Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.956
Filtrar
1.
Math Comput Simul ; 204: 302-336, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36060108

RESUMO

Several mathematical models have been developed to investigate the dynamics SARS-CoV-2 and its different variants. Most of the multi-strain SARS-CoV-2 models do not capture an important and more realistic feature of such models known as randomness. As the dynamical behavior of most epidemics, especially SARS-CoV-2, is unarguably influenced by several random factors, it is appropriate to consider a stochastic vaccination co-infection model for two strains of SARS-CoV-2. In this work, a new stochastic model for two variants of SARS-CoV-2 is presented. The conditions of existence and the uniqueness of a unique global solution of the stochastic model are derived. Constructing an appropriate Lyapunov function, the conditions for the stochastic system to fluctuate around endemic equilibrium of the deterministic system are derived. Stationary distribution and ergodicity for the new co-infection model are also studied. Numerical simulations are carried out to validate theoretical results. It is observed that when the white noise intensities are larger than certain thresholds and the associated stochastic reproduction numbers are less than unity, both strains die out and go into extinction with unit probability. More-over, it is observed that, for weak white noise intensities, the solution of the stochastic system fluctuates around the endemic equilibrium (EE) of the deterministic model. Frequency distributions are also studied to show random fluctuations due to stochastic white noise intensities. The results presented herein also reveal the impact of vaccination in reducing the co-circulation of SARS-CoV-2 variants within a given population.

2.
Math Comput Simul ; 203: 741-766, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35911951

RESUMO

The study explores the dynamics of a COVID-19 epidemic in multiple susceptible populations, including the various stages of vaccination administration. In the model, there are eight human compartments: completely susceptible; susceptible with dose-1 vaccination; susceptible with dose-2 vaccination; susceptible with booster dose vaccination; exposed; infected with and without symptoms, and recovered compartments. The biological feasibility of the model is analysed. The threshold value, R 0 , is derived using the next-generation matrix. The stability analysis of the equilibrium points was performed locally and globally using the threshold parameter of the model. The conditions determining disease persistence is obtained. The model is subjected to sensitivity analysis, and the most sensitive parameters are identified. Also, MATLAB is used to verify the mathematical outcomes of the system's dynamic behaviour and suggests that necessary steps should be taken to keep the spread of the omicron variant infectious disease under control. The findings of this study could aid health officials in their efforts to combat the spread of COVID-19.

3.
J Environ Sci (China) ; 124: 712-722, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182176

RESUMO

The temporal variation of greenhouse gas concentrations in China during the COVID-19 lockdown in China is analyzed in this work using high resolution measurements of near surface △CO2, △CH4 and △CO concentrations above the background conditions at Lin'an station (LAN), a regional background station in the Yangtze River Delta region. During the pre-lockdown observational period (IOP-1), both △CO2 and △CH4 exhibited a significant increasing trend relative to the 2011-2019 climatological mean. The reduction of △CO2, △CH4 and △CO during the lockdown observational period (IOP-2) (which also coincided with the Chinese New Year Holiday) reached up to 15.0 ppm, 14.2 ppb and 146.8 ppb, respectively, and a reduction of △CO2/△CO probably due to a dramatic reduction from industrial emissions. △CO2, △CH4 and △CO were observed to keep declining during the post-lockdown easing phase (IOP-3), which is the synthetic result of lower than normal CO2 emissions from rural regions around LAN coupled with strong uptake of the terrestrial ecosystem. Interestingly, the trend reversed to gradual increase for all species during the later easing phase (IOP-4), with △CO2/△CO constantly increasing from IOP-2 to IOP-3 and finally IOP-4, consistent with recovery in industrial emissions associated with the staged resumption of economic activity. On average, △CO2 declined sharply throughout the days during IOP-2 but increased gradually throughout the days during IOP-4. The findings showcase the significant role of emission reduction in accounting for the dramatic changes in measured atmospheric △CO2 and △CH4 associated with the COVID-19 lockdown and recovery.


Assuntos
Poluentes Atmosféricos , COVID-19 , Gases de Efeito Estufa , Poluentes Atmosféricos/análise , Dióxido de Carbono , China , Controle de Doenças Transmissíveis , Ecossistema , Monitoramento Ambiental , Humanos
4.
Talanta ; 251: 123813, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35952504

RESUMO

Currently, the coronavirus disease 2019 (COVID-19) pandemic is ravaging the world, causing serious crisis in economy and human health. The top priority is the detection and drug development of the novel coronavirus. The gold standard for real-time diagnosis of coronavirus disease is the reverse transcription-polymerase chain reaction (RT-PCR), which is usually operatively complex and time-consuming. Biosensors are known for their low cost and rapid detection, which are developing rapidly in detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The current study showed that the spike protein of SARS-CoV-2 will bind to angiotensin-converting hormone 2 (ACE2) to mediate the entry of the virus into cells. Interestingly, the affinity between ACE2 and SARS-CoV-2 spike protein increases with the mutation of the virus. Using ACE2 as a biosensor recognition receptor to detect SARS-CoV-2 will effectively avoid the decline of detection accuracy and false negative caused by variants. In fact, due to the variation of the virus, it may even lead to enhanced detection performance. In addition, ACE2-specific drugs to prevent SARS-CoV-2 from entering cells will be effectively evaluated using the biosensors even with virus mutations. Here, we reviewed the biosensors for rapid detection of SARS-CoV-2 by ACE2 and discussed the advantages of ACE2 as an antibody for the detection of SARS-CoV-2 variants. The review also discussed the value of ACE2-based biosensors for screening for drugs that modulate the interaction between ACE2 and SARS-CoV-2.


Assuntos
Técnicas Biossensoriais , COVID-19 , Enzima de Conversão de Angiotensina 2 , Angiotensinas , COVID-19/diagnóstico , Hormônios , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
5.
J King Saud Univ Sci ; 35(1): 102360, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36249917

RESUMO

Personal immunity frolicked an essential role in combating COVID-19 impacts on human health individually and collectively in community. Literature represented the fact about food or nutritional supplements are certified to protect against diseases; this was the reason behind public trust on certain plants and other commercial products to boost up immunity against coronavirus disease. Present study was conducted to observe the attitude of common public towards natural herbs in treating various diseases and to assess the possible potential of herbal medication in prevention of negative impacts of different variants of COVID-19 on human health at herbal clinic named "Pakistan Matab". Results concluded that most of the patients (About 80%) avoided COVID-19 testing even on experiencing major symptoms and they preferred herbal medication. Patients who died by COVID-19 were also experiencing different diseases like liver and Kideny malfunctioning; old age was another significant factor in this case. About 90% of patients were COVID symptomatic and 10% were carrying other diseases during observational study period at herbal clinic. Study represented that patients who visited clinic, have a faith on herbal medication with about 60% of patients in favor of vaccine and allopathic medication in combination with herbal treatment. Study investigated that vaccine was only for one type of variant and use of herbal medicines could be better option to boost up immunity against various COVID variants.

6.
Appl Math Model ; 114: 447-465, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36281307

RESUMO

The effectiveness of control interventions against COVID-19 is threatened by the emergence of SARS-CoV-2 variants of concern. We present a mathematical model for studying the transmission dynamics of two of these variants (Delta and Omicron) in the United States, in the presence of vaccination, treatment of individuals with clinical symptoms of the disease and the use of face masks. The model is parameterized and cross-validated using observed daily case data for COVID-19 in the United States for the period from November 2021 (when Omicron first emerged) to March 2022. Rigorous qualitative analysis of the model shows that the disease-free equilibrium of the model is locally-asymptotically stable when the control reproduction number of the model (denoted by R c ) is less than one. This equilibrium is shown to be globally-asymptotically stable for a special case of the model, where disease-induced mortality is negligible and both vaccine-derived immunity in fully-vaccinated individuals and natural immunity do not wane, when the associated reproduction number is less than one. The epidemiological implication of the latter result is that the combined vaccination-boosting strategy can lead to the elimination of the pandemic if its implementation can bring (and maintain) the associated reproduction number to a value less than one. An analytical expression for the vaccine-derived herd immunity threshold is derived. Using this expression, together with the baseline values of the parameters of the parameterized model, we showed that the vaccine-derived herd immunity can be achieved in the United States (so that the pandemic will be eliminated) if at least 68 % of the population is fully-vaccinated with two of the three vaccines approved for use in the United States (Pfizer or Moderna vaccine). Furthermore, this study showed (as of the time of writing in March 2022) that the control reproduction number of the Omicron variant was approximately 3.5 times that of the Delta variant (the reproduction of the latter is computed to be ≈ 0.2782 ), indicating that Delta had practically died out and that Omicron has competitively-excluded Delta (to become the predominant variant in the United States). Based on our analysis and parameterization at the time of writing of this paper (March 2022), our study suggests that SARS-CoV-2 elimination is feasible by June 2022 if the current baseline level of the coverage of fully-vaccinated individuals is increased by about 20 % . The prospect of pandemic elimination is significantly improved if vaccination is combined with a face mask strategy that prioritizes moderately effective and high-quality masks. Having a high percentage of the populace wearing the moderately-effective surgical mask is more beneficial to the community than having low percentage of the populace wearing the highly-effective N95 masks. We showed that waning natural and vaccine-derived immunity (if considered individually) offer marginal impact on disease burden, except for the case when they wane at a much faster rate (e.g., within three months), in comparison to the baseline (estimated to be within 9 months to a year). Treatment of symptomatic individuals has marginal effect in reducing daily cases of SARS-CoV-2, in comparison to the baseline, but it has significant impact in reducing daily hospitalizations. Furthermore, while treatment significantly reduces daily hospitalizations (and, consequently, deaths), the prospects of COVID-19 elimination in the United States are significantly enhanced if investments in control resources are focused on mask usage and vaccination rather than on treatment.

7.
Methods Mol Biol ; 2575: 323-340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36301484

RESUMO

A fully automated strategy to handle antigenic variability in immunisation protocols is here presented. The method comprises of (1) nanopore sequencing of infectious agent variants, with focus on the SARS-CoV-2 and its variants, followed by (2) in-vitro transcribed mRNA vector design for immunotherapy. This chapter introduces the mRNA vector design protocol and Chapter 16 presents the nano-pore sequencing step.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2/genética , RNA Mensageiro/genética , COVID-19/prevenção & controle , Imunização , Variação Antigênica
8.
Methods Mol Biol ; 2575: 305-321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36301483

RESUMO

Infectious agents often challenge therapeutics, from antibiotics resistance to antigenic variability affecting inoculation measures. Over the last decades, genome sequencing arose as an important ally to address such challenges. In bacterial infection, whole-genome-sequencing (WGS) supports tracking pathogenic alterations affecting the human microbiome. In viral infection, the analysis of the relevant sequence of nucleotides helps with determining historical variants of a virus and elucidates details about infection clusters and their distribution. Additionally, genome sequencing is now an important step in inoculation protocols, isolating target genes to design more robust immunisation assays. Ultimately, genetic engineering has empowered repurposing at scale, allowing long-lasting repeating clinical trials to be automated within a much shorter time-frame, by adjusting existing protocols. This is particularly important during sanitary emergencies as the ones caused by the 2014 West African Ebola outbreak, the Zika virus rapid spread in both South and North America in 2015, followed by Asia in 2016, and the pandemic caused by the SARS-CoV-2, which has infected more than 187 million people and caused more than 4 million deaths, worldwide, as per July 2021 statistics. In this scenery, this chapter presents a novel fully automated strategy to handle antigenic variability in immunisation protocols. The methodology comprises of two major steps (1) nanopore sequencing of infectious agent variants - the focus is on the SARS-CoV-2 and its variants; followed by (2) mRNA vector design for immunotherapy. This chapter presents the nanopore sequencing step and Chapter 17 introduces a protocol for mRNA vector design.


Assuntos
COVID-19 , Sequenciamento por Nanoporos , Infecção por Zika virus , Zika virus , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Imunização , Variação Antigênica , RNA Mensageiro , Zika virus/genética
9.
Comput Commun ; 197: 34-51, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36313592

RESUMO

SARS-CoV-2 is an infected disease caused by one of the variants of Coronavirus which emerged in December 2019. It is declared a pandemic by WHO in March 2020. COVID-19 outbreak has put the world on a halt and is a major threat to the public health system. It has shattered the world with its effects on different areas as the pandemic hit the world in a number of waves with different variants and mutations. Each variant and mutation have different transmission and infection rates in the human population. More than 609 million people have tested positive and more than 6.5 million people have died due to this disease as per 14th September 2022. Despite of numerous efforts, precautions and vaccination the infection has grown rapidly in the world. In this paper, we aim to give a holistic overview of COVID-19 its variants, game theory perspective, effects on the different social and economic areas, diagnostic advancements, treatment methods. A taxonomy is made for the proper insight of the work demonstrated in the paper. Finally, we discuss the open issues associated with COVID-19 in different fields and futuristic research trends in the area. The main aim of the paper is to provide comprehensive literature that covers all the areas and provide an expert understanding of the COVID-19 techniques and potentially be further utilized to combat the outbreak of COVID-19.

11.
J Exp Med ; 220(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36378226

RESUMO

CTL-mediated killing of virally infected or malignant cells is orchestrated at the immune synapse (IS). We hypothesized that SARS-CoV-2 may target lytic IS assembly to escape elimination. We show that human CD8+ T cells upregulate the expression of ACE2, the Spike receptor, during differentiation to CTLs. CTL preincubation with the Wuhan or Omicron Spike variants inhibits IS assembly and function, as shown by defective synaptic accumulation of TCRs and tyrosine phosphoproteins as well as defective centrosome and lytic granule polarization to the IS, resulting in impaired target cell killing and cytokine production. These defects were reversed by anti-Spike antibodies interfering with ACE2 binding and reproduced by ACE2 engagement by angiotensin II or anti-ACE2 antibodies, but not by the ACE2 product Ang (1-7). IS defects were also observed ex vivo in CTLs from COVID-19 patients. These results highlight a new strategy of immune evasion by SARS-CoV-2 based on the Spike-dependent, ACE2-mediated targeting of the lytic IS to prevent elimination of infected cells.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Peptidil Dipeptidase A/metabolismo , Sinapses/metabolismo , Ligação Proteica
12.
Sci Total Environ ; 856(Pt 1): 159062, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181801

RESUMO

Wastewater analysis is the most attractive alternative way for the quantification and variant profiling of SARS-CoV-2. Infection dynamics can be monitored by RT-qPCR assays while NGS can provide evidence for the presence of existing or new emerging SARS-CoV-2 variants. Herein, apart from the infection dynamic in Attica since June 1st, 2021, the monitoring of 9 mutations of the omicron and 4 mutations of the delta SARS-CoV-2 variants, utilizing both novel Nested-Seq and RT-PCR, is reported and the substitution of the delta variant (B.1.617.2) by the omicron variant (B.1.1.529) in Attica, Greece within approximately one month is highlighted. The key difference between the two methodologies is discovery power. RT-PCR can only detect known sequences cost-effectively, while NGS is a hypothesis-free approach that does not require prior knowledge to detect novel genes. Overall, the potential of wastewater genomic surveillance for the early discovery and monitoring of variants important for disease management at the community level is underlined. This is the first study, reporting the SARS-CoV-2 infection dynamic for an extended time period and the first attempt to monitor two of the most severe variants with two different methodologies in Greece.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Águas Residuárias , Grécia
13.
Build Environ ; 227: 109799, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36407014

RESUMO

Increasing numbers of studies have observed that indoor and outdoor greenery are associated with fewer depressive symptoms during COVID-19 lockdowns. However, most of these studies examined direct associations without sufficient attention to underlying pathways. Furthermore, few studies have combined different types of indoor and outdoor greenery to examine their effects on the alleviation of depressive symptoms. The present study hypothesized that indoor and outdoor exposure to greenery increased the perceived restorativeness of home environments, which, in turn, reduced loneliness, COVID-related fears, and, ultimately, depressive symptoms. To test our hypotheses, we conducted an online survey with 386 respondents in Shanghai, China, from April to May 2022, which corresponded to strict citywide lockdowns that resulted from the outbreak of the Omicron variant. Indoor greenery measures included the number of house plants, gardening activities, and digital nature exposure as well as semantic image segmentation applied to photographs from the most viewed windows to quantify indoor exposure to outdoor trees and grass. Outdoor greenery measures included total vegetative cover (normalized difference vegetation index [NDVI]) within a 300 m radius from the home and perceived quality of the community's greenery. Associations between greenery and depressive symptoms/clinical levels of depression, as measured by the Patient Health Questionnaire-9 (PHQ-9), were examined using generalized linear and logistic regression models. Structural equation modeling (SEM) was used to test pathways between greenery exposure, restorativeness, loneliness, fear of COVID-19, and depressive symptoms. The results showed that: 1) indoor and outdoor greenery were associated with fewer depressive symptoms; 2) greenery could increase the restorativeness of the home environment, which, in turn, was associated with fewer COVID-related mental stressors (i.e., loneliness and fear of COVID-19), and ultimately depressive symptoms; and 3) gender, education, and income did not modify associations between greenery and depressive symptoms. These findings are among the first to combine objective and subjective measures of greenery within and outside of the home and document their effects on mental health during lockdowns. Comprehensive enhancements of greenery in living environments could be nature-based solutions for mitigating COVID-19 related mental stressors.

14.
Expert Syst Appl ; 213: 119212, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36407848

RESUMO

COVID-19 is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This deadly virus has spread worldwide, leading to a global pandemic since March 2020. A recent variant of SARS-CoV-2 named Delta is intractably contagious and responsible for more than four million deaths globally. Therefore, developing an efficient self-testing service for SARS-CoV-2 at home is vital. In this study, a two-stage vision-based framework, namely Fruit-CoV, is introduced for detecting SARS-CoV-2 infections through recorded cough sounds. Specifically, audio signals are converted into Log-Mel spectrograms, and the EfficientNet-V2 network is used to extract their visual features in the first stage. In the second stage, 14 convolutional layers extracted from the large-scale Pretrained Audio Neural Networks for audio pattern recognition (PANNs) and the Wavegram-Log-Mel-CNN are employed to aggregate feature representations of the Log-Mel spectrograms and the waveform. Finally, the combined features are used to train a binary classifier. In this study, a dataset provided by the AICovidVN 115M Challenge is employed for evaluation. It includes 7,371 recorded cough sounds collected throughout Vietnam, India, and Switzerland. Experimental results indicate that the proposed model achieves an Area Under the Receiver Operating Characteristic Curve (AUC) score of 92.8% and ranks first on the final leaderboard of the AICovidVN 115M Challenge. Our code is publicly available.

15.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166582, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273675

RESUMO

The SARS-CoV-2 infection causes COVID-19 disease, characterized by acute respiratory distress syndrome, bilateral pneumonia, and organ failure. The consequences of maternal SARS-CoV-2 infection for the pregnant woman, fetus, and neonate are controversial. Thus, it is required to determine whether there is viral and non-viral vertical transmission in COVID-19. The disease caused by SARS-CoV-2 leads to functional alterations in asymptomatic and symptomatic pregnant women, the fetoplacental unit and the neonate. Several diseases of pregnancy, including COVID-19, affect the fetoplacental function, which causes in utero programming for young and adult diseases. A generalized inflammatory state and a higher risk of infection are seen in pregnant women with COVID-19. Obesity, diabetes mellitus, and hypertension may increase the vulnerability of pregnant women to infection by SARS-CoV-2. Alpha, Delta, and Omicron variants of SARS-CoV-2 show specific mutations that seem to increase the capacity of the virus to infect the pregnant woman, likely due to increasing its interaction via the virus S protein and angiotensin-converting enzyme 2 receptors. This review shows the literature addressing to what extent COVID-19 in pregnancy affects the pregnant woman, fetoplacental unit, and neonate. Prospective studies that are key in managing SARS-CoV-2 infection in pregnancy are discussed.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Humanos , Recém-Nascido , Adulto , Feminino , Gravidez , COVID-19/complicações , SARS-CoV-2 , Gestantes , Estudos Prospectivos
16.
Build Simul ; 16(1): 3-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36277843

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the current coronavirus disease 2019 (COVID-19) pandemic, is evolving. Thus, the risk of airborne transmission in confined spaces may be higher, and corresponding precautions should be re-appraised. Here, we obtained the quantum generation rate (q) value of three SARS-CoV-2 variants (Alpha, Delta, and Omicron) for the Wells-Riley equation with a reproductive number-based fitted approach and estimated the association between the infection probability and ventilation rates. The q value was 89-165 h-1 for Alpha variant, 312-935 h-1 for Delta variant, and 725-2,345 h-1 for Omicron variant. The ventilation rates increased to ensure an infection probability of less than 1%, and were 8,000-14,000 m3 h-1, 26,000-80,000 m3 h-1, and 64,000-250,000 m3 h-1 per infector for the Alpha, Delta, and Omicron variants, respectively. If the infector and susceptible person wore N95 masks, the required ventilation rates decreased to about 1/100 of the values required without masks, which can be achieved in most typical scenarios. An air purifier was ineffective for reducing transmission when used in scenarios without masks. Preventing prolonged exposure time in confined spaces remains critical in reducing the risk of airborne transmission for highly contagious SARS-CoV-2 variants.

17.
J Theor Biol ; 557: 111336, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36323394

RESUMO

The COVID-19 epidemic has lasted for more than two years since the outbreak in late 2019. An urgent and challenging question is how to systematically evaluate epidemic developments in different countries, during different periods, and to determine which measures that could be implemented are key for successful epidemic prevention. In this study, SBD distance-based K-shape clustering and hierarchical clustering methods were used to analyse epidemics in Asian countries. For the hierarchical clustering, epidemic time series were divided into three periods (epidemics induced by the Original/Alpha, Delta and Omicron variants separately). Standard deviations, the Hurst index, mortality rates, peak value of confirmed cases per capita, average growth rates, and the control efficiency of each period were used to characterize the epidemics. In addition, the total numbers of cases in the different countries were analysed by correlation and regression in relation to 15 variables that could have impacts on COVID-19. Finally, some suggestions on prevention and control measures for each category of country are given. We found that the total numbers of cases per million of a population, total deaths per million and mortality rates were highly correlated with the proportion of people aged over 65 years, the prevalence of multiple diseases, and the national GDP. We also found significant associations between case numbers and vaccination rates, health expenditures, and stringency of control measures. Vaccinations have played a positive role in COVID-19, with a gradual decline in mortality rates in later periods, and are still playing protective roles against the Delta and Omicron strains. The stringency of control measures taken by a government is not an indicator of the appropriateness of a country's response to the outbreak, and a higher index does not necessarily mean more effective measures; a combination of factors such as national vaccination rates, the country's economic foundation and the availability of medical equipment is also needed. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Ásia/epidemiologia
18.
J Infect Chemother ; 29(1): 102-104, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36087922

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, maintaining adequate staffing in healthcare facilities is important to provide a safe work environment for healthcare workers (HCWs). Japan's early return-to-work (RTW) program may be a rational strategy at a time when there is an increased demand for the services of HCWs. We assessed whether the early RTW program for HCWs who have been in close contact with a COVID-19 case in our hospital was justified. Close contacts were identified according to the guidance document of the World Health Organization. HCWs who met all of the following conditions were eligible to apply to an early RTW program: (1) difficult to replace with another HCW, (2) received the third dose of a COVID-19 mRNA vaccine, (3) a negative COVID-19 antigen test before each work shift, and (4) consent from relevant HCWs and their managers to participate in the program. Between January and March 2022, 256 HCWs were identified as close contacts (median age, 35 years; 192 female). Thirty-seven (14%) secondary attack cases of COVID-19 were detected. Among 141 HCWs (55%) who applied to the early RTW program, nurses and physicians comprised about three-quarters of participants, with a higher participation rate by physicians (78%) than nurses (59%). Eighteen HCWs tested positive for COVID-19 by the sixth day after starting the early RTW program. No COVID-19 infection clusters were reported during the observation period. These findings suggest that the early RTW program for COVID-19 close contacts was a reasonable strategy for HCWs during the Omicron wave.


Assuntos
COVID-19 , Feminino , Humanos , Adulto , COVID-19/epidemiologia , Vacinas contra COVID-19 , Retorno ao Trabalho , Japão , Pessoal de Saúde , Atenção à Saúde
19.
J Infect Chemother ; 29(1): 33-38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36103949

RESUMO

BACKGROUND: Information regarding effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant strains on clinical manifestations and outcomes of coronavirus disease 2019 (COVID-19) in pregnant women is limited. METHODS: A retrospective observational study was conducted using the data from the nationwide COVID-19 registry in Japan. We identified pregnant patients with symptomatic COVID-19 hospitalized during the study period. The Delta and Omicron variants of concern (VOC) predominant periods were defined as August 1 to December 31, 2021 and January 1 to May 31, 2022, respectively. Clinical characteristics were compared between the patients in the Delta and Omicron VOC periods. In addition, logistic regression analysis was performed to identify risk factors for developing moderate-to-severe COVID-19. RESULTS: During the study period, 310 symptomatic COVID-19 cases of pregnant women were identified; 111 and 199 patients were hospitalized during the Delta and Omicron VOC periods, respectively. Runny nose and sore throat were more common, and fatigue, dysgeusia, and olfactory dysfunction were less common manifestations observed in the Omicron VOC period. In the multivariable logistic regression analysis, onset during the later stage of pregnancy (OR: 2.08 [1.24-3.71]) and onset during the Delta VOC period (OR: 2.25 [1.08-4.90]) were independently associated with moderate-to-severe COVID-19, whereas two doses of SARS-CoV-2 vaccine were protective against developing moderate-to-severe COVID-19 (OR: 0.34 [0.13-0.84]). CONCLUSIONS: Clinical manifestations of COVID-19 in pregnant women differed between the Delta and Omicron VOC periods. SARS-CoV-2 vaccination was still effective in preventing severe COVID-19 throughout the Delta and Omicron VOC periods.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Humanos , Feminino , Gravidez , Gestantes , COVID-19/epidemiologia , Vacinas contra COVID-19 , SARS-CoV-2 , Complicações Infecciosas na Gravidez/epidemiologia
20.
Environ Res ; 216(Pt 1): 114446, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208783

RESUMO

The emergence of a new virus variant is generally recognized by its usually sudden and rapid spread (outburst) in a certain world region. Due to the near-exponential rate of initial expansion, the new strain may not be detected at its true geographical origin but in the area with the most favorable conditions leading to the fastest exponential growth. Therefore, it is crucial to understand better the factors that promote such outbursts, which we address in the example of analyzing global Omicron transmissibility during its global emergence/outburst in November 2021-February 2022. As predictors, we assemble a number of potentially relevant factors: vaccinations (both full and boosters), different measures of population mobility (provided by Google), estimated stringency of measures, the prevalence of chronic diseases, population age, the timing of the outburst, and several other socio-demographic variables. As a proxy for natural immunity (prevalence of prior infections in population), we use cumulative numbers of COVID-19 deaths. As a response variable (transmissibility measure), we use the estimated effective reproduction number (Re) averaged in the vicinity of the outburst maxima. To select significant predictors of Re, we use machine learning regressions that employ feature selection, including methods based on ensembles of decision trees (Random Forest and Gradient Boosting). We identify the young population, earlier infection onset, higher mobility, low natural immunity, and low booster prevalence as likely direct risk factors. Interestingly, we find that all these risk factors were significantly higher for Africa, though curiously somewhat lower in Southern African countries (where the outburst emerged) compared to other African countries. Therefore, while the risk factors related to the virus transmissibility clearly promote the outburst of a new virus variant, specific regions/countries where the outburst actually happens may be related to less evident factors, possibly random in nature.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Fatores de Risco , Número Básico de Reprodução , Prevalência , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...