Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.785
Filtrar
1.
Res Sq ; 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313592

RESUMO

SARS-CoV-2 infection leads to a broad range of outcomes and immune responses, with the development of neutralizing antibodies generally correlated with protection against reinfection. Here, we have characterized both neutralizing activity and T cell responses in a cluster of subjects with mild disease linked to a single spreading event. Surprisingly, we observed sex-specific associations between spike- and particularly nucleoprotein-specific T cell responses and neutralization, with pro-inflammatory cytokines being linked to higher titers only in males. Using single cell immunoprofiling, which provided matched transcriptome and T-cell receptor (TCR) profiles in restimulated CD4 + and CD8 + cells from these subjects, we identified differences in type I IFN signaling that may underlie this difference in antibody generation. Finally, we also identified several TCRs associated with cytokine producing T cells. Altogether, our work maps the breadth of immunological outcomes of SARS-CoV2 infections and highlight the potential role of sex-specific feedback loops during the generation of neutralizing antibodies.

2.
Chaos ; 32(9): 093140, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36182386

RESUMO

An insufficient supply of an effective SARS-CoV-2 vaccine in most countries demands an effective vaccination strategy to minimize the damage caused by the disease. Currently, many countries vaccinate their population in descending order of age (i.e., descending order of fatality rate) to minimize the deaths caused by the disease; however, the effectiveness of this strategy needs to be quantitatively assessed. We employ the susceptible-infected-recovered-dead model to investigate various vaccination strategies. We constructed a metapopulation model with heterogeneous contact and fatality rates and investigated the effectiveness of vaccination strategies to reduce epidemic mortality. We found that the fatality-based strategy, which is currently employed in many countries, is more effective when the contagion rate is high and vaccine supply is low, but the contact-based method outperforms the fatality-based strategy when there is a sufficiently high supply of the vaccine. We identified a discontinuous transition of the optimal vaccination strategy and path-dependency analogous to hysteresis. This transition and path-dependency imply that combining the fatality-based and contact-based strategies is ineffective in reducing the number of deaths. Furthermore, we demonstrate that such phenomena occur in real-world epidemic diseases, such as tuberculosis and COVID-19. We also show that the conclusions of this research are valid even when the complex epidemic stages, efficacy of the vaccine, and reinfection are considered.

3.
Emerg Infect Dis ; 28(11)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36150518

RESUMO

We describe 188 patients in France who were successively infected with different SARS-CoV-2 Omicron subvariants, including BA.1, BA.2, and BA.5. Time between 2 infections was <90 days for 50 (26.6%) patients and <60 days for 28 (14.9%) patients. This finding suggests that definitions for SARS-CoV-2 reinfection require revision.

4.
BMC Infect Dis ; 22(1): 742, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123623

RESUMO

Coronavirus disease 2019 (COVID-19) continues to constitute an international public health emergency. Vaccination is a prospective approach to control this pandemic. However, apprehension about the safety of vaccines is a major obstacle to vaccination. Amongst health professionals, one evident concern is the risk of antibody-dependent enhancement (ADE), which may increase the severity of COVID-19. To explore whether ADE occurs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and increase confidence in the safety of vaccination, we conducted a meta-analysis to investigate the relationship between post-immune infection and disease severity from a population perspective. Databases, including PubMed, EMBASE, Chinese National Knowledge Infrastructure, SinoMed, Scopus, Science Direct, and Cochrane Library, were searched for articles on SARS-CoV-2 reinfection published until 25 October 2021. The papers were reviewed for methodological quality, and a random effects model was used to analyse the results. Heterogeneity was assessed using the I2 statistic. Publication bias was evaluated using a funnel plot and Egger's test. Eleven studies were included in the final meta-analysis. The pooled results indicated that initial infection and vaccination were protective factors against severe COVID-19 during post-immune infection (OR = 0.55, 95%CI = 0.31-0.98). A subgroup (post-immune infection after natural infection or vaccination) analysis showed similar results. Primary SARS-CoV-2 infection and vaccination provide adequate protection against severe clinical symptoms after post-immune infection. This finding demonstrates that SARS-CoV-2 may not trigger ADE at the population level.


Assuntos
COVID-19 , Vacinas , Anticorpos Antivirais , Anticorpos Facilitadores , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Vacinação
5.
Hum Vaccin Immunother ; : 2127289, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36170667

RESUMO

We have investigated six COVID-19 recovered cases with two doses of Covishield vaccination followed by reinfection. The primary SARS-CoV-2 infection found to occur with B.1 and reinfection with Omicron BA.1 and BA.2 variants. The genomic characterization and duration between two infections confirms these cases as SARS-CoV-2 reinfection. The immune response determined at different time intervals demonstrated boost post two dose vaccination, decline in pre-reinfection sera post 7 months and rise post reinfection. In conclusion, it was observed that these cases got SARS-CoV-2 reinfection with declined hybrid immunity acquired from primary infection and two dose covishield vaccination. This findings suggests the need to protect the community through booster dose of vaccination and prevent further infections following personal hygiene and non-pharmaceutical interventions.

6.
medRxiv ; 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36172117

RESUMO

Importance: Estimating the true burden of SARS-CoV-2 infection has been difficult in sub-Saharan Africa due to asymptomatic infections and inadequate testing capacity. Antibody responses from serologic surveys can provide an estimate of SARS-CoV-2 exposure at the population level. Objective: To estimate SARS-CoV-2 seroprevalence, attack rates, and re-infection in eastern Uganda using serologic surveillance from 2020 to early 2022. Design: Plasma samples from participants in the Program for Resistance, Immunology, Surveillance, and Modeling of Malaria in Uganda (PRISM) Border Cohort were obtained at four sampling intervals: October-November 2020; March-April 2021; August-September 2021; and February-March 2022. Setting : Tororo and Busia districts, Uganda. Participants: 1,483 samples from 441 participants living in 76 households were tested. Each participant contributed up to 4 time points for SARS-CoV-2 serology, with almost half of all participants contributing at all 4 time points, and almost 90% contributing at 3 or 4 time points. Information on SARS-CoV-2 vaccination status was collected from participants, with the earliest reported vaccinations in the cohort occurring in May 2021. Main Outcomes and Measures: The main outcomes of this study were antibody responses to the SARS-CoV-2 spike protein as measured with a bead-based serologic assay. Individual-level outcomes were aggregated to population-level SARS-CoV-2 seroprevalence, attack rates, and boosting rates. Estimates were weighted by the local age distribution based on census data. Results: By the end of the Delta wave and before widespread vaccination, nearly 70% of the study population had experienced SARS-CoV-2 infection. During the subsequent Omicron wave, 85% of unvaccinated, previously seronegative individuals were infected for the first time, and ∼50% or more of unvaccinated, already seropositive individuals were likely re-infected, leading to an overall 96% seropositivity in this population. Our results suggest a lower probability of re-infection in individuals with higher pre-existing antibody levels. We found evidence of household clustering of SARS-CoV-2 seroconversion. We found no significant associations between SARS-CoV-2 seroconversion and gender, household size, or recent Plasmodium falciparum malaria exposure. Conclusions and Relevance: Findings from this study are consistent with very high infection rates and re-infection rates for SARS-CoV-2 in a rural population from eastern Uganda throughout the pandemic.

7.
Ann Med Surg (Lond) ; 82: 104619, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36117528

RESUMO

Background: Since the beginning of the COVID-19 pandemic, many research papers have been published focusing on some recurrence cases of symptoms after a long period of free symptoms with a negative RT-PCR retest. There is no crucial evidence until now of the possibility of recurrence, immune system reactivation, or reinfection. Methods: Three cases of resident doctors who recovered from COVID-19 but represented symptoms with new positive RT-PCR were discussed. Clinical data, laboratory tests, RT-PCR results, and antibodies titers all were collected. Moreover, many cases from the literature have been reviewed and compared. Results: The long-term exposure has not succeeded in forming an effective immune response, especially, since they do not have any significant history of chronic illnesses or a diagnosed immune disorder. While the antibody response occurred only in the second patient, it did not prevent new infection, but did it control the severity of the infection or its complications? Conclusion: Our three patients are health workers and have been in direct contact with COVID-19 patients. The inflammatory response parameters may not be reliable in predicting the activation of the immune response and the formation of the antibodies. We still need to find answers for reactivation and reinfection issues.

9.
PLoS One ; 17(9): e0274509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36084070

RESUMO

BACKGROUND: The COVID-19 pandemic has had a devastating impact on the world over the past two years (2020-2021). One of the key questions about its future trajectory is the protection from subsequent infections and disease conferred by a previous infection, as the SARS-CoV-2 virus belongs to the coronaviruses, a group of viruses the members of which are known for their ability to reinfect convalescent individuals. Bulgaria, with high rates of previous infections combined with low vaccination rates and an elderly population, presents a somewhat unique context to study this question. METHODS: We use detailed governmental data on registered COVID-19 cases to evaluate the incidence and outcomes of COVID-19 reinfections in Bulgaria in the period between March 2020 and early December 2021. RESULTS: For the period analyzed, a total of 4,106 cases of individuals infected more than once were observed, including 31 cases of three infections and one of four infections. The number of reinfections increased dramatically during the Delta variant-driven wave of the pandemic towards the end of 2021. We observe a moderate reduction of severe outcomes (hospitalization and death) in reinfections relative to primary infections, and a more substantial reduction of severe outcomes in breakthrough infections in vaccinated individuals. CONCLUSIONS: In the available datasets from Bulgaria, prior infection appears to provide some protection from severe outcomes, but to a lower degree than the reduction in severity of breakthrough infections in the vaccinated compared to primary infections in the unvaccinated.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Bulgária/epidemiologia , COVID-19/epidemiologia , Humanos , Pandemias/prevenção & controle , Reinfecção
10.
J Infect ; 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36089104

RESUMO

OBJECTIVES: To investigate serological differences between SARS-CoV-2 reinfection cases and contemporary controls, to identify antibody correlates of protection against reinfection. METHODS: We performed a case-control study, comparing reinfection cases with singly infected individuals pre-vaccination, matched by gender, age, region and timing of first infection. Serum samples were tested for anti-SARS-CoV-2 spike (anti-S), anti-SARS-CoV-2 nucleocapsid (anti-N), live virus microneutralisation (LV-N) and pseudovirus microneutralisation (PV-N). Results were analysed using fixed effect linear regression and fitted into conditional logistic regression models. RESULTS: We identified 23 cases and 92 controls. First infections occurred before November 2020; reinfections occurred before February 2021, pre-vaccination. Anti-S levels, LV-N and PV-N titres were significantly lower among cases; no difference was found for anti-N levels. Increasing anti-S levels were associated with reduced risk of reinfection (OR 0·63, CI 0·47-0·85), but no association for anti-N levels (OR 0·88, CI 0·73-1·05). Titres >40 were correlated with protection against reinfection for LV-N Wuhan (OR 0·02, CI 0·001-0·31) and LV-N Alpha (OR 0·07, CI 0·009-0·62). For PV-N, titres >100 were associated with protection against Wuhan (OR 0·14, CI 0·03-0·64) and Alpha (0·06, CI 0·008-0·40). CONCLUSIONS: Before vaccination, protection against SARS-CoV-2 reinfection was directly correlated with anti-S levels, PV-N and LV-N titres, but not with anti-N levels. Detectable LV-N titres were sufficient for protection, whilst PV-N titres >100 were required for a protective effect. TRIAL REGISTRATION NUMBER: ISRCTN11041050.

11.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142242

RESUMO

During the past two decades, the world has witnessed the emergence of various SARS-CoV-2 variants with distinct mutational profiles influencing the global health, economy, and clinical aspects of the COVID-19 pandemic. These variants or mutants have raised major concerns regarding the protection provided by neutralizing monoclonal antibodies and vaccination, rates of virus transmission, and/or the risk of reinfection. The newly emerged Omicron, a genetically distinct lineage of SARS-CoV-2, continues its spread in the face of rising vaccine-induced immunity while maintaining its replication fitness. Efforts have been made to improve the therapeutic interventions and the FDA has issued Emergency Use Authorization for a few monoclonal antibodies and drug treatments for COVID-19. However, the current situation of rapidly spreading Omicron and its lineages demands the need for effective therapeutic interventions to reduce the COVID-19 pandemic. Several experimental studies have indicated that the FDA-approved monoclonal antibodies are less effective than antiviral drugs against the Omicron variant. Thus, in this study, we aim to identify antiviral compounds against the Spike protein of Omicron, which binds to the human angiotensin-converting enzyme 2 (ACE2) receptor and facilitates virus invasion. Initially, docking-based virtual screening of the in-house database was performed to extract the potential hit compounds against the Spike protein. The obtained hits were optimized by DFT calculations to determine the electronic properties and molecular reactivity of the compounds. Further, MD simulation studies were carried out to evaluate the dynamics of protein-ligand interactions at an atomistic level in a time-dependent manner. Collectively, five compounds (AKS-01, AKS-02, AKS-03, AKS-04, and AKS-05) with diverse scaffolds were identified as potential hits against the Spike protein of Omicron. Our study paves the way for further in vitro and in vivo studies.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Anticorpos Monoclonais , Anticorpos Antivirais , Antivirais/farmacologia , COVID-19/tratamento farmacológico , Quimioinformática , Humanos , Ligantes , Pandemias , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22279759

RESUMO

BackgroundMost studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. MethodsPlasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FindingsStrong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months. Nasal and plasma anti-S IgG remained elevated for at least 12 months with high plasma neutralising titres against all variants. Of 180 with complete data, 160 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal. Samples 12 months after admission showed no association between nasal IgA and plasma IgG responses, indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. InterpretationThe decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. Research in contextO_ST_ABSEvidence before the studyC_ST_ABSWhile systemic immunity to SARS-CoV-2 is important in preventing severe disease, mucosal immunity prevents viral replication at the point of entry and reduces onward transmission. We searched PubMed with search terms "mucosal", "nasal", "antibody", "IgA", "COVID-19", "SARS-CoV-2", "convalescent" and "vaccination" for studies published in English before 20th July 2022, identifying three previous studies examining the durability of nasal responses that generally show nasal antibody to persist for 3 to 9 months. However, these studies were small or included individuals with mild COVID-19. One study of 107 care-home residents demonstrated increased salivary IgG (but not IgA) after two doses of mRNA vaccine, and another examined nasal antibody responses after infection and subsequent vaccination in 20 cases, demonstrating rises in both nasal IgA and IgG 7 to 10 days after vaccination. Added value of this studyStudying 446 people hospitalised for COVID-19, we show durable nasal and plasma IgG responses to ancestral (B.1 lineage) SARS-CoV-2, Delta and Omicron (BA.1) variants up to 12 months after infection. Nasal antibody induced by infection with pre-Omicron variants, bind Omicron virus in vitro better than plasma antibody. Although nasal and plasma IgG responses were enhanced by vaccination, Omicron binding responses did not reach levels equivalent to responses for ancestral SARS-CoV-2. Using paired plasma and nasal samples collected approximately 12 months after infection, we show that nasal IgA declines and shows a minimal response to vaccination whilst plasma antibody responses to S antigen are well maintained and boosted by vaccination. Implications of all the available evidenceAfter COVID-19 and subsequent vaccination, Omicron binding plasma and nasal antibody responses are only moderately enhanced, supporting the need for booster vaccinations to maintain immunity against SARS-CoV-2 variants. Notably, there is distinct compartmentalisation between nasal IgA and plasma IgA and IgG responses after vaccination. These findings highlight the need for vaccines that induce robust and durable mucosal immunity.

13.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280189

RESUMO

We investigate differences in protection from previous infection and/or vaccination against infection with Omicron BA.4/5 or BA.2. We observed a higher percentage of registered previous SARS-CoV-2 infections among 19836 persons infected with Omicron BA.4/5 compared to 7052 persons infected with BA.2 (31.3% vs. 20.0%) between 2 May and 24 July 2022 (adjusted odds ratio (aOR) for testing week, age group and sex: 1.4 (95%CI: 1.3-1.5)). No difference was observed in the distribution of vaccination status between BA.2 and BA.4/5 cases (aOR: 1.1 for primary and booster vaccination). Among reinfections, those newly infected with BA4/5 had a shorter interval between infections and the previous infection was more often caused by BA.1, compared to those newly infected with BA.2 (aOR: 1.9 (1.5-2.6). This suggests immunity induced by BA.1 is less effective against a BA.4/5 infection than against a BA.2 infection.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280170

RESUMO

ImportanceEstimating the true burden of SARS-CoV-2 infection has been difficult in sub-Saharan Africa due to asymptomatic infections and inadequate testing capacity. Antibody responses from serologic surveys can provide an estimate of SARS-CoV-2 exposure at the population level. ObjectiveTo estimate SARS-CoV-2 seroprevalence, attack rates, and re-infection in eastern Uganda using serologic surveillance from 2020 to early 2022. DesignPlasma samples from participants in the Program for Resistance, Immunology, Surveillance, and Modeling of Malaria in Uganda (PRISM) Border Cohort were obtained at four sampling intervals: October-November 2020; March-April 2021; August-September 2021; and February-March 2022. Setting: Tororo and Busia districts, Uganda. Participants1,483 samples from 441 participants living in 76 households were tested. Each participant contributed up to 4 time points for SARS-CoV-2 serology, with almost half of all participants contributing at all 4 time points, and almost 90% contributing at 3 or 4 time points. Information on SARS-CoV-2 vaccination status was collected from participants, with the earliest reported vaccinations in the cohort occurring in May 2021. Main Outcome(s) and Measure(s)The main outcomes of this study were antibody responses to the SARS-CoV-2 spike protein as measured with a bead-based serologic assay. Individual-level outcomes were aggregated to population-level SARS-CoV-2 seroprevalence, attack rates, and boosting rates. Estimates were weighted by the local age distribution based on census data. ResultsBy the end of the Delta wave and before widespread vaccination, nearly 70% of the study population had experienced SARS-CoV-2 infection. During the subsequent Omicron wave, 85% of unvaccinated, previously seronegative individuals were infected for the first time, and [~]50% or more of unvaccinated, already seropositive individuals were likely re-infected, leading to an overall 96% seropositivity in this population. Our results suggest a lower probability of re-infection in individuals with higher pre-existing antibody levels. We found evidence of household clustering of SARS-CoV-2 seroconversion. We found no significant associations between SARS-CoV-2 seroconversion and gender, household size, or recent Plasmodium falciparum malaria exposure. Conclusions and RelevanceFindings from this study are consistent with very high infection rates and re-infection rates for SARS-CoV-2 in a rural population from eastern Uganda throughout the pandemic.

15.
Clin Drug Investig ; 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100734

RESUMO

BACKGROUND: The enduring presence of COVID-19 and subsequent increasing incidence of COVID-19 reinfection has prompted evaluation of associated risk factors, particularly the role of immunosuppression. OBJECTIVE: The objective of this study was to characterize cases indicative of COVID-19 reinfection with respect to their reported use of immunosuppressant/immunomodulating agents. METHODS: This cross-sectional observational study leveraged the Pfizer global safety database (SDB) containing adverse event data collected in association with use of Pfizer products between 1 October 2019, and 30 June 2022. Selected Medical Dictionary for Drug Regulatory Activities (MedDRA®) Preferred Terms were used to identify COVID-19 cases; the search was further refined to comprise cases that subsequently reported events potentially indicative of COVID-19 reinfection. RESULTS: Of the cumulative total of 218,242 COVID-19 cases reported into the SDB, 4590 cases (2.1%) involving potential COVID-19 reinfection were identified. Of these 4590 cases of potential Covid-19 reinfection, a total of 134 cases reported COVID-19 specifically during treatment with pharmaceutical products, of which approximately 16% (21/134) of cases reported use of immunosuppressant/immunomodulating agents. Likewise, in the overall dataset (213,652 cases; excluding the 4590 cases involving potential COVID-19 recurrence), the percentage of reported immunosuppressant/immunomodulating agents was low (12%). In applying similar parameters to a dataset that excludes COVID-19 vaccine cases, 18% of cases reported use of immunosuppressant/immunomodulating agents (similar to the aforementioned 16% of cases reported from the overall total dataset that was inclusive of vaccine cases). CONCLUSION: This pharmacovigilance study provides a characterization of cases indicative of COVID-19 reinfection with respect to reported use of immunosuppressant/immunomodulating agents. The observations generated from this cross-sectional observational analysis may prompt further research into the role of immunosuppression in COVID-19 reinfection, in an effort to better inform clinical practice and patient management.

16.
J Med Virol ; 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098460

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the currently ongoing coronavirus disease 2019 (COVID-19) pandemic, has posed a serious threat to global public health. Recently, several SARS-CoV-2 variants of concern (VOCs) have emerged and caused numerous cases of reinfection in convalescent COVID-19 patients, as well as breakthrough infections in vaccinated individuals. This calls for the development of broad-spectrum antiviral drugs to combat SARS-CoV-2 and its VOCs. Pan-coronavirus fusion inhibitors, targeting the conserved heptad repeat 1 (HR1) in spike protein S2 subunit, can broadly and potently inhibit infection of SARS-CoV-2 and its variants, as well as other human coronaviruses. In this review, we summarized the most recent development of pan-coronavirus fusion inhibitors, such as EK1, EK1C4, and EKL1C, and highlighted their potential application in combating current COVID-19 infection and reinfection, as well as future emerging coronavirus infectious diseases.

17.
J Infect Dis ; 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36134603

RESUMO

BACKGROUND: As of early 2022, the Omicron variants are the predominant circulating lineages globally. Understanding neutralizing antibody responses against Omicron BA.1 and BA.2 following vaccine breakthrough infections will provide insights into BA.2 infectivity and susceptibility to subsequent re-infection. METHODS: Live virus neutralization assays were used to study immunity against Delta and Omicron BA.1 and BA.2 variants in samples from 86 individuals, 24 unvaccinated (27.9%) and 63 vaccinated (72.1%), who were infected with Delta (n = 42, 48.8%) or BA.1 (n = 44, 51.2%). Among the 63 vaccinated individuals, 39 were unboosted (45.3%), while 23 were boosted (26.7%). RESULTS: In unvaccinated infections, neutralizing antibodies (nAbs) against the three variants were weak or undetectable, except against Delta for Delta-infected individuals. Both Delta and BA.1 breakthrough infections resulted in strong nAb responses against ancestral wild-type and Delta lineages, but moderate nAb responses against BA.1 and BA.2, with similar titers between unboosted and boosted individuals. Antibody titers against BA.2 were generally higher than those against BA.1 in breakthrough infections. CONCLUSIONS: These results underscore the decreased immunogenicity of BA.1 as compared to BA.2, insufficient neutralizing immunity against BA.2 in unvaccinated individuals, and moderate to strong neutralizing immunity induced against BA.2 in Delta and BA.1 breakthrough infections.

18.
mBio ; : e0242122, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36135377

RESUMO

The continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans necessitates evaluation of variants for enhanced virulence and transmission. We used the ferret model to perform a comparative analysis of four SARS-CoV-2 strains, including an early pandemic isolate from the United States (WA1), and representatives of the Alpha, Beta, and Delta lineages. While Beta virus was not capable of pronounced replication in ferrets, WA1, Alpha, and Delta viruses productively replicated in the ferret upper respiratory tract, despite causing only mild disease with no overt histopathological changes. Strain-specific transmissibility was observed; WA1 and Delta viruses transmitted in a direct contact setting, whereas Delta virus was also capable of limited airborne transmission. Viral RNA was shed in exhaled air particles from all inoculated animals but was highest for Delta virus. Prior infection with SARS-CoV-2 offered varied protection against reinfection with either homologous or heterologous variants. Notable genomic variants in the spike protein were most frequently detected following WA1 and Delta virus infection. IMPORTANCE Continued surveillance and risk assessment of emerging SARS-CoV-2 variants are critical for pandemic response and preparedness. As such, in vivo evaluations are indispensable for early detection of variants with enhanced virulence and transmission. Here, we used the ferret model to compare the pathogenicity and transmissibility of an original SARS-CoV-2 isolate (USA-WA1/2020 [WA1]) to those of a panel of Alpha, Beta, and Delta variants, as well as to evaluate protection from homologous and heterologous reinfection. We observed strain-specific differences in replication kinetics in the ferret respiratory tract and virus load emitted into the air, revealing enhanced transmissibility of the Delta virus relative to previously detected strains. Prior infection with SARS-CoV-2 provided varied levels of protection from reinfection, with the Beta strain eliciting the lowest level of protection. Overall, we found that ferrets represent a useful model for comparative assessments of SARS-CoV-2 infection, transmission, and reinfection.

19.
PLoS One ; 17(9): e0273323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36083883

RESUMO

BACKGROUND: The humoral response to SARS-CoV-2 can provide immunity and prevent reinfection. However, less is known about how the diversity, magnitude, and length of the antibody response after a primary infection is associated with symptoms, post-infection immunity, and post-vaccinated immunity. METHODS: Cook County Health employees provided blood samples and completed an online survey 8-10 weeks after a PCR-confirmed positive SARS-CoV-2 test (pre-vaccinated, N = 41) and again, 1-4 weeks after completion of a 2-dose series mRNA BNT162b2 COVID-19 vaccine (post-vaccinated, N = 27). Associations were evaluated between SARS-CoV-2 antibody titers, participant demographics, and clinical characteristics. Antibody titers and angiotensin-converting enzyme 2 (ACE2) neutralization were compared before and after the mRNA BNT162b2 COVID-19 vaccine. RESULTS: Antibody titers to the spike protein (ST4), receptor binding domain (RBD), and RBD mutant D614G were significantly associated with anosmia and ageusia, cough, and fever. Spike protein antibody titers and ACE2 neutralization were significantly higher in participants that presented with these symptoms. Antibody titers to the spike protein N-terminal domain (NTD), RBD, and ST4, and ACE2 IC50 were significantly higher in all post-vaccinated participant samples compared to pre-vaccinated participant sample, and not dependent on previously reported symptoms. CONCLUSIONS: Spike protein antibody titers and ACE2 neutralization are associated with the presentation of anosmia and ageusia, cough, and fever after SARS-CoV-2 infection. Symptom response to previous SARS-CoV-2 infection did not influence the antibody response from subsequent vaccination. These results suggest a relationship between infection severity and the magnitude of the immune response and provide meaningful insights into COVID-19 immunity according to discrete symptom presentation.


Assuntos
Ageusia , COVID-19 , Enzima de Conversão de Angiotensina 2 , Anosmia , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , COVID-19/diagnóstico , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Tosse , Humanos , RNA Mensageiro/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
20.
Front Immunol ; 13: 988536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110861

RESUMO

B cells secrete antibodies and mediate the humoral immune response, making them extremely important in protective immunity against SARS-CoV-2, which caused the coronavirus disease 2019 (COVID-19) pandemic. In this review, we summarize the positive function and pathological response of B cells in SARS-CoV-2 infection and re-infection. Then, we structure the immunity responses that B cells mediated in peripheral tissues. Furthermore, we discuss the role of B cells during vaccination including the effectiveness of antibodies and memory B cells, viral evolution mechanisms, and future vaccine development. This review might help medical workers and researchers to have a better understanding of the interaction between B cells and SARS-CoV-2 and broaden their vision for future investigations.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/prevenção & controle , Humanos , Contagem de Linfócitos , SARS-CoV-2 , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...