Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.584
Filtrar
1.
Comput Biol Med ; 173: 108264, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564853

RESUMO

SARS-CoV-2 is an enveloped RNA virus that causes severe respiratory illness in humans and animals. It infects cells by binding the Spike protein to the host's angiotensin-converting enzyme 2 (ACE2). The bat is considered the natural host of the virus, and zoonotic transmission is a significant risk and can happen when humans come into close contact with infected animals. Therefore, understanding the interconnection between human, animal, and environmental health is important to prevent and control future coronavirus outbreaks. This work aimed to systematically review the literature to identify characteristics that make mammals suitable virus transmitters and raise the main computational methods used to evaluate SARS-CoV-2 in mammals. Based on this review, it was possible to identify the main factors related to transmissions mentioned in the literature, such as the expression of ACE2 and proximity to humans, in addition to identifying the computational methods used for its study, such as Machine Learning, Molecular Modeling, Computational Simulation, between others. The findings of the work contribute to the prevention and control of future outbreaks, provide information on transmission factors, and highlight the importance of advanced computational methods in the study of infectious diseases that allow a deeper understanding of transmission patterns and can help in the development of more effective control and intervention strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Receptores Virais/química , Ligação Proteica , Mamíferos/metabolismo
2.
J Zhejiang Univ Sci B ; 25(4): 271-279, 2024 Apr 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38584090

RESUMO

Pancreatic exocrine insufficiency (PEI) can be induced by various kinds of diseases, including chronic pancreatitis, acute pancreatitis, and post-pancreatectomy. The main pathogenetic mechanism of PEI involves the decline of trypsin synthesis, disorder of pancreatic fluid flow, and imbalance of secretion feedback. Animal studies have shown that PEI could induce gut bacterial overgrowth and dysbiosis, with the abundance of Lactobacillus and Bifidobacterium increasing the most, which could be partially reversed by pancreatic enzyme replacement therapy. Clinical studies have also confirmed the association between PEI and the dysbiosis of gut microbiota. Pancreatic exocrine secretions and changes in duodenal pH as well as bile salt malabsorption brought about by PEI may affect and shape the abundance and composition of gut microbiota. In turn, the gut microbiota may impact the pancreatic exocrine acinus through potential bidirectional crosstalk. Going forward, more and higher-quality studies are needed that focus on the mechanism underlying the impact of PEI on the gut microbiota.


Assuntos
Insuficiência Pancreática Exócrina , Microbioma Gastrointestinal , Pancreatite , Humanos , Doença Aguda , Disbiose , Insuficiência Pancreática Exócrina/tratamento farmacológico
3.
Artigo em Inglês | MEDLINE | ID: mdl-38596203

RESUMO

Introduction: Chronic obstructive pulmonary disease (COPD), an incurable chronic respiratory disease, has become a major public health problem. The relationship between the composition of intestinal microbiota and the important clinical factors affecting COPD remains unclear. This study aimed to identify specific intestinal microbiota with high clinical diagnostic value for COPD. Methods: The fecal microbiota of patients with COPD and healthy individuals were analyzed by 16S rDNA sequencing. Random forest classification was performed to analyze the different intestinal microbiota. Spearman correlation was conducted to analyze the correlation between different intestinal microbiota and clinical characteristics. A microbiota-disease network diagram was constructed using the gut MDisorder database to identify the possible pathogenesis of intestinal microorganisms affecting COPD, screen for potential treatment, and guide future research. Results: No significant difference in biodiversity was shown between the two groups but significant differences in microbial community structure. Fifteen genera of bacteria with large abundance differences were identified, including Bacteroides, Prevotella, Lachnospira, and Parabacteroides. Among them, the relative abundance of Lachnospira and Coprococcus was negatively related to the smoking index and positively related to lung function results. By contrast, the relative abundance of Parabacteroides was positively correlated with the smoking index and negatively correlated with lung function findings. Random forest classification showed that Lachnospira was the genus most capable of distinguishing between patients with COPD and healthy individuals suggesting it may be a potential biomarker of COPD. A Lachnospira disease network diagram suggested that Lachnospira decreased in some diseases, such as asthma, diabetes mellitus, and coronavirus disease 2019 (COVID-19), and increased in other diseases, such as irritable bowel syndrome, hypertension, and bovine lichen. Conclusion: The dominant intestinal microbiota with significant differences is related to the clinical characteristics of COPD, and the Lachnospira has the potential value to identify COPD.


Assuntos
Asma , Microbioma Gastrointestinal , Microbiota , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Bovinos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/microbiologia , Fezes/microbiologia
4.
Front Microbiol ; 15: 1374438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596382

RESUMO

Post COVID-19, there has been renewed interest in understanding the pathogens challenging the human health and evaluate our preparedness towards dealing with health challenges in future. In this endeavour, it is not only the bacteria and the viruses, but a greater community of pathogens. Such pathogenic microorganisms, include protozoa, fungi and worms, which establish a distinct variety of disease-causing agents with the capability to impact the host's well-being as well as the equity of ecosystem. This review summarises the peculiar characteristics and pathogenic mechanisms utilized by these disease-causing organisms. It features their role in causing infection in the concerned host and emphasizes the need for further research. Understanding the layers of pathogenesis encompassing the concerned infectious microbes will help expand targeted inferences with relation to the cause of the infection. This would strengthen and augment benefit to the host's health along with the maintenance of ecosystem network, exhibiting host-pathogen interaction cycle. This would be key to discover the layers underlying differential disease severities in response to similar/same pathogen infection.

5.
World J Gastroenterol ; 30(10): 1287-1290, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38596491

RESUMO

In this editorial, we comment on the article by Marano et al recently published in the World Journal of Gastroenterology 2023; 29 (45): 5945-5952. We focus on the role of gut microbiota (GM) in women's health, highlighting the need to thoroughly comprehend the sex differences in microbiota. Together, the host and GM support the host's health. The microbiota components consist of viruses, bacteria, fungi, and archaea. This complex is an essential part of the host and is involved in neurological development, metabolic control, immune system dynamics, and host dynamic homeostasis. It has been shown that differences in the GM of males and females can contribute to chronic diseases, such as gastrointestinal, metabolic, neurological, cardiovascular, and respiratory illnesses. These differences can also result in some sex-specific changes in immunity. Every day, research on GM reveals new and more expansive frontiers, offering a wealth of innovative opportunities for preventive and precision medicine.


Assuntos
Microbioma Gastrointestinal , Microbiota , Feminino , Humanos , Masculino , Sistema Imunitário , Trato Gastrointestinal , Bactérias
6.
Environ Monit Assess ; 196(5): 439, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592554

RESUMO

In this study, the Quantitative Microbial Risk Assessment (QMRA) methodology was applied to estimate the annual risk of Giardia and Cryptosporidium infection associated with a water treatment plant in southern Brazil. The efficiency of the treatment plant in removing protozoa and the effectiveness of the Brazilian legislation on microbiological protection were evaluated, emphasizing the relevance of implementing the QMRA in this context. Two distinct approaches were employed to estimate the mechanical removal of protozoa: The definitions provided by the United States Environmental Protection Agency (USEPA), and the model proposed by Neminski and Ongerth. Although the raw water collected had a higher concentration of Giardia cysts than Cryptosporidium oocysts, the estimated values for the annual risk of infection were significantly higher for Cryptosporidium than for Giardia. From a general perspective, the risk values of protozoa infection were either below or very near the limit set by the World Health Organization (WHO). In contrast, all the risk values of Cryptosporidium infection exceeded the threshold established by the USEPA. Ultimately, it was concluded that the implementation of the QMRA methodology should be considered by the Brazilian authorities, as the requirements and guidelines provided by the Brazilian legislation proved to be insufficient to guarantee the microbiological safety of drinking water. In this context, the QMRA application can effectively contribute to the prevention and investigation of outbreaks of waterborne disease.


Assuntos
Criptosporidiose , Cryptosporidium , Estados Unidos , Humanos , Criptosporidiose/epidemiologia , Brasil/epidemiologia , Monitoramento Ambiental , Giardia , Medição de Risco
7.
Microb Drug Resist ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593462

RESUMO

Urological diseases affect all age groups and are associated with different urinary complications. Presence of pathogenic bacteria complicates the urological diseases such as chronic kidney disease (CKD), kidney stone disease (KSD), emphysematous pyelonephritis (EPN), and urological cancers (UCs) coinciding with urinary metabolic complications. The One Health concept for preventing the spread of antibiotic resistant opportunistic pathogens necessitates detailed investigation on the virulence and the antibiotic sensitivity patterns of the pathogens from the urinary tract infections (UTIs). This cross-sectional study was aimed to profile the pathogenic bacteria associated with different urological diseases that included urine samples from the patients from a tertiary care hospital. The study included 258 patients representing CKD (15.1%), KSD (28.7%), EPN (15.5%), UC (12.0%), and UTI patients without any urological diseases (28.7%) with overall 70.5% patients showing positive urine culture. Furthermore, other than UTI in patients without any urological diseases (100%), higher culture positive cases were seen in KSD (64.9%), followed by CKD (61.5%), EPN (52.5%), and UC (48.4%). Escherichia coli was the most predominant bacteria in UTI (35.1%) and EPN (66.7%). In KSD, Pseudomonas aeruginosa (41.7%), Staphylococcus aureus (18.8%), and Proteus mirabilis (14.6%) were more common. S. aureus (86.7%) was the most isolated bacteria from the UC cases. Overall rate of multidrug resistance (MDR) was 77.8%. All (100%) E. coli, K. pneumoniae, P. mirabilis, and S. aureus strains were MDR. Among the strains, strong biofilm formation was observed in 73.6%, and 66.7% strains were urease positive. Biofilm was positively correlated with MDR and urease activity. The abundance and distribution of bacteria differed among the urological diseases suggesting their association with the urine metabolite profile. Colonization of MDR pathogens in patients with urological diseases is a serious concern requiring steps to control the emergence of drug resistance and their further spread into the ecosystem.

8.
J Agric Food Chem ; 72(14): 7596-7606, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557058

RESUMO

The gut microbiota are known to play an important role in host health and disease. Alterations in the gut microbiota composition can disrupt the stability of the gut ecosystem, which may result in noncommunicable chronic diseases (NCCDs). Remodeling the gut microbiota through personalized nutrition is a novel therapeutic avenue for both disease control and prevention. However, whether there are commonly used gut microbiota-targeted diets and how gut microbiota-diet interactions combat NCCDs and improve health remain questions to be addressed. Lactoferrin (LF), which is broadly used in dietary supplements, acts not only as an antimicrobial in the defense against enteropathogenic bacteria but also as a prebiotic to propagate certain probiotics. Thus, LF-induced gut microbiota alterations can be harnessed to induce changes in host physiology, and the underpinnings of their relationships and mechanisms are beginning to unravel in studies involving humans and animal models.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Lactoferrina , Dieta , Prebióticos
9.
Front Immunol ; 15: 1348347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558794

RESUMO

Background: Obesity is a metabolic and chronic inflammatory disease involving genetic and environmental factors. This study aimed to investigate the causal relationship among gut microbiota abundance, plasma metabolomics, peripheral cell (blood and immune cell) counts, inflammatory cytokines, and obesity. Methods: Summary statistics of 191 gut microbiota traits (N = 18,340), 1,400 plasma metabolite traits (N = 8,299), 128 peripheral cell counts (blood cells, N = 408,112; immune cells, N = 3,757), 41 inflammatory cytokine traits (N = 8,293), and 6 obesity traits were obtained from publicly available genome-wide association studies. Two-sample Mendelian randomization (MR) analysis was applied to infer the causal links using inverse variance-weighted, maximum likelihood, MR-Egger, weighted median, weighted mode, and Wald ratio methods. Several sensitivity analyses were also utilized to ensure reliable MR results. Finally, we used mediation analysis to identify the pathway from gut microbiota to obesity mediated by plasma metabolites, peripheral cells, and inflammatory cytokines. Results: MR revealed a causal effect of 44 gut microbiota taxa, 281 plasma metabolites, 27 peripheral cells, and 8 inflammatory cytokines on obesity. Among them, five shared causal gut microbiota taxa belonged to the phylum Actinobacteria, order Bifidobacteriales, family Bifidobacteriaceae, genus Lachnospiraceae UCG008, and species Eubacterium nodatum group. Furthermore, we screened 42 shared causal metabolites, 7 shared causal peripheral cells, and 1 shared causal inflammatory cytokine. Based on known causal metabolites, we observed that the metabolic pathways of D-arginine, D-ornithine, linoleic acid, and glycerophospholipid metabolism were closely related to obesity. Finally, mediation analysis revealed 20 mediation relationships, including the causal pathway from gut microbiota to obesity, mediated by 17 metabolites, 2 peripheral cells, and 1 inflammatory cytokine. Sensitivity analysis represented no heterogeneity or pleiotropy in this study. Conclusion: Our findings support a causal relationship among gut microbiota, plasma metabolites, peripheral cells, inflammatory cytokines, and obesity. These biomarkers provide new insights into the mechanisms underlying obesity and contribute to its prevention, diagnosis, and treatment.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Análise de Mediação , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Metaboloma , Citocinas
10.
Front Public Health ; 12: 1343902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566799

RESUMO

Introduction: The World Health Organization (WHO) defined an infodemic as an overabundance of information, accurate or not, in the digital and physical space, accompanying an acute health event such as an outbreak or epidemic. It can impact people's risk perceptions, trust, and confidence in the health system, and health workers. As an immediate response, the WHO developed the infodemic management (IM) frameworks, research agenda, intervention frameworks, competencies, and processes for reference by health authorities. Objective: This systematic review explored the response to and during acute health events by health authorities and other organizations operating in health. It also assessed the effectiveness of the current interventions. Methods: On 26 June 2023, an online database search included Medline (Ovid), Embase, Cochrane Library, Scopus, Epistemonikos, and the WHO website. It included English-only, peer-reviewed studies or reports covering IM processes applied by health organizations that reported their effectiveness. There was no restriction on publication dates. Two independent reviewers conducted all screening, inclusion, and quality assessments, and a third reviewer arbitrated any disagreement between the two reviewers. Results: Reviewers identified 945 records. After a final assessment, 29 studies were included in the review and were published between 2021 and 2023. Some countries (Pakistan, Yemen, Spain, Italy, Hong Kong, Japan, South Korea, Singapore, United Kingdom, United States, New Zealand, Finland, South Korea, and Russia) applied different methods of IM to people's behaviors. These included but were not limited to launching media and TV conservations, using web and scientific database searches, posting science-based COVID-19 information, implementing online surveys, and creating an innovative ecosystem of digital tools, and an Early AI-supported response with Social Listening (EARS) platform. Most of the interventions were effective in containing the harmful effects of COVID-19 infodemic. However, the quality of the evidence was not robust. Discussion: Most of the infodemic interventions applied during COVID-19 fall within the recommended actions of the WHO IM ecosystem. As a result, the study suggests that more research is needed into the challenges facing health systems in different operational environments and country contexts in relation to designing, implementing, and evaluating IM interventions, strategies, policies, and systems.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , Surtos de Doenças/prevenção & controle , Infodemia
11.
Glob Health Action ; 17(1): 2325726, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38577879

RESUMO

Increasing evidence suggests that urban health objectives are best achieved through a multisectoral approach. This approach requires multiple sectors to consider health and well-being as a central aspect of their policy development and implementation, recognising that numerous determinants of health lie outside (or beyond the confines of) the health sector. However, collaboration across sectors remains scarce and multisectoral interventions to support health are lacking in Africa. To address this gap in research, we conducted a mixed-method systematic review of multisectoral interventions aimed at enhancing health, with a particular focus on non-communicable diseases in urban African settings. Africa is the world's fastest urbanising region, making it a critical context in which to examine the impact of multisectoral approaches to improve health. This systematic review provides a valuable overview of current knowledge on multisectoral urban health interventions and enables the identification of existing knowledge gaps, and consequently, avenues for future research. We searched four academic databases (PubMed, Scopus, Web of Science, Global Health) for evidence dated 1989-2019 and identified grey literature from expert input. We identified 53 articles (17 quantitative, 20 qualitative, 12 mixed methods) involving collaborations across 22 sectors and 16 African countries. The principle guiding the majority of the multisectoral interventions was community health equity (39.6%), followed by healthy cities and healthy urban governance principles (32.1%). Targeted health outcomes were diverse, spanning behaviour, environmental and active participation from communities. With only 2% of all studies focusing on health equity as an outcome and with 47% of studies published by first authors located outside Africa, this review underlines the need for future research to prioritise equity both in terms of research outcomes and processes. A synthesised framework of seven interconnected components showcases an ecosystem on multisectoral interventions for urban health that can be examined in the future research in African urban settings that can benefit the health of people and the planet.Paper ContextMain findings: Multisectoral interventions were identified in 27.8% of African countries in the African Union, targeted at major cities with five sectors present at all intervention stages: academia or research, agriculture, government, health, and non-governmental.Added knowledge: We propose a synthesised framework showcasing an ecosystem on multisectoral interventions for urban health that can guide future research in African urban settings.Global health impact for policy and action: This study reveals a crucial gap in evidence on evaluating the long-term impact of multisectoral interventions and calls for partnerships involving various sectors and robust community engagement to effectively deliver and sustain health-promoting policies and actions.


Assuntos
Ecossistema , Saúde da População Urbana , Humanos , Cidades , Política de Saúde , África
12.
Front Public Health ; 12: 1339755, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577275

RESUMO

Background: It has been reported that the disease-initiated and disease-mediated effects of aerosol pollutants can be related to concentration, site of deposition, duration of exposure, as well as the specific chemical composition of pollutants. Objectives: To investigate the microelemental composition of dust aggregates in primary schools of Vilnius and determine trace elements related to acute upper respiratory infections among 6-to 11-year-old children. Methods: Microelemental analysis of aerosol pollution was performed using dust samples collected in the classrooms of 11 primary schools in Vilnius from 2016 to 2020. Sites included areas of its natural accumulation behind the radiator heaters and from the surface of high cupboards. The concentrations of heavy metals (Pb, W, Sb, Sn, Zr, Zn, Cu, Ni, Mn, Cr, V, and As) in dust samples were analyzed using a SPECTRO XEPOS spectrometer. The annual incidence rates of respiratory diseases in children of each school were calculated based on data from medical records. Results: The mean annual incidence of physician-diagnosed acute upper respiratory infections (J00-J06 according to ICD-10A) among younger school-age children was between 25.1 and 71.3% per school. A significant correlation was found between vanadium concentration and the number of episodes of acute upper respiratory infections during each study year from 2016 to 2020. The lowest was r = 0.67 (p = 0.024), and the highest was r = 0.82 (p = 0.002). The concentration of vanadium in the samples of dust aggregates varied from 12.7 to 52.1 parts per million (ppm). No significant correlations between the other trace elements and the incidence of upper respiratory infections were found, which could be caused by a small number of study schools and relatively low concentrations of other heavy metals found in the samples of indoor dust aggregates. Conclusion: A significant and replicable correlation was found between the concentration of vanadium in the samples of natural dust aggregates collected in primary schools and the incidence of acute upper respiratory infections in children. Monitoring the concentration of heavy metals in the indoor environment can be an important instrument for the prevention and control of respiratory morbidity in children.


Assuntos
Poluentes Ambientais , Metais Pesados , Infecções Respiratórias , Oligoelementos , Criança , Humanos , Poeira/análise , Vanádio/análise , Incidência , Monitoramento Ambiental , Oligoelementos/análise , Aerossóis e Gotículas Respiratórios , Metais Pesados/análise , Poluentes Ambientais/análise , Infecções Respiratórias/epidemiologia
13.
PLoS One ; 19(4): e0301873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578759

RESUMO

Men having sex with men (MSM) represent a key population, in which sexually transmitted rectal infections (STIs) caused by Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG) and high-risk HPV (HR-HPV) are very common and linked to significant morbidity. Investigating the anorectal microbiome associated with rectal STIs holds potential for deeper insights into the pathogenesis of these infections and the development of innovative control strategies. In this study, we explored the interplay at the rectal site between C. trachomatis, N. gonorrhoeae, HR-HPV infection, and the anorectal microbiome in a cohort of 92 MSM (47 infected by CT and/or NG vs 45 controls). Moreover, we assessed the presence of Torquetenovirus (TTV), a non-pathogenic endogenous virus, considered as a possible predictor of immune system activation. We found a high prevalence of HR-HPV rectal infections (61%), especially in subjects with a concurrent CT/NG rectal infection (70.2%) and in people living with HIV (84%). In addition, we observed that TTV was more prevalent in subjects with CT/NG rectal infections than in non-infected ones (70.2% vs 46.7%, respectively). The anorectal microbiome of patients infected by CT and/or NG exhibited a reduction in Escherichia, while the presence of TTV was significantly associated with higher levels of Bacteroides. We observed a positive correlation of HR-HPV types with Escherichia and Corynebacterium, and a negative correlation with the Firmicutes phylum, and with Prevotella, Oscillospira, Sutterella. Our findings shed light on some of the dynamics occurring within the rectal environment involving chlamydial/gonococcal infections, HPV, TTV, and the anorectal microbiome. These data could open new perspectives for the control and prevention of STIs in MSM.


Assuntos
Infecções por Chlamydia , Gonorreia , Infecções por HIV , Microbiota , Infecções por Papillomavirus , Minorias Sexuais e de Gênero , Infecções Sexualmente Transmissíveis , Masculino , Humanos , Neisseria gonorrhoeae , Chlamydia trachomatis , Homossexualidade Masculina , Gonorreia/epidemiologia , Gonorreia/microbiologia , Infecções por Chlamydia/complicações , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/microbiologia , Prevalência , Infecções por HIV/epidemiologia
14.
Cardiovasc Diabetol ; 23(1): 123, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581039

RESUMO

BACKGROUND: Diabetes is a predominant driver of coronary artery disease worldwide. This study aims to unravel the distinct characteristics of oral and gut microbiota in diabetic coronary heart disease (DCHD). Simultaneously, we aim to establish a causal link between the diabetes-driven oral-gut microbiota axis and increased susceptibility to diabetic myocardial ischemia-reperfusion injury (MIRI). METHODS: We comprehensively investigated the microbial landscape in the oral and gut microbiota in DCHD using a discovery cohort (n = 183) and a validation chohort (n = 68). Systematically obtained oral (tongue-coating) and fecal specimens were subjected to metagenomic sequencing and qPCR analysis, respectively, to holistically characterize the microbial consortia. Next, we induced diabetic MIRI by administering streptozotocin to C57BL/6 mice and subsequently investigated the potential mechanisms of the oral-gut microbiota axis through antibiotic pre-treatment followed by gavage with specific bacterial strains (Fusobacterium nucleatum or fecal microbiota from DCHD patients) to C57BL/6 mice. RESULTS: Specific microbial signatures such as oral Fusobacterium nucleatum and gut Lactobacillus, Eubacterium, and Roseburia faecis, were identified as potential microbial biomarkers in DCHD. We further validated that oral Fusobacterium nucleatum and gut Lactobacillus are increased in DCHD patients, with a positive correlation between the two. Experimental evidence revealed that in hyperglycemic mice, augmented Fusobacterium nucleatum levels in the oral cavity were accompanied by an imbalance in the oral-gut axis, characterized by an increased coexistence of Fusobacterium nucleatum and Lactobacillus, along with elevated cardiac miRNA-21 and a greater extent of myocardial damage indicated by TTC, HE, TUNEL staining, all of which contributed to exacerbated MIRI. CONCLUSION: Our findings not only uncover dysregulation of the oral-gut microbiota axis in diabetes patients but also highlight the pivotal intermediary role of the increased abundance of oral F. nucleatum and gut Lactobacillus in exacerbating MIRI. Targeting the oral-gut microbiota axis emerges as a potent strategy for preventing and treating DCHD. Oral-gut microbial transmission constitutes an intermediate mechanism by which diabetes influences myocardial injury, offering new insights into preventing acute events in diabetic patients with coronary heart disease.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fusobacterium nucleatum/fisiologia , Doença da Artéria Coronariana/etiologia
15.
Bull Math Biol ; 86(5): 54, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598133

RESUMO

The development of mathematical models for studying newly emerging and re-emerging infectious diseases has gained momentum due to global events. The gyrodactylid-fish system, like many host-parasite systems, serves as a valuable resource for ecological, evolutionary, and epidemiological investigations owing to its ease of experimental manipulation and long-term monitoring. Although this system has an existing individual-based model, it falls short in capturing information about species-specific microhabitat preferences and other biological details for different Gyrodactylus strains across diverse fish populations. This current study introduces a new individual-based stochastic simulation model that uses a hybrid τ -leaping algorithm to incorporate this essential data, enhancing our understanding of the complexity of the gyrodactylid-fish system. We compare the infection dynamics of three gyrodactylid strains across three host populations. A modified sequential-type approximate Bayesian computation (ABC) method, based on sequential Monte Carlo and sequential importance sampling, is developed. Additionally, we establish two penalised local-linear regression methods (based on L1 and L2 regularisations) for ABC post-processing analysis to fit our model using existing empirical data. With the support of experimental data and the fitted mathematical model, we address open biological questions for the first time and propose directions for future studies on the gyrodactylid-fish system. The adaptability of the mathematical model extends beyond the gyrodactylid-fish system to other host-parasite systems. Furthermore, the modified ABC methodologies provide efficient calibration for other multi-parameter models characterised by a large set of correlated or independent summary statistics.


Assuntos
Parasitos , Animais , Teorema de Bayes , Conceitos Matemáticos , Modelos Biológicos , Simulação por Computador
16.
Front Immunol ; 15: 1368599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558802

RESUMO

Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.


Assuntos
Vírus da Dengue , Dengue , Microbiota , Animais , Humanos , Anticorpos Neutralizantes , Mosquitos Vetores
17.
Lancet Planet Health ; 8(4): e270-e283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38580428

RESUMO

The concurrent pressures of rising global temperatures, rates and incidence of species decline, and emergence of infectious diseases represent an unprecedented planetary crisis. Intergovernmental reports have drawn focus to the escalating climate and biodiversity crises and the connections between them, but interactions among all three pressures have been largely overlooked. Non-linearities and dampening and reinforcing interactions among pressures make considering interconnections essential to anticipating planetary challenges. In this Review, we define and exemplify the causal pathways that link the three global pressures of climate change, biodiversity loss, and infectious disease. A literature assessment and case studies show that the mechanisms between certain pairs of pressures are better understood than others and that the full triad of interactions is rarely considered. Although challenges to evaluating these interactions-including a mismatch in scales, data availability, and methods-are substantial, current approaches would benefit from expanding scientific cultures to embrace interdisciplinarity and from integrating animal, human, and environmental perspectives. Considering the full suite of connections would be transformative for planetary health by identifying potential for co-benefits and mutually beneficial scenarios, and highlighting where a narrow focus on solutions to one pressure might aggravate another.


Assuntos
Doenças Transmissíveis , Ecossistema , Animais , Humanos , Mudança Climática , Biodiversidade , Modelos Teóricos , Doenças Transmissíveis/epidemiologia
18.
Gut Microbes ; 16(1): 2337269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591914

RESUMO

Crohn's disease (CD) is a chronic inflammatory bowel disease associated with psychological distress and intestinal microbial changes. Here, we examined whether a 3-month period of Cognitive Behavioral and Mindfulness with Daily Exercise (COBMINDEX) intervention, which improves the wellbeing and inflammatory state of CD patients, may also affect their gut microbiome. Gut microbiota, circulating inflammatory markers and hormones were analyzed in 24 CD patients before (T1) and after 3 months of COBMINDEX (T2), and in 25 age- and sex-matched wait-list control patients at the corresponding time-points. Microbiota analysis examined relative taxonomical abundance, alpha and beta diversity, and microbiome correlations with inflammatory and psychological parameters. At T1, CD patients exhibited a characteristic microbial profile mainly constituted of Proteobacteria (17.71%), Firmicutes (65.56%), Actinobacteria (8.46%) and Bacteroidetes (6.24%). Baseline bacterial abundances showed significant correlations with psychological markers of distress and with IFNγ. Following COBMINDEX, no significant changes in alpha and beta diversity were observed between both study groups, though a trend change in beta diversity was noted. Significant changes occurred in the abundance of phyla, families and genera only among the COBMINDEX group. Furthermore, abundance of phyla, families and genera that were altered following COBMNIDEX, significantly correlated with levels of cytokines and psychological parameters. Our results demonstrated that a short-term intervention of COBMINDEX was associated with changes in microbial indices, some of which are linked to psychological manifestations and systemic inflammation in CD patients. Psychological interventions to reduce chronic stress, such as COBMINDEX, appear to be beneficial in mitigating the pathobiology of CD patients, and may thus provide a useful adjunct to pharmacological therapy.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Atenção Plena , Humanos , Doença de Crohn/microbiologia , Inflamação , Terapia por Exercício , Cognição
19.
Proc Biol Sci ; 291(2020): 20232338, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593851

RESUMO

Transcriptomics provides a versatile tool for ecological monitoring. Here, through genome-guided profiling of transcripts mapping to 33 042 gene models, expression differences can be discerned among multi-year and seasonal leaf samples collected from American beech trees at two latitudinally separated sites. Despite a bottleneck due to post-Columbian deforestation, the single nucleotide polymorphism-based population genetic background analysis has yielded sufficient variation to account for differences between populations and among individuals. Our expression analyses during spring-summer and summer-autumn transitions for two consecutive years involved 4197 differentially expressed protein coding genes. Using Populus orthologues we reconstructed a protein-protein interactome representing leaf physiological states of trees during the seasonal transitions. Gene set enrichment analysis revealed gene ontology terms that highlight molecular functions and biological processes possibly influenced by abiotic forcings such as recovery from drought and response to excess precipitation. Further, based on 324 co-regulated transcripts, we focused on a subset of GO terms that could be putatively attributed to late spring phenological shifts. Our conservative results indicate that extended transcriptome-based monitoring of forests can capture diverse ranges of responses including air quality, chronic disease, as well as herbivore outbreaks that require activation and/or downregulation of genes collectively tuning reaction norms maintaining the survival of long living trees such as the American beech.


Assuntos
Fagus , Humanos , Estações do Ano , Fagus/genética , Folhas de Planta/fisiologia , Florestas , Árvores/fisiologia , Transcriptoma
20.
BMC Plant Biol ; 24(1): 263, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594616

RESUMO

BACKGROUND: In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS: This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION: This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.


Assuntos
Microbiota , Verticillium , Verticillium/fisiologia , Gossypium/genética , Gossypium/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Sementes/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...