Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.908
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34995022

RESUMO

OBJECTIVES: The use of Hydroxychloroquine (HCQ) prophylaxis has been recommended by the National task force constituted by the Indian Council of Medical Research (ICMR) for the prevention of corona virus disease 2019 (COVID-19) among healthcare workers (HCWs). However, this recommendation was based essentially on the preclinical data and limited clinical experience. The aim of this study was to evaluate the efficacy and safety of HCQ as a pre-exposure prophylaxis for COVID-19 infection among Indian HCWs. METHODS: A cross-sectional study was conducted among HCWs of a tertiary care hospital in north India. The HCQ prophylaxis was initiated among 996 HCWs and they were followed up to 8 weeks for conversion to COVID-19 positive status and any adverse drug reaction (ADR). RESULTS: About 10.3% of the study participants were tested positive for COVID-19 which was comparable to the positivity rate among HCWs not taking HCQ prophylaxis (9.7%). CONCLUSIONS: HCQ was well tolerated at a weekly dose of 400 mg for 8 weeks but provided no additional benefit in prevention of COVID-19 among HCWs.

2.
J Mol Struct ; 1253: 132242, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34975177

RESUMO

The recent outbreak of coronavirus disease (COVID-19) has rampaged the world with more than 236 million confirmed cases and over 4.8 million deaths across the world reported by the world health organization (WHO) till Oct 5, 2021. Due to the advent of different variants of coronavirus, there is an urgent need to identify effective drugs and vaccines to combat rapidly spreading virus varieties across the globe. Ferrocene derivatives have attained immense interest as anticancer, antifungal, antibacterial, and antiparasitic drug candidates. However, the ability of ferrocene as anti-COVID-19 is not yet explored. Therefore, in the present work, we have synthesized four new ferrocene Schiff bases (L1-L4) to understand the active sites and biological activity of ferrocene derivatives by employing various molecular descriptors, frontier molecular orbitals (FMO), electron affinity, ionization potential, and molecular electrostatic potential (MEP). A theoretical insight on synthesized ferrocene Schiff bases was accomplished by molecular docking, frontier molecular orbitals energies, active sites, and molecular descriptors which were further compared with drugs being currently used against COVID-19, i.e., dexamethasone, hydroxychloroquine, favipiravir (FPV), and remdesivir (RDV). Moreover, through the molecular docking approach, we recorded the inhibitions of ferrocene derivatives on core protease (6LU7) protein of SARS-CoV-2 and the effect of substituents on the anti-COVID activity of these synthesized compounds. The computational outcome indicated that L1 has a powerful 6LU7 inhibition of SARS-CoV-2 compared to the currently used drugs. These results could be helpful to design new ferrocene compounds and explore their potential application in the prevention and treatment of SARS-CoV-2.

3.
Int J Antimicrob Agents ; : 106516, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34999239

RESUMO

High concentrations of ivermectin demonstrated antiviral activity against SARS-CoV-2 in vitro. Aim of this study was to assess safety and efficacy of high-dose ivermectin in reducing viral load in individuals with early SARS-CoV-2 infection. Randomised, double-blind, multicentre, phase II, dose-finding, proof-of-concept clinical trial. Participants: adults recently diagnosed with asymptomatic/oligosymptomatic SARS-CoV-2 infection, providing informed consent. Exclusion criteria: pregnant or lactating women; CNS diseases; dialysis; severe medical condition with prognosis < 6 months; warfarin treatment; antiviral/chloroquine phosphate/hydroxychloroquine treatment. Participants were assigned according to a randomized permuted block procedure to one of the following arms with allocation ratio 1:1:1: placebo (arm A); single dose ivermectin 600 µg/kg plus placebo for 5 days (arm B); single dose ivermectin 1200 µg/kg for 5 days (arm C). Primary outcomes: serious adverse drug reactions (SADR) and change of viral load at Day 7. From 31th July, 2020 to 26th May, 2021, 32 participants were randomized to arm A, 29 to arm B and 32 to arm C. The recruitment was stopped on 10th June, because of a dramatic drop of cases. Eighty-nine participants were included in the safety analysis set, the change in viral load was calculated on 87 participants. No SADR were registered. The mean log10 viral load reduction was 2.9 in arm C (SD 1.6), 2.5 (2.2) in arm B and 2.0 (2.1) in arm A, with no significant differences (p=0.099 and 0.122 for C versus A and B versus A, respectively). High-dose ivermectin was safe, but did not prove efficacy to reduce viral load.

4.
Pharm Res ; 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35000036

RESUMO

PURPOSE: Chloroquine and hydroxychloroquine are effective against respiratory viruses in vitro. However, they lack antiviral efficacy upon oral administration. Translation of in vitro to in vivo exposure is necessary for understanding the disconnect between the two to develop effective therapeutic strategies. METHODS: We employed an in vitro ion-trapping kinetic model to predict the changes in the cytosolic and lysosomal concentrations of chloroquine and hydroxychloroquine in cell lines and primary human airway cultures. A physiologically based pharmacokinetic model with detailed respiratory physiology was used to predict regional airway exposure and optimize dosing regimens. RESULTS: At their reported in vitro effective concentrations in cell lines, chloroquine and hydroxychloroquine cause a significant increase in their cytosolic and lysosomal concentrations by altering the lysosomal pH. Higher concentrations of the compounds are required to achieve similar levels of cytosolic and lysosomal changes in primary human airway cells in vitro. The predicted cellular and lysosomal concentrations in the respiratory tract for in vivo oral doses are lower than the in vitro effective levels. Pulmonary administration of aerosolized chloroquine or hydroxychloroquine is predicted to achieve high bound in vitro-effective concentrations in the respiratory tract, with low systemic exposure. Achieving effective cytosolic concentrations for activating immunomodulatory effects and adequate lysosomal levels for inhibiting viral replication could be key drivers for treating viral respiratory infections. CONCLUSION: Our analysis provides a framework for extrapolating in vitro effective concentrations of chloroquine and hydroxychloroquine to in vivo dosing regimens for treating viral respiratory infections.

5.
Mol Divers ; 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35000060

RESUMO

Several existing drugs have gained initial consideration due to their therapeutic characteristics against COVID-19 (Corona Virus Disease 2019). Hydroxychloroquine (HCQ) was proposed as possible therapy for shortening the duration of COVID-19, but soon after this, it was discarded. Similarly, known antiviral compounds were also proposed and investigated to treat COVID-19. We report a pharmacophore screening using essential chemical groups derived from HCQ and known antivirals to search a natural compound chemical space. Molecular docking of HCQ under physiological condition with spike protein, 3C-like protease (3CLpro), and RNA-dependent RNA polymerase (RdRp) of SARS-CoV2 showed - 8.52 kcal/mole binding score with RdRp, while the other two proteins showed relatively weaker binding affinity. Docked complex of RdRp-HCQ is further examined using 100 ns molecular dynamic simulation. Docking and simulation study confirmed active chemical moieties of HCQ, treated as 6-point pharmacophore to screen ZINC natural compound database. Pharmacophore screening resulted in the identification of potent hit molecule [(3S,3aR,6R,6aS)-3-(5-phenylsulfanyltetrazol-1-yl)-2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan-6-yl]N-naphthalen-ylcarbamate from natural compound library. Additionally, a set of antiviral compounds with similar chemical scaffolds are also used to design a separate ligand-based pharmacophore screening. Antiviral pharmacophore screening produced a potent hit 4-[(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)-(2-hydroxyphenyl)methyl]-1,5-dimethyl-2-phenylpyrazol-3-one containing essential moieties that showed affinity towards RdRp. Further, both these screened compounds are docked (- 8.69 and - 8.86 kcal/mol) and simulated with RdRp protein for 100 ns in explicit solvent medium. They bind at the active site of RdRp and form direct/indirect interaction with ASP618, ASP760, and ASP761 catalytic residues of the protein. Successively, their molecular mechanics Poisson Boltzmann surface area (MMPBSA) binding energies are calculated over the simulation trajectory to determine the dynamic atomistic interaction details. Overall, this study proposes two key natural chemical moieties: (a) tetrazol and (b) phenylpyrazol that can be investigated as a potential chemical group to design inhibitors against SARS-CoV2 RdRp.

6.
J Cardiovasc Pharmacol Ther ; 27: 10742484211069479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35006023

RESUMO

BACKGROUND: Several reports linked the use of repurposed drugs such as hydroxychloroquine (HCQ), azithromycin, lopinavir/ritonavir, and favipiravir with QT interval prolongation in patients with SARS-CoV2 infection. Little is known about the risk factors for QT interval prolongation in this population. We sought to describe the prevalence and identify the main risk factors associated with clinically significant corrected QT (QTc) prolongation in this population. METHODS: We conducted a retrospective analysis of critically ill patients who were admitted to our intensive care unit (ICU), had at least one electrocardiogram performed during their ICU stay, and tested positive for SARs-CoV-2. Clinically significant QTc interval prolongation was defined as QTc >500 milliseconds (ms). RESULTS: Out of the 111 critically ill patients with SARS-CoV-2 infection, QTc was significantly prolonged in 47 cases (42.3%). Patients with a clinically significant QTc prolongation had significantly higher proportions of history of cardiac diseases/surgery (22 [46.8%] vs. 10 [15.6%], P < .001), hypokalemia (10 [21.3] vs. 5 [7.8%], P = .04), and male gender (95% vs. 82.8%, P = .036) than patients with QTc ≤500 ms, respectively. A total of 46 patients (41.4%) received HCQ, 28 (25.2%) received lopinavir/ritonavir, and 5 (4.5%) received azithromycin. Multivariate logistic regression analysis showed that a history of cardiac disease was the only independent factor associated with clinically significant QTc prolongation (P = .004 for the likelihood-ratio test). CONCLUSION: The prevalence of clinically significant QTc prolongation in critically ill patients with SARS-CoV-2 infection was high and independent of drugs used. Larger prospective observational studies are warranted to elucidate independent risk factors associated with clinically significant QTc prolongation in this study population.

7.
Biomed Res Int ; 2022: 1522426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35013710

RESUMO

Several therapeutic regimens for COVID-19 have been studied, such as combination antiviral therapies. We aimed to compare outcome of two types of combination therapies atazanavir/ritonavir (ATV/r) or lopinavir/ritonavir (LPV/r) plus hydroxychloroquine among COVID-19 patients. 108 patients with moderate and severe forms of COVID-19 were divided into two groups (each group 54 patients). One group received ATV/r plus hydroxychloroquine, and the other group received hydroxychloroquine plus LPV/r. Then, both groups were evaluated and compared for clinical symptoms, recovery rates, and complications of treatment regimens. Our findings showed a significant increase in bilirubin in ATV/r-receiving group compared to LPV/r receivers. There was also a significant increase in arrhythmias in the LPV/r group compared to the ATV/r group during treatment. Other findings including length of hospital stay, outcome, and treatment complications were not statistically significant. There is no significant difference between protease inhibitor drugs including ATV/r and LPV/r in the treatment of COVID-19 regarding clinical outcomes. However, some side effects such as hyperbilirubinemia and arrhythmia were significantly different by application of atazanavir or lopinavir.

8.
Arthritis Res Ther ; 24(1): 21, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016701

RESUMO

BACKGROUND: Little is known about the safety of SARS-CoV-2 vaccination in patients with rheumatic musculoskeletal disease (RMD). We evaluated the occurrence of adverse events following immunization (AEFI) in RMD patients and heathy subjects who received anti-SARS-CoV-2 mRNA vaccine. METHODS: We performed a telephone interview collecting any adverse event (AE) following immunization (AEFI) that occurred in RMD patients and healthy controls after the two doses of mRNA vaccine including common local reactogenicity and systemic events (for example, fever, fatigue/malaise, joint and muscle pain). We also investigated the onset of new signs or symptoms of the RMD after the vaccination. RESULTS: We evaluated 126 patients with RMDs [105 females and 19 males, median age 51(IQR 17)] and 85 controls [62 females and 23 males, (median age 49 (20)]. Seventy patients (55.6%) were taking immunosuppressants, conventional synthetic (n=31, 43.3%) and/or biological [TNF inhibitors (n=49, 68.6%)], and 30 (23.8%) were taking hydroxychloroquine; treatment remained unchanged in 77% of patients. Eleven out of 126 patients and none of the 85 controls previously contracted COVID-19. The median follow-up from the completion of vaccination was 15 (3) weeks both in patients and controls. We reviewed 5 suspected cases confirming mild articular flares in 3 women (2.8) with inflammatory arthritis (2 psoriatic arthritis and 1 rheumatoid arthritis) while no disease reactivation was recorded in patients with connective tissue diseases; the incidence rate of RMD reactivation was 0.007 person/month. Multivariable logistic regression analysis showed similar frequencies of local and systemic AEFI in patients and controls with no effect of therapies or previous COVID-19. Local reaction-pain in the injection site-was the most frequently reported AEFI both in RMD and controls (71% and 75% of all the AEFI, respectively) after the first dose. Overall, up to 66% of patients experienced at least one AEFI at the second dose and up to 62% in the control group. Most of AEFI occurred within 2 days of vaccine administration. Two RMD patients developed pauci-symptomatic COVID-19 after the first dose of vaccine. CONCLUSION: The low incidence rate of disease reactivation and the similar AEFI occurrence compared to controls should reassure on mRNA vaccine safety in RMD patients.

9.
J Med Virol ; 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34997961

RESUMO

Forero-Peña et al. 1 described immediate and long-term neuropsychiatric complications following the Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, and discussed the possible roles of (hydroxy)chloroquine and dexamethasone on these neuropsychiatric symptoms… However, arrhythmia may also contribute to neuropsychiatric symptoms in COVID-19 Patients and should not be neglected. Through literature search, we summarized abnormal electrocardiographic (ECG) findings in COVID-19 patients. Sinus tachycardia was the most common arrhythmia found in the patients, with frequencies of 16.9% - 70.4% (Table 1)… Thus, anti-arrhythmic drugs, such as amiodarone and metoprolol may be used for COVID-19 patients with ventricular arrhythmia to reduce the possible complication of neuropsychiatric disorders… Chloroquine and hydroxychloroquine have been widely used in COVID-19 treatments. However, there is compelling evidence that chloroquine and hydroxychloroquine induce significant QTc prolongation and potentially increase the risk of arrhythmia… Either psychiatric symptoms or arrhythmia in COVID-19 patients undergoing steroid treatments have not been well described in the literature. This article is protected by copyright. All rights reserved.

10.
J Mol Struct ; 1247: 131371, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34462609

RESUMO

Novel-Coronavirus (COVID-19) outburst has become a worldwide pandemic which threaten the scientific community to design and discover efficient and effective treatment strategies against this deadly virus (SARS-CoV-2). Still now, there is no antiviral therapy or drug available in the market which can efficiently combat the infection caused by this virus. In this respect, using available drugs by screening with molecular docking and molecular dynamics studies not only minimizes lengthy chemical trials but also reduces discovery cost for the pharmaceutical industry. During the COVID-19 pandemic situations hydroxychloroquine, chloroquine known as HCQ and CQ tablets have gained popularity as for the treatment coronavirus (COVID-19) but the main threatening effect of HCQ, CQ use lies on their side effects like blistering, peeling, loosening of the skin, blurred vision stomach pain, diarrhea, chest discomfort, pain, or tightness, cough or hoarseness which require immediate medical attention. Encapsulation of HCQ and CQ drugs by the cyclic macromolecules such as α and ß-Cyclodextrin, to form host-guest complexes is very effective strategy to mask the cytotoxicity of certain drugs and alleviating and modulating side effects of drug applications. In the present work, we have encapsulated the HCQ and CQ drugs α and ß-Cyclodextrin and made a comprehensive analysis of stability, optical properties. Details analysis verified that between QC and HCQ, HQC showed stronger affinity towards ß-Cyclodextrin. This strategy can reduce the side effect of HCQ and CQ thereby offers a new way to use these drugs. We hope the present study should help the researchers to develop potential therapeutics against the novel coronavirus.

13.
J Med Virol ; 94(1): 291-297, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34491575

RESUMO

Due to current advances and growing experience in the management of coronavirus Disease 2019 (COVID-19), the outcome of COVID-19 patients with severe/critical illness would be expected to be better in the second wave compared with the first wave. As our hospitalization criteria changed in the second wave, we aimed to investigate whether a favorable outcome occurred in hospitalized COVID-19 patients with only severe/critical illness. Among 642 laboratory-confirmed hospitalized COVID-19 patients in the first wave and 1121 in the second wave, those who met World Health Organization (WHO) definitions for severe or critical illness on admission or during follow-up were surveyed. Data on demographics, comorbidities, C-reactive protein (CRP) levels on admission, and outcomes were obtained from an electronic hospital database. Univariate analysis was performed to compare the characteristics of patients in the first and second waves. There were 228 (35.5%) patients with severe/critical illness in the first wave and 681 (60.7%) in the second wave. Both groups were similar in terms of age, gender, and comorbidities, other than chronic kidney disease. Median serum CRP levels were significantly higher in patients in the second wave compared with those in the first wave [109 mg/L (interquartile range [IQR]: 65-157) vs. 87 mg/L (IQR: 39-140); p < 0.001]. However, intensive care unit admission and mortality rates were similar among the waves. Even though a lower mortality rate in the second wave has been reported in previous studies, including all hospitalized COVID-19 patients, we found similar demographics and outcomes among hospitalized COVID-19 patients with severe/critical illness in the first and second wave.


Assuntos
COVID-19/tratamento farmacológico , COVID-19/mortalidade , Cuidados Críticos/estatística & dados numéricos , Índice de Gravidade de Doença , Idoso , Amidas/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Azitromicina/uso terapêutico , Proteína C-Reativa/análise , COVID-19/epidemiologia , COVID-19/patologia , Comorbidade , Combinação de Medicamentos , Enoxaparina/uso terapêutico , Feminino , Mortalidade Hospitalar , Hospitalização/estatística & dados numéricos , Humanos , Hidroxicloroquina/uso terapêutico , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Lopinavir/uso terapêutico , Masculino , Metilprednisolona/uso terapêutico , Pessoa de Meia-Idade , Pirazinas/uso terapêutico , Estudos Retrospectivos , Ritonavir/uso terapêutico , SARS-CoV-2 , Resultado do Tratamento , Turquia/epidemiologia
14.
Theriogenology ; 177: 1-10, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653791

RESUMO

Chloroquine (CQ) could function as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway, and is widely used on malarial, tumor and recently COVID-19. However, the effect of CQ treatment on porcine immature Sertoli cells (iSCs) remains unclear. Here we showed that CQ could reduce iSC viability in a dose-dependent manner. CQ treatment (20 µM) on iSCs for 36h could elevate oxidative stress, damage mitochondrial function and promote apoptosis, which could be partially rescued by melatonin (MT) (10 nM). Transcriptome profiling identified 1611 differentially expressed genes (DEGs) (776 up- and 835 down-regulated) (20 µM CQ vs. DMSO), mainly involved in MAPK cascade, cell proliferation/apoptosis, HIF-1, PI3K-Akt and lysosome signaling pathways. In contrast, only 467 (224 up- and 243 down-regulated) DEGs (CQ + MT vs. DMSO) could be found after MT (10 nM) addition, enriched in cell cycle, regulation of apoptotic process, lysosome and reproduction pathways. Therefore, the partial rescue effects of MT on CQ treatment were confirmed by multiple assays (cell viability, ROS level, mitochondrial function, apoptosis, and mRNA levels of selected genes). Collectively, CQ treatment could impair porcine iSC viability by deranging the signaling pathways related to apoptosis and autophagy, which could be partially rescued by MT supplementation.


Assuntos
COVID-19 , Melatonina , Doenças dos Suínos , Animais , Apoptose , Autofagia , COVID-19/tratamento farmacológico , COVID-19/veterinária , Cloroquina/farmacologia , Masculino , Melatonina/farmacologia , Fosfatidilinositol 3-Quinases , SARS-CoV-2 , Células de Sertoli , Suínos
15.
J Mol Struct ; 1250: 131782, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34697505

RESUMO

Two heterocyclic azole compounds, 3-(2,3-dihydrobenzo[d]thiazol-2-yl)-4H-chromen-4-one (SVS1) and 5-(1H-indol-3-yl)-4-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (SVS2) were obtained unexpectedly from 2-aminothiophenol and 4-oxo-4H-chromene-3-carbaldehyde (for SVS1), and (E)-2-((1H-indol-3-yl)methylene)-N-methylhydrazine-1-carbothioamide in the presence of anhydrous FeCl3 (for SVS2), respectively. The compounds were well characterized by analytical and spectroscopic tools. The molecular structures of both the compounds were determined by single crystal X-ray diffraction (XRD) study. The results obtained from density functional theory (DFT) study revealed the molecular geometry and electron distribution of the compounds, which were correlated well with the three-dimensional structures obtained from the single crystal XRD. DMol3 was used to calculate quantum chemical parameters [chemical potential (µ), global hardness (η), global softness (σ), absolute electronegativity (χ) and electrophilicity index (ω)] of SVS1 and SVS2. Molecular docking study was performed to elucidate the binding ability of SVS1 and SVS2 with SARS-CoV-2 main protease and human angiotensin-converting enzyme-2 (ACE-2) molecular targets. Interestingly, the binding efficiency of the compounds with the molecular targets was comparable with that of remdesivir (SARS-CoV-2), chloroquine and hydroxychloroquine. SVS1 showed better docking energy than SVS2. The molecular docking study was complemented by molecular dynamics simulation study of SARS-CoV-2 main protease-SVS1 complex, which further exemplified the binding ability of SVS1 with the target. In addition, SVS1, SVS2 and cisplatin were assessed for their cytotoxicity against a panel of three human cancer cells such as HepG-2 (hepatic carcinoma), T24 (bladder) and EA.hy926 (endothelial), as well as Vero (kidney epithelial cells extracted from an African green monkey) normal cells using MTT assay. The results showed that SVS2 has significant cytotoxicity against HepG-2 and EA.hy926 cells with the IC50 values of 33.8 µM (IC50 = 49.9 µM-cisplatin and 8.6 µM-doxorubicin) and 29.2 (IC50 = 26.6 µM-cisplatin and 3.8 µM-doxorubicin), respectively.

16.
Colloids Surf A Physicochem Eng Asp ; 633: 127849, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34744314

RESUMO

Hydroxychloroquine sulfate (HCQ) is a well-established antimalarial drug that has received considerable attention during the COVID-19 associated pneumonia epidemic. Gelatin is a multifunctional biomacromolecule with pharmaceutical applications and can be used to deliver HCQ. The effect of HCQ on the gelation behaviors, water mobility, and structure of gelatin was investigated to understand the interaction between the drug and its delivery carrier. The gel strength, hardness, gelling (Tg) and melting (Tm) temperatures, gelation rate (kgel), and water mobility of gelatin decreased with increasing amounts of HCQ. The addition of HCQ led to hydrogen bonding that interfered with triple helix formation in gelatin. Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD) analysis further confirmed that the interaction between HCQ and gelatin is primarily through hydrogen bonding. Atomic force microscopy (AFM) revealed that higher content of HCQ resulted in more and larger aggregates in gelatin. These results provide not only an important understanding of gelatin for drug delivery design but also a basis for the studying interactions between a drug and its delivery carrier.

17.
Sci Rep ; 11(1): 23205, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853380

RESUMO

The association between pulmonary sequelae and markers of disease severity, as well as pro-fibrotic mediators, were studied in 108 patients 3 months after hospital admission for COVID-19. The COPD assessment test (CAT-score), spirometry, diffusion capacity of the lungs (DLCO), and chest-CT were performed at 23 Norwegian hospitals included in the NOR-SOLIDARITY trial, an open-labelled, randomised clinical trial, investigating the efficacy of remdesivir and hydroxychloroquine (HCQ). Thirty-eight percent had a CAT-score ≥ 10. DLCO was below the lower limit of normal in 29.6%. Ground-glass opacities were present in 39.8% on chest-CT, parenchymal bands were found in 41.7%. At admission, low pO2/FiO2 ratio, ICU treatment, high viral load, and low antibody levels, were predictors of a poorer pulmonary outcome after 3 months. High levels of matrix metalloproteinase (MMP)-9 during hospitalisation and at 3 months were associated with persistent CT-findings. Except for a negative effect of remdesivir on CAT-score, we found no effect of remdesivir or HCQ on long-term pulmonary outcomes. Three months after hospital admission for COVID-19, a high prevalence of respiratory symptoms, reduced DLCO, and persistent CT-findings was observed. Low pO2/FiO2 ratio, ICU-admission, high viral load, low antibody levels, and high levels of MMP-9 were associated with a worse pulmonary outcome.

18.
J Drug Target ; : 1-17, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34854327

RESUMO

COVID-19 is a clinical outcome of viral infection emerged due to strain of beta coronavirus which attacks the type-2 pneumocytes in alveoli via angiotensin-converting enzyme 2 (ACE2) receptors. There is no satisfactory drug developed against 'SARS-CoV2', highlighting an immediate necessity chemotherapeutic repurposing plan COVID-19. Drug repurposing is a method of selection of approved therapeutics for new use and is considered to be the most effective drug finding strategy since it includes less time and cost to obtain treatment compared to the de novo drug acquisition process. Several drugs such as hydroxychloroquine, remdesivir, teicoplanin, darunavir, ritonavir, nitazoxanide, chloroquine, tocilizumab and favipiravir (FPV) showed their activity against 'SARS-CoV2' in vitro. This review has emphasized on repurposing of drugs, and biologics used in clinical set up for targeting COVID-19 and to evaluate their pharmacokinetics, pharmacodynamics and safety with their future aspect. The key benefit of drug repurposing is the wealth of information related to its safety, and easy accessibility. Altogether repurposing approach allows access to regulatory approval as well as reducing sophisticated safety studies.

20.
Future Virol ; 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34887938

RESUMO

Aims: To evaluate the efficacy and safety of hydroxychloroquine/chloroquine, with or without azithromycin, in treating hospitalized COVID-19 patients. Materials & methods: Data from randomized and observational studies were included in a random-effects meta-analysis. Primary outcomes included time to negative conversion of SARS-CoV-2 tests, length of stay, mortality, incidence of mechanical ventilation, time to normalization of body temperature, incidence of adverse events and incidence of QT prolongations. Results: Fifty-one studies (n = 61,221) were included. Hydroxychloroquine/chloroquine showed no efficacy in all primary efficacy outcomes, but was associated with increased odds of QT prolongations. Conclusion: Due to a lack of efficacy and increased odds of cardiac adverse events, hydroxychloroquine/chloroquine should not be used for treating hospitalized COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...