bacterial burden in the bone and improved bone structure in mice with S. aureus osteomyelitis. Mechanistically, aberrantly expressed SLC7A11 down-regulated the level of intracellular ROS and reduced lipid peroxidation, contributing to the impaired bactericidal function of macrophages. Interestingly, blocking SLC7A11 further activated expression of PD-L1 via the ROS-NF-κB axis, and a combination therapy of targeting both SLC7A11 and PD-L1 significantly enhanced the efficacy of clearing S. aureus in vitro and in vivo. Our findings suggest that targeting both SLC7A11 and PD-L1 is a promising therapeutic approach to reprogram the bactericidal function of macrophages and promote bacterial clearance in S. aureus osteomyelitis.


Macrophages , Osteomyelitis , Staphylococcal Infections , Staphylococcus aureus , Animals , Osteomyelitis/microbiology , Osteomyelitis/metabolism , Osteomyelitis/genetics , Mice , Macrophages/metabolism , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism
2.
Sci Rep ; 14(1): 10466, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714772

Right-sided infective endocarditis (RSIE) is less common than left-sided infective endocarditis (LSIE) and exhibits distinct epidemiological, clinical, and microbiological characteristics. Previous studies have focused primarily on RSIE in patients with intravenous drug use. We investigated the characteristics and risk factors for RSIE in an area where intravenous drug use is uncommon. A retrospective cohort study was conducted at a tertiary hospital in South Korea. Patients diagnosed with infective endocarditis between November 2005 and August 2017 were categorized into LSIE and RSIE groups. Of the 406 patients, 365 (89.9%) had LSIE and 41 (10.1%) had RSIE. The mortality rates were 31.7% in the RSIE group and 31.5% in the LSIE group (P = 0.860). Patients with RSIE had a higher prevalence of infection with Staphylococcus aureus (29.3% vs. 13.7%, P = 0.016), coagulase-negative staphylococci (17.1% vs. 6.0%, P = 0.022), and gram-negative bacilli other than HACEK (12.2% vs. 2.2%, P = 0.003). Younger age (adjusted odds ratio [aOR] 0.97, 95% confidence interval [CI] 0.95-0.99, P = 0.006), implanted cardiac devices (aOR 37.75, 95% CI 11.63-141.64, P ≤ 0.001), and central venous catheterization  (aOR 4.25, 95%  CI 1.14-15.55, P = 0.029) were independent risk factors for RSIE. Treatment strategies that consider the epidemiologic and microbiologic characteristics of RSIE are warranted.


Endocarditis , Humans , Male , Republic of Korea/epidemiology , Female , Risk Factors , Retrospective Studies , Middle Aged , Aged , Endocarditis/epidemiology , Endocarditis/mortality , Endocarditis/microbiology , Adult , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Endocarditis, Bacterial/epidemiology , Endocarditis, Bacterial/microbiology , Endocarditis, Bacterial/mortality , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/pathogenicity , Prevalence , Tertiary Care Centers
3.
Front Cell Infect Microbiol ; 14: 1398461, 2024.
Article En | MEDLINE | ID: mdl-38803573

Addressing the existing problem in the microbiological diagnosis of infections associated with implants and the current debate about the real power of precision of sonicated fluid culture (SFC), the objective of this review is to describe the methodology and analyze and compare the results obtained in current studies on the subject. Furthermore, the present study also discusses and suggests the best parameters for performing sonication. A search was carried out for recent studies in the literature (2019-2023) that addressed this research topic. As a result, different sonication protocols were adopted in the studies analyzed, as expected, and consequently, there was significant variability between the results obtained regarding the sensitivity and specificity of the technique in relation to the traditional culture method (periprosthetic tissue culture - PTC). Coagulase-negative Staphylococcus (CoNS) and Staphylococcus aureus were identified as the main etiological agents by SFC and PTC, with SFC being important for the identification of pathogens of low virulence that are difficult to detect. Compared to chemical biofilm displacement methods, EDTA and DTT, SFC also produced variable results. In this context, this review provided an overview of the most current scenarios on the topic and theoretical support to improve sonication performance, especially with regard to sensitivity and specificity, by scoring the best parameters from various aspects, including sample collection, storage conditions, cultivation methods, microorganism identification techniques (both phenotypic and molecular) and the cutoff point for colony forming unit (CFU) counts. This study demonstrated the need for standardization of the technique and provided a theoretical basis for a sonication protocol that aims to achieve the highest levels of sensitivity and specificity for the reliable microbiological diagnosis of infections associated with implants and prosthetic devices, such as prosthetic joint infections (PJIs). However, practical application and additional complementary studies are still needed.


Prosthesis-Related Infections , Sonication , Prosthesis-Related Infections/diagnosis , Prosthesis-Related Infections/microbiology , Humans , Sensitivity and Specificity , Biofilms/growth & development , Microbiological Techniques/methods , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Bacteriological Techniques/methods , Prostheses and Implants/microbiology
4.
PLoS One ; 19(5): e0304491, 2024.
Article En | MEDLINE | ID: mdl-38805522

Due to high tolerance to antibiotics and pronounced virulence, bacterial biofilms are considered a key factor and major clinical challenge in persistent wound infections. They are typically composed of multiple species, whose interactions determine the biofilm's structural development, functional properties and thus the progression of wound infections. However, most attempts to study bacterial biofilms in vitro solely rely on mono-species populations, since cultivating multi-species biofilms, especially for prolonged periods of time, poses significant challenges. To address this, the present study examined the influence of bacterial composition on structural biofilm development, morphology and spatial organization, as well as antibiotic tolerance and virulence on human skin cells in the context of persistent wound infections. By creating a wound-mimetic microenvironment, the successful cultivation of dual-species biofilms of two of the most prevalent wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was realized over a period of 72 h. Combining quantitative analysis with electron microscopy and label-free imaging enabled a comprehensive evaluation of the dynamics of biofilm formation and matrix secretion, revealing a twofold increased maturation of dual-species biofilms. Antibiotic tolerance was comparable for both mono-species cultures, however, dual-species communities showed a 50% increase in tolerance, mediated by a significantly reduced penetration of the applied antibiotic into the biofilm matrix. Further synergistic effects were observed, where dual-species biofilms exacerbated wound healing beyond the effects observed from either Pseudomonas or Staphylococcus. Consequently, predicting biofilm development, antimicrobial tolerance and virulence for multi-species biofilms based solely on the results from mono-species biofilms is unreliable. This study underscores the substantial impact of a multi-species composition on biofilm functional properties and emphasizes the need to tailor future studies reflecting the bacterial composition of the respective in vivo situation, leading to a more comprehensive understanding of microbial communities in the context of basic microbiology and the development of effective treatments.


Anti-Bacterial Agents , Biofilms , Pseudomonas aeruginosa , Staphylococcus aureus , Wound Infection , Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/pathogenicity , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Humans , Virulence/drug effects , Wound Infection/microbiology , Wound Infection/drug therapy , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy
5.
Mol Biol Rep ; 51(1): 686, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796602

OBJECTIVE: This research study was undertaken to investigate antimicrobial resistance patterns and the prevalence of hospital-acquired infections (HAIs). The study focuses on common microorganisms responsible for HAIs and explores emerging challenges posed by antimicrobial drug-resistant isolates. METHODS: A comprehensive analysis of 123 patients with HAIs, hospitalized in surgical department and intensive care unit (ICU) at Imam Khomeini Hospital, Ilam, Iran, was conducted over a six-month period. Pathogenic bacterial isolates, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA), were isolated and subjected to antibiotic susceptibility testing. RESULTS: The study findings revealed a significant prevalence of multidrug-resistant (MDR) isolates, of which 73.3% were MRSA. Notably, 6.7% of S. aureus isolates exhibited resistance to vancomycin, indicating the emergence of VRSA. Respiratory infections were identified as the most prevalent HAI, constituting 34.67% of cases, often arising from extended ICU stays and invasive surgical procedures. Furthermore, patients aged 60 and above, particularly those associated with MDR, exhibited higher vulnerability to HAI. CONCLUSIONS: This research sheds light on the intricate interplay between drug resistance and HAI, highlighting the imperative role of rational antibiotic use and infection control in addressing this critical healthcare challenge.


Anti-Bacterial Agents , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Staphylococcal Infections , Humans , Iran/epidemiology , Cross Infection/microbiology , Cross Infection/epidemiology , Male , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Female , Middle Aged , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Adult , Anti-Bacterial Agents/pharmacology , Aged , Drug Resistance, Multiple, Bacterial/genetics , Intensive Care Units , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Vancomycin-Resistant Staphylococcus aureus/genetics , Adolescent , Prevalence
6.
Proc Natl Acad Sci U S A ; 121(22): e2402764121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38771879

Staphylococcus aureus (S. aureus) can evade antibiotics and host immune defenses by persisting within infected cells. Here, we demonstrate that in infected host cells, S. aureus type VII secretion system (T7SS) extracellular protein B (EsxB) interacts with the stimulator of interferon genes (STING) protein and suppresses the inflammatory defense mechanism of macrophages during early infection. The binding of EsxB with STING disrupts the K48-linked ubiquitination of EsxB at lysine 33, thereby preventing EsxB degradation. Furthermore, EsxB-STING binding appears to interrupt the interaction of 2 vital regulatory proteins with STING: aspartate-histidine-histidine-cysteine domain-containing protein 3 (DHHC3) and TNF receptor-associated factor 6. This persistent dual suppression of STING interactions deregulates intracellular proinflammatory pathways in macrophages, inhibiting STING's palmitoylation at cysteine 91 and its K63-linked ubiquitination at lysine 83. These findings uncover an immune-evasion mechanism by S. aureus T7SS during intracellular macrophage infection, which has implications for developing effective immunomodulators to combat S. aureus infections.


Bacterial Proteins , Macrophages , Membrane Proteins , Staphylococcal Infections , Staphylococcus aureus , Type VII Secretion Systems , Ubiquitination , Staphylococcus aureus/immunology , Membrane Proteins/metabolism , Membrane Proteins/immunology , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Animals , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/metabolism , Type VII Secretion Systems/metabolism , Type VII Secretion Systems/immunology , Type VII Secretion Systems/genetics , Mice , Immune Evasion , Host-Pathogen Interactions/immunology
7.
Acta Vet Scand ; 66(1): 20, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769566

Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.


Bacteriophages , Endopeptidases , Mastitis, Bovine , Staphylococcus , Animals , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Cattle , Endopeptidases/pharmacology , Endopeptidases/metabolism , Endopeptidases/chemistry , Endopeptidases/genetics , Staphylococcus/drug effects , Staphylococcal Infections/veterinary , Staphylococcal Infections/drug therapy , Streptococcus/drug effects , Female , Streptococcal Infections/veterinary , Streptococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology
8.
PLoS One ; 19(5): e0298612, 2024.
Article En | MEDLINE | ID: mdl-38771740

BACKGROUND: Alcoholism associates with increased Staphylococcus aureus bacteremia incidence and mortality. The objective was to compare disease progression, treatment and prognosis of Staphylococcus aureus bacteremia in alcoholics versus non-alcoholics. METHODS: The study design was a multicenter retrospective analysis of methicillin-sensitive Staphylococcus aureus bacteremia with 90-day follow-up. Patients were stratified as alcoholics or non-alcoholics based on electronic health record data. Altogether 617 Staphylococcus aureus bacteremia patients were included of which 83 (13%) were alcoholics. RESULTS: Alcoholics, versus non-alcoholics, were younger, typically male and more commonly had community-acquired Staphylococcus aureus bacteremia. No differences in McCabe´s classification of underlying conditions was observed. Higher illness severity at blood culture sampling, including severe sepsis (25% vs. 7%) and intensive care unit admission (39% vs. 17%), was seen in alcoholics versus non-alcoholics. Clinical management, including infectious disease specialist (IDS) consultations and radiology, were provided equally. Alcoholics, versus non-alcoholics, had more pneumonia (49% vs. 35%) and fewer cases of endocarditis (7% vs. 16%). Mortality in alcoholics versus non-alcoholics was significantly higher at 14, 28 and 90 days (14% vs. 7%, 24% vs. 11% and 31% vs. 17%), respectively. Considering all prognostic parameters, male sex (OR 0.19, p = 0.021) and formal IDS consultation (OR 0.19, p = 0.029) were independent predictors of reduced mortality, whereas ultimately or rapidly fatal comorbidity in McCabe´s classification (OR 12.34, p < 0.001) was an independent predictor of mortality in alcoholics. CONCLUSIONS: Alcoholism deteriorates Staphylococcus aureus bacteremia prognosis, and our results suggests that this is predominantly through illness severity at bacteremia onset. Three quarters of Staphylococcus aureus bacteremia patients we studied had identified deep infection foci, and of them alcoholics had significantly less endocarditis but nearly half of them had pneumonia.


Alcoholism , Bacteremia , Staphylococcal Infections , Staphylococcus aureus , Humans , Male , Bacteremia/microbiology , Bacteremia/epidemiology , Female , Middle Aged , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Alcoholism/complications , Retrospective Studies , Aged , Staphylococcus aureus/isolation & purification , Adult , Prognosis , Alcoholics
9.
Mol Biol Rep ; 51(1): 665, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777940

BACKGROUND: Staphylococcus aureus (S. aureus) associated with COVID-19 has not been well documented. This cross-sectional study evaluated the association between nasal S. aureus carriage and COVID-19. METHODS AND RESULTS: Nasopharyngeal samples were collected from 391 participants presenting for COVID-19 test in Lagos, Nigeria, and S. aureus was isolated from the samples. Antimicrobial susceptibility test was done by disc diffusion method. All S. aureus isolates were screened for the presence of mecA, panton-valentine leucocidin (PVL) and toxic shock syndrome toxin (TSST) virulence genes by polymerase chain reaction. Staphylococcal protein A (spa) typing was conducted for all the isolates. Participants with COVID-19 had double the prevalence of S. aureus (42.86%) compared to those who tested negative (20.54%). A significant association was seen between S. aureus nasal carriage and COVID-19 (p = 0.004). Antimicrobial sensitivity results showed resistance to oxacillin (100%), cefoxitin (53%), and vancomycin (98.7%). However, only 41% of the isolates harbored the mecA gene, with SCCmecV being the most common SCCmec type. There was no association between the carriage of virulence genes and COVID-19. A total of 23 Spa types were detected, with t13249 and t095 being the two most common spa types. CONCLUSION: This study examined the association between nasal S. aureus carriage and SARS-COV-2 infection. Further research is required to fully explore the implications of S. aureus co-infection with COVID-19.


COVID-19 , SARS-CoV-2 , Staphylococcal Infections , Staphylococcus aureus , Humans , COVID-19/microbiology , COVID-19/epidemiology , COVID-19/virology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Cross-Sectional Studies , Male , Female , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/isolation & purification , Adult , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Middle Aged , Bacterial Toxins/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Comorbidity , Bacterial Proteins/genetics , Virulence/genetics , Nigeria/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Carrier State/epidemiology , Carrier State/microbiology , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Leukocidins/genetics , Exotoxins/genetics , Virulence Factors/genetics , Young Adult
10.
Biomed Res Int ; 2024: 5859068, 2024.
Article En | MEDLINE | ID: mdl-38778831

Cancer and chemotherapy predispose the patients to various bacterial infections. This study is aimed at isolating and establishing the distribution of antibiotic-resistant Staphylococcus aureus from fecal samples in subjects with cancer admitted to the Oncology Department at Laquintinie Hospital in Douala, in the Littoral Region of Cameroon. A cross-sectional study was conducted from October 2021 to March 2023. Cancer and noncancer patients were suffering from Staphylococcus aureus infection. The isolation of Staphylococcus aureus was based on culture on the specific medium. The Kirby-Bauer disk diffusion method was used for drug susceptibility testing. Of the 507 patients studied, 307 (60.55%) were cancer patients, compared to 200 (39.45%) noncancer patients. S. aureus was isolated in 81 (15.97%) participants, among which 62 (76.55%) were cancer patients and 19 (23.45%) were noncancer patients. In the study population, 31.92% of participants had breast cancer, followed by cervical cancer (13.68%) and leukemia (7.17%). Staphylococcus aureus isolates showed high resistance rates in cancer patients compared to noncancer patients to amoxicillin-clavulanic acid (AMC, 77.42% versus 31.58%), cefoxitin (FOX, 80.65% versus 63.16%), ciprofloxacin (CIP, 75.81% versus 26.32%), ofloxacin (OFX, 69.35% versus 31.58%), fusidic acid (FUS, 70.97% versus 53.63%), and tetracycline (TET, 85.48% versus 78.95%). Staphylococcus aureus showed a significant increase in multidrug-resistant (MDR) and methicillin-resistant (MRSA) phenotypes in cancer patients compared to noncancer patients (p < 0.05). The prevalence of MRSA was 76.54%, higher than that of methicillin-sensitive Staphylococcus aureus (MSSA) (23.46%). The frequency of MRSA was significantly higher (p < 0.001) in cancer patients (80.65%) than in noncancer patients (19.35%). This study showed that there is an association between antibiotic resistance and cancer status. Research and interventions must be focused on the cancer population to combat the appearance of MDR bacteria due to the loss of effectiveness of antibiotics.


Anti-Bacterial Agents , Neoplasms , Staphylococcal Infections , Staphylococcus aureus , Humans , Cameroon/epidemiology , Female , Male , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Middle Aged , Neoplasms/microbiology , Neoplasms/drug therapy , Neoplasms/epidemiology , Adult , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Cross-Sectional Studies , Microbial Sensitivity Tests , Aged , Drug Resistance, Bacterial , Adolescent , Young Adult , Hospitals
11.
Ecotoxicol Environ Saf ; 278: 116456, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38744067

Long non-coding RNAs (LncRNAs) are dysregulated in a variety of human diseases and are highly involved in the development and progression of tumors. Studies on lncRNAs associated with cow mastitis have been lagging behind compared to humans or model animals, therefore, the aim of this study was to explore the mechanism of LncRNAs (CMR) involved in autoprotection against S. aureus mastitis in Bovine Mammary Epithelial Cells (BMECs). First, qRT-PCR was used to examine the relative expression of CMR in a S. aureus mastitis model of BMECs. Then, cell proliferation and apoptosis were detected by EdU and apoptosis assay. Finally, the targeting relationship between miRNAs and mRNA/LncRNAs was determined by dual luciferase reporter gene, qRT-PCR and western blotting techniques. The results showed that CMR was upregulated in the S. aureus mastitis model of BMECs and promoted the expression of inflammatory factors, and SiRNA-mediated CMR inhibited the proliferation of mammary epithelial cells and induced apoptosis. Mechanistically, CMR acts as a competitive endogenous RNA (ceRNA) sponge miR-877, leading to upregulation of FOXM1, a target of miR-877. Importantly, either miR-877 overexpression or FOXM1 inhibition abrogated CMR knockdown-induced apoptosis promoting cell proliferation and reducing inflammatory factor expression levels. In summary, CMR is involved in the regulation of autoprotection against S. aureus mastitis through the miR-877/FOXM1 axis in BMECs and induces immune responses in mammary tissues and cells of dairy cows, providing an important reference for subsequent prevention and control of cow mastitis and the development of targeted drugs.


Mastitis, Bovine , MicroRNAs , RNA, Long Noncoding , Staphylococcus aureus , Animals , Cattle , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Female , Mastitis, Bovine/genetics , Mastitis, Bovine/microbiology , Apoptosis , Forkhead Box Protein M1/genetics , Cell Proliferation , Epithelial Cells/drug effects , Staphylococcal Infections/genetics
12.
BMC Infect Dis ; 24(1): 494, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745289

BACKGROUND: Brain-heart infusion agar supplemented with 4 µg/mL of vancomycin (BHI-V4) was commonly used for the detection of heterogeneous (hVISA) and vancomycin-intermediate Staphylococcus aureus (VISA). However, its diagnostic value remains unclear. This study aims to compare the diagnostic accuracy of BHI-V4 with population analysis profiling with area under the curve (PAP-AUC) in hVISA/VISA. METHODS: The protocol of this study was registered in INPLASY (INPLASY2023120069). The PubMed and Cochrane Library databases were searched from inception to October 2023. Review Manager 5.4 was used for data visualization in the quality assessment, and STATA17.0 (MP) was used for statistical analysis. RESULTS: In total, eight publications including 2153 strains were incorporated into the meta-analysis. Significant heterogeneity was evident although a threshold effect was not detected across the eight studies. The summary receiver operating characteristic (SROC) was 0.77 (95% confidence interval [CI], 0.74-0.81). The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic score and diagnostic odds ratio were 0.59 (95% CI: 0.46-0.71), 0.96 (95%CI: 0.83-0.99), 14.0 (95% CI, 3.4-57.1), 0.43 (95%CI, 0.32-0.57), 3.48(95%CI, 2.12-4.85) and 32.62 (95%CI, 8.31-128.36), respectively. CONCLUSION: Our study showed that BHI-V4 had moderate diagnostic accuracy for diagnosing hVISA/VISA. However, more high-quality studies are needed to assess the clinical utility of BHI-V4.


Anti-Bacterial Agents , Microbial Sensitivity Tests , Staphylococcal Infections , Staphylococcus aureus , Vancomycin , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/diagnosis , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Sensitivity and Specificity , Vancomycin Resistance , Culture Media , Area Under Curve
13.
BMJ Case Rep ; 17(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38749518

A girl in early childhood with no significant medical history developed left eye periorbital oedema and erythema. She was treated with intravenous antibiotics for suspected severe periorbital cellulitis. Despite treatment, the patient's cellulitis progressed into necrotising fasciitis, and she was transferred for ophthalmology review and imaging. A CT scan and eye swab culture-confirmed Staphylococcus aureus periorbital cellulitis. Incidentally, pathology revealed significant pancytopenia suspicious of leukaemia. The patient underwent bone marrow biopsy and was diagnosed with B-cell acute lymphoblastic leukaemia (ALL). A multidisciplinary specialist assessment revealed no ocular evidence of leukaemia and no intraocular concerns. In medical literature, it is consistently found that cases of ALL initially manifesting as proptosis or eyelid oedema are invariably due to neoplastic infiltration. This case represents unique documentation where periorbital cellulitis is the initial presentation of B-cell ALL, underscoring the necessity to consider periorbital cellulitis as a possible differential diagnosis in ophthalmic manifestations of ALL.


Orbital Cellulitis , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Female , Orbital Cellulitis/diagnosis , Orbital Cellulitis/etiology , Orbital Cellulitis/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Diagnosis, Differential , Anti-Bacterial Agents/therapeutic use , Cellulitis/diagnosis , Cellulitis/drug therapy , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Staphylococcus aureus/isolation & purification , Tomography, X-Ray Computed
14.
Virulence ; 15(1): 2352476, 2024 12.
Article En | MEDLINE | ID: mdl-38741276

Staphylococcus aureus (S. aureus) is well known for its biofilm formation ability and is responsible for serious, chronic refractory infections worldwide. We previously demonstrated that advanced glycation end products (AGEs), a hallmark of chronic hyperglycaemia in diabetic tissues, enhanced biofilm formation by promoting eDNA release via sigB upregulation in S. aureus, contributing to the high morbidity and mortality of patients presenting a diabetic foot ulcer infection. However, the exact regulatory network has not been completely described. Here, we used pull-down assay and LC-MS/MS to identify the GlmS as a candidate regulator of sigB in S. aureus stimulated by AGEs. Dual-luciferase assays and electrophoretic mobility shift assays (EMSAs) revealed that GlmS directly upregulated the transcriptional activity of sigB. We constructed NCTC 8325 ∆glmS for further validation. qRT-PCR analysis revealed that AGEs promoted both glmS and sigB expression in the NCTC 8325 strain but had no effect on NCTC 8325 ∆glmS. NCTC 8325 ∆glmS showed a significant attenuation in biofilm formation and virulence factor expression, accompanied by a decrease in sigB expression, even under AGE stimulation. All of the changes, including pigment deficiency, decreased haemolysis ability, downregulation of hla and hld expression, and less and sparser biofilms, indicated that sigB and biofilm formation ability no longer responded to AGEs in NCTC 8325 ∆glmS. Our data extend the understanding of GlmS in the global regulatory network of S. aureus and demonstrate a new mechanism by which AGEs can upregulate GlmS, which directly regulates sigB and plays a significant role in mediating biofilm formation and virulence factor expression.


Bacterial Proteins , Biofilms , Gene Expression Regulation, Bacterial , Glycation End Products, Advanced , Staphylococcal Infections , Staphylococcus aureus , Virulence Factors , Biofilms/growth & development , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Virulence Factors/genetics , Glycation End Products, Advanced/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcal Infections/microbiology , Sigma Factor/genetics , Sigma Factor/metabolism , Humans
15.
BMC Vet Res ; 20(1): 200, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745199

BACKGROUND: In dairy cattle, mastitis causes high financial losses and impairs animal well-being. Genetic selection is used to breed cows with reduced mastitis susceptibility. Techniques such as milk cell flow cytometry may improve early mastitis diagnosis. In a highly standardized in vivo infection model, 36 half-sib cows were selected for divergent paternal Bos taurus chromosome 18 haplotypes (Q vs. q) and challenged with Escherichia coli for 24 h or Staphylococcus aureus for 96 h, after which the samples were analyzed at 12 h intervals. Vaginal temperature (VT) was recorded every three minutes. The objective of this study was to compare the differential milk cell count (DMCC), milk parameters (fat %, protein %, lactose %, pH) and VT between favorable (Q) and unfavorable (q) haplotype cows using Bayesian models to evaluate their potential as improved early indicators of differential susceptibility to mastitis. RESULTS: After S. aureus challenge, compared to the Q half-sibship cows, the milk of the q cows exhibited higher PMN levels according to the DMCC (24 h, p < 0.001), a higher SCC (24 h, p < 0.01 and 36 h, p < 0.05), large cells (24 h, p < 0.05) and more dead (36 h, p < 0.001) and live cells (24 h, p < 0.01). The protein % was greater in Q milk than in q milk at 0 h (p = 0.025). In the S. aureus group, Q cows had a greater protein % (60 h, p = 0.048) and fat % (84 h, p = 0.022) than q cows. Initially, the greater VT of S. aureus-challenged q cows (0 and 12-24 h, p < 0.05) reversed to a lower VT in q cows than in Q cows (48-60 h, p < 0.05). Additionally, the following findings emphasized the validity of the model: in the S. aureus group all DMCC subpopulations (24 h-96 h, p < 0.001) and in the E. coli group nearly all DMCC subpopulations (12 h-24 h, p < 0.001) were higher in challenged quarters than in unchallenged quarters. The lactose % was lower in the milk samples of E. coli-challenged quarters than in those of S. aureus-challenged quarters (24 h, p < 0.001). Between 12 and 18 h, the VT was greater in cows challenged with E. coli than in those challenged with S. aureus (3-h interval approach, p < 0.001). CONCLUSION: This in vivo infection model confirmed specific differences between Q and q cows with respect to the DMCC, milk component analysis results and VT results after S. aureus inoculation but not after E. coli challenge. However, compared with conventional milk cell analysis monitoring, e.g., the global SCC, the DMCC analysis did not provide refined phenotyping of the pathogen response.


Escherichia coli Infections , Escherichia coli , Haplotypes , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Milk/microbiology , Milk/cytology , Female , Mastitis, Bovine/microbiology , Staphylococcus aureus/physiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Cell Count/veterinary , Body Temperature , Vagina/microbiology
16.
Iran J Med Sci ; 49(5): 332-338, 2024 May.
Article En | MEDLINE | ID: mdl-38751870

The present study aimed to investigate secondary bacterial infections among patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Coagulase-negative Staphylococci can infect immunocompromised patients. Linezolid resistance among Staphylococcus epidermidis is one of the most critical issues. In 2019, 185 SARS-CoV-2-positive patients who were admitted to North Khorasan Province Hospital (Bojnurd, Iran), were investigated. Patients having positive SARS-CoV-2 reverse transcriptase real-time polymerase chain reaction (RT-PCR) test results, who had a history of intubation, mechanical ventilation, and were hospitalized for more than 48 hours were included. After microbiological evaluation of pulmonary samples, taken from intubated patients with clinical manifestation of pneumonia, co-infections were found in 11/185 patients (5.94%) with S. epidermidis, Staphylococcus aureus, and Acinetobacter baumani, respectively. Remarkably, seven out of nine S. epidermidis isolates were linezolid resistant. Selected isolates were characterized using antimicrobial resistance patterns and molecular methods, such as Staphylococcal cassette chromosome mec (SCCmec) typing, and gene detection for ica, methicillin resistance (mecA), vancomycin resistance (vanA), and chloramphenicol-florfenicol resistance (cfr) genes. All of the isolates were resistant to methicillin, and seven isolates were resistant to linezolid. Nine out of 11 isolated belonged to the SCCmec I, while two belonged to the SCCmec IV. It should be noted that all patients had the underlying disease, and six patients had already passed away. The increasing linezolid resistance in bacterial strains becomes a real threat to patients, and monitoring such infections, in conjunction with surveillance and infection prevention programs, is very critical for reducing the number of linezolid-resistant Staphylococcal strains. A preprint of this study was published at https://europepmc.org/article/ppr/ppr417742.


COVID-19 , Linezolid , Staphylococcal Infections , Staphylococcus epidermidis , Humans , Linezolid/pharmacology , Linezolid/therapeutic use , Staphylococcus epidermidis/drug effects , Iran/epidemiology , COVID-19/epidemiology , Male , Female , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Middle Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aged , Coinfection/epidemiology , Coinfection/drug therapy , Coinfection/microbiology , Drug Resistance, Bacterial/drug effects , Adult , SARS-CoV-2 , Microbial Sensitivity Tests/methods
17.
ACS Appl Mater Interfaces ; 16(19): 24421-24430, 2024 May 15.
Article En | MEDLINE | ID: mdl-38690964

Periprosthetic infections caused by Staphylococcus aureus (S. aureus) pose unique challenges in orthopedic surgeries, in part due to the bacterium's capacity to invade surrounding bone tissues besides forming recalcitrant biofilms on implant surfaces. We previously developed prophylactic implant coatings for the on-demand release of vancomycin, triggered by the cleavage of an oligonucleotide (Oligo) linker by micrococcal nuclease (MN) secreted by the Gram-positive bacterium, to eradicate S. aureus surrounding the implant in vitro and in vivo. Building upon this coating platform, here we explore the feasibility of extending the on-demand release to ampicillin, a broad-spectrum aminopenicillin ß-lactam antibiotic that is more effective than vancomycin in killing Gram-negative bacteria that may accompany S. aureus infections. The amino group of ampicillin was successfully conjugated to the carboxyl end of an MN-sensitive Oligo covalently integrated in a polymethacrylate hydrogel coating applied to titanium alloy pins. The resultant Oligo-Ampicillin hydrogel coating released the ß-lactam in the presence of S. aureus and successfully cleared nearby S. aureus in vitro. When the Oligo-Ampicillin-coated pin was delivered to a rat femoral canal inoculated with 1000 cfu S. aureus, it prevented periprosthetic infection with timely on-demand drug release. The clearance of the bacteria from the pin surface as well as surrounding tissue persisted over 3 months, with no local or systemic toxicity observed with the coating. The negatively charged Oligo fragment attached to ampicillin upon cleavage from the coating did diminish the antibiotic's potency against S. aureus and Escherichia coli (E. coli) to varying degrees, likely due to electrostatic repulsion by the anionic surfaces of the bacteria. Although the on-demand release of the ß-lactam led to adequate killing of S. aureus but not E. coli in the presence of a mixture of the bacteria, strong inhibition of the colonization of the remaining E. coli on hydrogel coating was observed. These findings will inspire considerations of alternative broad-spectrum antibiotics, optimized drug conjugation, and Oligo linker engineering for more effective protection against polymicrobial periprosthetic infections.


Ampicillin , Anti-Bacterial Agents , Coated Materials, Biocompatible , Prosthesis-Related Infections , Staphylococcal Infections , Staphylococcus aureus , Animals , Staphylococcus aureus/drug effects , Ampicillin/chemistry , Ampicillin/pharmacology , Rats , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Staphylococcal Infections/prevention & control , Staphylococcal Infections/drug therapy , Prosthesis-Related Infections/prevention & control , Prosthesis-Related Infections/drug therapy , Prosthesis-Related Infections/microbiology , Rats, Sprague-Dawley , Microbial Sensitivity Tests , Drug Liberation , Prostheses and Implants
18.
Ann Clin Microbiol Antimicrob ; 23(1): 44, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755634

BACKGROUND: Due to their resistance and difficulty in treatment, biofilm-associated infections are problematic among hospitalized patients globally and account for 60% of all bacterial infections in humans. Antibiofilm peptides have recently emerged as an alternative treatment since they can be effectively designed and exert a different mode of biofilm inhibition and eradication. METHODS: A novel antibiofilm peptide, BiF, was designed from the conserved sequence of 18 α-helical antibiofilm peptides by template-assisted technique and its activity was improved by hybridization with a lipid binding motif (KILRR). Novel antibiofilm peptide derivatives were modified by substituting hydrophobic amino acids at positions 5 or 7, and both, with positively charged lysines (L5K, L7K). These peptide derivatives were tested for antibiofilm and antimicrobial activities against biofilm-forming Staphylococcus epidermidis and multiple other microbes using crystal violet and broth microdilution assays, respectively. To assess their impact on mammalian cells, the toxicity of peptides was determined through hemolysis and cytotoxicity assays. The stability of candidate peptide, BiF2_5K7K, was assessed in human serum and its secondary structure in bacterial membrane-like environments was analyzed using circular dichroism. The action of BiF2_5K7K on planktonic S. epidermidis and its effect on biofilm cell viability were assessed via viable counting assays. Its biofilm inhibition mechanism was investigated through confocal laser scanning microscopy and transcription analysis. Additionally, its ability to eradicate mature biofilms was examined using colony counting. Finally, a preliminary evaluation involved coating a catheter with BiF2_5K7K to assess its preventive efficacy against S. epidermidis biofilm formation on the catheter and its surrounding area. RESULTS: BiF2_5K7K, the modified antibiofilm peptide, exhibited dose-dependent antibiofilm activity against S. epidermidis. It inhibited biofilm formation at subinhibitory concentrations by altering S. epidermidis extracellular polysaccharide production and quorum-sensing gene expression. Additionally, it exhibited broad-spectrum antimicrobial activity and no significant hemolysis or toxicity against mammalian cell lines was observed. Its activity is retained when exposed to human serum. In bacterial membrane-like environments, this peptide formed an α-helix amphipathic structure. Within 4 h, a reduction in the number of S. epidermidis colonies was observed, demonstrating the fast action of this peptide. As a preliminary test, a BiF2_5K7K-coated catheter was able to prevent the development of S. epidermidis biofilm both on the catheter surface and in its surrounding area. CONCLUSIONS: Due to the safety and effectiveness of BiF2_5K7K, we suggest that this peptide be further developed to combat biofilm infections, particularly those of biofilm-forming S. epidermidis.


Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Staphylococcus epidermidis , Biofilms/drug effects , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hemolysis/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
19.
Article En | MEDLINE | ID: mdl-38747852

This study aimed to identify factors associated with colonization by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in adult patients admitted to a Brazilian hospital. This is a cross-sectional study, in which patients underwent a nasal swab and were asked about hygiene behavior, habits, and clinical history. Among the 702 patients, 180 (25.6%) had S. aureus and 21 (2.9%) MRSA. The factors associated with MRSA colonization were attending a gym (OR 4.71; 95% CI; 1.42 - 15.06), smoking habit in the last year (OR 2.37; 95% CI; 0.88 - 6.38), previous hospitalization (OR 2.18; CI 95%; 0.89 - 5.25), and shared personal hygiene items (OR 1.99; 95% CI; 0.71 - 5.55). At the time of admission, colonization by CA-MRSA isolates was higher than that found in the general population. This can be an important public health problem, already endemic in hospitals, whose factors such as those associated with habits (smoking cigarettes) and behaviors (team sports practice and activities in gyms) have been strongly highlighted. These findings may help developing infection control policies, allowing targeting patients on higher-risk populations for MRSA colonization.


Community-Acquired Infections , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Cross-Sectional Studies , Male , Female , Staphylococcal Infections/microbiology , Community-Acquired Infections/microbiology , Middle Aged , Adult , Risk Factors , Brazil/epidemiology , Young Adult , Aged , Socioeconomic Factors , Carrier State/microbiology , Adolescent
20.
Commun Biol ; 7(1): 572, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750133

Long-chain fatty acids with antimicrobial properties are abundant on the skin and mucosal surfaces, where they are essential to restrict the proliferation of opportunistic pathogens such as Staphylococcus aureus. These antimicrobial fatty acids (AFAs) elicit bacterial adaptation strategies, which have yet to be fully elucidated. Characterizing the pervasive mechanisms used by S. aureus to resist AFAs could open new avenues to prevent pathogen colonization. Here, we identify the S. aureus lipase Lip2 as a novel resistance factor against AFAs. Lip2 detoxifies AFAs via esterification with cholesterol. This is reminiscent of the activity of the fatty acid-modifying enzyme (FAME), whose identity has remained elusive for over three decades. In vitro, Lip2-dependent AFA-detoxification was apparent during planktonic growth and biofilm formation. Our genomic analysis revealed that prophage-mediated inactivation of Lip2 was rare in blood, nose, and skin strains, suggesting a particularly important role of Lip2 for host - microbe interactions. In a mouse model of S. aureus skin colonization, bacteria were protected from sapienic acid (a human-specific AFA) in a cholesterol- and lipase-dependent manner. These results suggest Lip2 is the long-sought FAME that exquisitely manipulates environmental lipids to promote bacterial growth in otherwise inhospitable niches.


Fatty Acids , Lipase , Staphylococcus aureus , Staphylococcus aureus/metabolism , Fatty Acids/metabolism , Animals , Mice , Lipase/metabolism , Lipase/genetics , Humans , Staphylococcal Infections/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Biofilms/growth & development , Female , Staphylococcal Skin Infections/microbiology
...