Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
1.
Viruses ; 12(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224891

RESUMO

In the last decade, Flaviviruses such as yellow fever (YFV) and Zika (ZIKV) have expanded their transmission areas. These viruses originated in Africa, where they exhibit both sylvatic and interhuman transmission cycles. In Brazil, the risk of YFV urbanization has grown, with the sylvatic transmission approaching the most densely populated metropolis, while concern about ZIKV spillback to a sylvatic cycle has risen. To investigate these health threats, we carried out extensive collections and arbovirus screening of 144 free-living, non-human primates (NHPs) and 5219 mosquitoes before, during, and after ZIKV and YFV outbreaks (2015-2018) in southeast Brazil. ZIKV infection was not detected in any NHP collected at any time. In contrast, current and previous YFV infections were detected in NHPs sampled between 2017 and 2018, but not before the onset of the YFV outbreak. Mosquito pools screened by high-throughput PCR were positive for YFV when captured in the wild and during the YFV outbreak, but were negative for 94 other arboviruses, including ZIKV, regardless of the time of collection. In conclusion, there was no evidence of YFV transmission in coastal southeast Brazil before the current outbreak, nor the spread or establishment of an independent sylvatic cycle of ZIKV or urban Aedes aegypti transmission of YFV in the region. In view of the region's receptivity and vulnerability to arbovirus transmission, surveillance of NHPs and mosquitoes should be strengthened and continuous.

2.
Epidemiol Serv Saude ; 29(1): e2018331, 2020.
Artigo em Português, Inglês | MEDLINE | ID: mdl-32215531

RESUMO

OBJECTIVE: to analyze characteristics, incidence and factors associated with serious adverse events (SAEs) following yellow fever vaccination during an outbreak of the disease in Brazil (2016-2017). METHODS: this was a case-control study using data from the National Immunization Program Information System (SI-PNI); SAE were considered to be cases, and non-serious adverse events (NSAE) were considered to be controls. RESULTS: we analyzed 135 SAE cases and 1,058 controls; of the 135 SAE, 79 (58.5%) were males and median age was 28 years [09-49]; incidence in January 2017 reached 1.3 case per 100,000 vaccine doses administered; there was statistical association with males (Odds Ratio [OR]=1.73 - 95%CI 1.20;2.48), primary vaccination (OR=1.65 - 95%CI 1.01;2.71), and being 60 years of age or older taking as reference those aged under 5 (OR=4.4; p-value <0.02). CONCLUSION: SAE owing to yellow fever vaccine showed a greater chance of occurring in men, the elderly and primary vaccination.

3.
J Med Entomol ; 2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32112094

RESUMO

Aedes aegypti (L.) (Diptera: Culicidae) is a diurnal feeder that lives in close association with human populations. It is the principal vector of yellow fever, dengue fever and the Zika Virus. Issues of arboviral diseases have been on the ascendency in most countries including Ghana where Aedes mosquito is the main vector of yellow fever. A comparative study of the biting behavior of Ae. aegypti and the identification of subspecies were undertaken using molecular technique. Standard human landing technique was used to collect both indoor and outdoor biting mosquitoes at three zones located in the Upper East (Bolgatanga), Upper West (Nadowli), and Northern (Damongo) Regions of Ghana during the dry and rainy seasons between 0600 and 1800 Greenwich Mean Time (GMT). All collected mosquitoes were identified morphologically using taxonomic keys. random amplified polymorphic DNA polymerase chain reaction was used to categorize Ae. aegypti into subspecies. Adult female Aedes mosquitoes identified formed 62% (n = 1,206) of all female mosquitoes collected. Aedes aegypti 98% and Aedes vittatus 2% were the only Aedes species identified. Bolgatanga recorded the largest number of Ae. aegypti 42%, whereas Nadowli 22% recorded the least. Aedes vittatus was observed in Nadowli. Aedes aegypti exhibited a bimodal biting behavior peaking at 0600-0800 GMT and 1500-1600 h GMT. Molecular findings revealed 69% Ae. aegypti aegypti and 31% Ae. aegypti formosus as the two subspecies (n = 110). This information is important for implementing effective vector control programs in the three regions of the northern Ghana.

4.
Parasit Vectors ; 13(1): 90, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075684

RESUMO

BACKGROUND: Yellow fever (YF) is a severe, infectious, but non-communicable arboviral hemorrhagic disease. In the last decades, yellow fever virus (YFV) infections have been prevalent in endemic areas in Brazil, affecting human and non-human primate (NHP) populations. Monitoring of NHP infection started in 1999, and reports of epizootic diseases are considered important indicators of viral transmission, particularly in relation to the sylvatic cycle. This study presents the monitoring of YFV by real-time RT-PCR and the epidemiological findings related to the deaths of NHPs in the south-eastern states and in the north-eastern state of Bahia, during the outbreak of YF in Brazil during 2017 and 2018. METHODS: A total of 4198 samples from 2099 NHPs from south-eastern and north-eastern Brazilian states were analyzed by real-time reverse transcription polymerase chain reaction (rtRT-PCR). RESULTS: A total of 4198 samples from 2099 NHPs from south-eastern and north-eastern Brazilian states were collected between 2017 and 2018. The samples were subjected to molecular diagnostics for YFV detection using real-time reverse transcription polymerase chain reaction (rtRT-PCR) techniques. Epizootics were coincident with human YF cases. Furthermore, our results showed that the YF frequency was higher among marmosets (Callithrix sp.) than in previous reports. Viremia in species of the genus Alouatta and Callithrix differed greatly. DISCUSSION: Our results indicate a need for further investigation of the role of Callithrix spp. in the transmission cycles of YFV in Brazil. In particular, YFV transmission was observed in a region where viral circulation has not been recorded for decades and thus vaccination has not been previously recommended. CONCLUSIONS: This highlights the need to straighten epizootic surveillance and evaluate the extent of vaccination programmes in Brazil in previously considered "YFV-free" areas of the country.

5.
Sci Adv ; 6(5): eaaw7449, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32064329

RESUMO

Disease epidemics and outbreaks often generate conspiracy theories and misperceptions that mislead people about the risks they face and how best to protect themselves. We investigate the effectiveness of interventions aimed at combating false and unsupported information about the Zika epidemic and subsequent yellow fever outbreak in Brazil. Results from a nationally representative survey show that conspiracy theories and other misperceptions about Zika are widely believed. Moreover, results from three preregistered survey experiments suggest that efforts to counter misperceptions about diseases during epidemics and outbreaks may not always be effective. We find that corrective information not only fails to reduce targeted Zika misperceptions but also reduces the accuracy of other beliefs about the disease. In addition, although corrective information about the better-known threat from yellow fever was more effective, none of these corrections affected support for vector control policies or intentions to engage in preventive behavior.

6.
Sci Rep ; 10(1): 3180, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081931

RESUMO

Fifty patients with unexplained fever and poor outcomes presented at Irrua Specialist Teaching Hospital (ISTH) in Edo State, Nigeria, an area endemic for Lassa fever, between September 2018 - January 2019. After ruling out Lassa fever, plasma samples from these epidemiologically-linked cases were sent to the African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria, where we carried out metagenomic sequencing which implicated yellow fever virus (YFV) as the etiology of this outbreak. Twenty-nine of the 50 samples were confirmed positive for YFV by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), 14 of which resulted in genome assembly. Maximum likelihood phylogenetic analysis revealed that these YFV sequences formed a tightly clustered clade more closely related to sequences from Senegal than sequences from earlier Nigerian isolates, suggesting that the YFV clade responsible for this outbreak in Edo State does not descend directly from the Nigerian YFV outbreaks of the last century, but instead reflects a broader diversity and dynamics of YFV in West Africa. Here we demonstrate the power of metagenomic sequencing for identifying ongoing outbreaks and their etiologies and informing real-time public health responses, resulting in accurate and prompt disease management and control.

7.
Int J Infect Dis ; 92: 189-196, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31935537

RESUMO

Yellow fever (YF) is an acute viral hemorrhagic disease caused by the YF virus (arbovirus) which continues to cause severe morbidity and mortality in Africa. A case of YF was confirmed in Nigeria on the 12th of September 2017, 21 years after the last confirmed case. The patient belongs to a nomadic population with a history of low YF vaccination uptake, in the Ifelodun Local Government Area (LGA) of Kwara State, Nigeria. An active case search in Ifelodun and its five contiguous LGAs led to the listing of 55 additional suspect cases of YF within the period of the outbreak investigation between September 18 to October 6, 2017. The median age of cases was 15 years, and 54.4% were males. Of these, blood samples were collected from 30 cases; nine tested positive in laboratories in Nigeria and six were confirmed positive for YF by the WHO reference laboratory in the region; Institut Pasteur, Dakar. A rapid YF vaccination coverage assessment was carried out, resulting in a coverage of 46% in the LGAs, with 25% of cases able to produce their vaccination cards. All stages of the yellow fever vector, Aedes mosquito were identified in the area, with high larval indices (House and Breteau) observed. In response to the outbreak, YF surveillance was intensified across all States in Nigeria, as well as reactive vaccination and social mobilisation campaigns carried out in the affected LGAs in Kwara State. A state-wide YF preventive campaign was also initiated.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Febre Amarela/epidemiologia , Adolescente , Adulto , Aedes/virologia , África , Animais , Criança , Pré-Escolar , Surtos de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mosquitos Vetores , Nigéria/epidemiologia , Fatores de Risco , Febre Amarela/fisiopatologia , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/administração & dosagem , Vírus da Febre Amarela/imunologia
8.
Clin Infect Dis ; 70(1): 149-151, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077278

RESUMO

Yellow fever has never previously been reported in transplant recipients. The first reported case of yellow fever in a kidney transplant recipient in Brazil and the re-emergence of arboviruses in many areas of the world dictate the need of studies aimed to answer multiple unanswered questions.

9.
Sci. rep ; 9(1): 20418, Dec. 2019. ilus
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IIERPROD, Sec. Est. Saúde SP | ID: biblio-1047632

RESUMO

The largest outbreak of yellow fever of the 21st century in the Americas began in 2016, with intense circulation in the southeastern states of Brazil, particularly in sylvatic environments near densely populated areas including the metropolitan region of São Paulo city (MRSP) during 2017­2018. Herein, we describe the origin and molecular epidemiology of yellow fever virus (YFV) during this outbreak inferred from 36 full genome sequences taken from individuals who died following infection with zoonotic YFV. Our analysis revealed that these deaths were due to three genetic variants of sylvatic YFV that belong the South American I genotype and that were related to viruses previously isolated in 2017 from other locations in Brazil (Minas Gerais, Espírito Santo, Bahia and Rio de Janeiro states). Each variant represented an independent virus introduction into the MRSP. Phylogeographic and geopositioning analyses suggested that the virus moved around the peri-urban area without detectable human-to-human transmission, and towards the Atlantic rain forest causing human spill-over in nearby cities, yet in the absence of sustained viral transmission in the urban environment.


Assuntos
Febre Amarela/epidemiologia , Brasil/epidemiologia
10.
Health Secur ; 17(6): 485-494, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31859573

RESUMO

Recurring outbreaks of infectious diseases have characterized the West African region in the past 4 decades. There is a moderate to high risk of yellow fever in countries in the region, and the disease has reemerged in Nigeria after 21 years. A full-scale simulation exercise of the outbreak of yellow fever was conducted to assess preparedness and response in the event of a full-scale outbreak. The exercise was a multi-agency exercise conducted in Lagos, and it involved health facilities, points of entry, state and national public health emergency operation centers, and laboratories. An evaluation of the exercise assessed the capability of the system to identify, respond to, and recover from the emergency using adapted WHO tools. The majority of participants, observers, and evaluators agreed that the exercise was well-structured and organized. Participants also strongly agreed that the exercise helped them to identify strengths and gaps in their understanding of the emergency response systems and plans. Overall, the exercise identified existing gaps in the current capabilities of several thematic areas involved in a yellow fever response. The evaluation presented an opportunity to assess the response capabilities of multisectoral collaborations in the national public health system. It also demonstrated the usefulness of the exercise in understanding public health officials' roles and responsibilities; enabling knowledge transfer among these individuals and organizations; and identifying specific public health systems-level strengths, weaknesses, and challenges.

11.
J Infect Dis ; 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31711190

RESUMO

Next-generation sequencing technologies, exponential increases in the availability of virus genomic data, and ongoing advances in phylogenomic methods have made genomic epidemiology an increasingly powerful tool for public health response to a range of mosquito-borne virus outbreaks. In this review, we offer a brief primer on the scope and methods of phylogenomic analyses that can answer key epidemiological questions during mosquito-borne virus public health emergencies. We then focus on case examples of outbreaks, including those caused by dengue, Zika, yellow fever, West Nile, and chikungunya viruses, to demonstrate the utility of genomic epidemiology to support the prevention and control of mosquito-borne virus threats. We extend these case studies with operational perspectives on how to best incorporate genomic epidemiology into structured surveillance and response programs for mosquito-borne virus control. Many tools for genomic epidemiology already exist, but so do technical and nontechnical challenges to advancing their use. Frameworks to support the rapid sharing of multidimensional data and increased cross-sector partnerships, networks, and collaborations can support advancement on all scales, from research and development to implementation by public health agencies.

12.
Hum Vaccin Immunother ; : 1-4, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31634051

RESUMO

Yellow fever has been recently described in nonurban areas of Brazil despite 80 years of commercial vaccine use. Although the disease does not spread fear in the general population as it did in the past, yellow fever virus continues to cause many cases of severe disease. Persistence of the virus in the host is a new mechanism to be considered in the pathology of the disease. Immunization with a fractional dose of vaccine during emergency situations needs to be evaluated for antibody duration, and new and improved vaccines should be considered.

13.
Artigo em Inglês | MEDLINE | ID: mdl-31608161

RESUMO

Background: With increasing incidence of yellow fever, mass campaign vaccinations are underway and little ophthalmological alterations have been reported in literature, specially regarding non-combined vaccines. Case presentation: We report the case of a patient with no previous ocular or systemic diseases whom received a single dose of yellow fever vaccination and developed haematological, hepatic and renal alterations progressing with a later onset bilateral asymmetric diffuse uveitis. Ophthalmological findings included fine keratic precipitates scattered throughout the cornea and mild vitritis. Multimodal evaluation showed subtle puntiform choriocapillaris changes with decreased vascular density associated. The patient had a good visual outcome after mild oral prednisone dose, but the image findings have not presented remission. Conclusions: Clinicians should be aware of clinical and subclinical ocular manifestations such as subtle puntiform choriocapillaris changes as possible vaccine-related adverse events with potential to impact vision.

14.
Int J Infect Dis ; 89: 146-153, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31629079

RESUMO

BACKGROUND: Epidemic intelligence (EI) for emerging infections is the process of identifying key information on emerging infectious diseases and specific incidents. Automated web-based infectious disease surveillance technologies are available; however, human input is still needed to review, validate, and interpret these sources. In this study, entries captured by Public Health England's (PHE) manual event-based EI system were examined to inform future intelligence gathering activities. METHODS: A descriptive analysis of unique events captured in a database between 2013 and 2017 was conducted. The top five diseases in terms of the number of entries were described in depth to determine the effectiveness of PHE's EI surveillance system compared to other sources. RESULTS: Between 2013 and 2017, a total of 22 847 unique entries were added to the database. The top three initial and definitive information sources varied considerably by disease. Ebola entries dominated the database, making up 23.7% of the total, followed by Zika (11.8%), Middle East respiratory syndrome (6.7%), cholera (5.5%), and yellow fever and undiagnosed morbidity (both 3.3%). Initial reports of major outbreaks due to the top five disease agents were picked up through the manual system prior to being publicly reported by official sources. CONCLUSIONS: PHE's manual EI process quickly and accurately detected global public health threats at the earliest stages and allowed for monitoring of events as they evolved.


Assuntos
Cólera/epidemiologia , Infecções por Coronavirus/epidemiologia , Doença pelo Vírus Ebola/epidemiologia , Febre Amarela/epidemiologia , Infecção por Zika virus/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Surtos de Doenças , Monitoramento Epidemiológico , Humanos , Inteligência , Saúde Pública
15.
J Virol ; 94(1)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597773

RESUMO

The recent reemergence of yellow fever virus (YFV) in Brazil has raised serious concerns due to the rapid dissemination of the virus in the southeastern region. To better understand YFV genetic diversity and dynamics during the recent outbreak in southeastern Brazil, we generated 18 complete and nearly complete genomes from the peak of the epidemic curve from nonhuman primates (NHPs) and human infected cases across the Espírito Santo and Rio de Janeiro states. Genomic sequencing of 18 YFV genomes revealed the estimated timing, source, and likely routes of yellow fever virus transmission and dispersion during one of the largest outbreaks ever registered in Brazil. We showed that during the recent epidemic, YFV was reintroduced from Minas Gerais to the Espírito Santo and Rio de Janeiro states multiple times between 2016 and 2019. The analysis of data from portable sequencing could identify the corridor of spread of YFV. These findings reinforce the idea that continued genomic surveillance strategies can provide information on virus genetic diversity and transmission dynamics that might assist in understanding arbovirus epidemics.IMPORTANCE Arbovirus infections in Brazil, including yellow fever, dengue, zika, and chikungunya, result in considerable morbidity and mortality and are pressing public health concerns. However, our understanding of these outbreaks is hampered by the limited availability of genomic data. In this study, we investigated the genetic diversity and spatial distribution of YFV during the current outbreak by analyzing genomic data from areas in southeastern Brazil not covered by other previous studies. To gain insights into the routes of YFV introduction and dispersion, we tracked the virus by sequencing YFV genomes sampled from nonhuman primates and infected patients from the southeastern region. Our study provides an understanding of how YFV initiates transmission in new Brazilian regions and illustrates that genomics in the field can augment traditional approaches to infectious disease surveillance and control.

16.
J Infect Dis ; 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31545372

RESUMO

BACKGROUND: Yellow fever (YF) is a vector-borne viral hemorrhagic disease endemic in Africa and Latin America. In 2016, the World Health Organization (WHO) developed the Eliminate YF Epidemics strategy aiming at eliminating YF epidemics by 2026. METHODS: We developed a spatiotemporal model of YF, accounting for the impact of temperature, vector distribution, and socioeconomic factors on disease transmission. We validated our model against previous estimates of YF basic reproductive number (R0). We used the model to estimate global risk of YF outbreaks and vaccination efforts needed to achieve elimination of YF epidemics. RESULTS: We showed that the global risk of YF outbreaks is highly heterogeneous. High-risk transmission areas (R0 > 6) are mainly found in West Africa and the Equatorial region of Latin America. We showed that vaccination coverage needed to eliminate YF epidemics in an endemic country varies substantially between districts. In many endemic countries, a 90% vaccination coverage is needed to achieve elimination. However, in some high-risk districts in Africa, a 95% coverage may be required. CONCLUSIONS: Global elimination of YF epidemics requires higher population-level immunity than the 80% coverage recommended by the WHO. Optimal YF vaccination strategy should be tailored to the risk profile of each endemic country.

17.
Am J Public Health ; 109(10): 1339-1341, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31415198

RESUMO

In this commentary, I take up the question of why beliefs in fundamental, innate racial differences between Black and White people's bodies persist in medical discourse, despite evidence to the contrary.I locate the origin of some of these beliefs in the infamous yellow fever epidemic that struck Philadelphia, Pennsylvania, in 1793. During that early public health crisis, White physicians and lay people erroneously thought that Black people were immune to yellow fever because of their race. I then highlight the efforts of Philadelphia's Black leaders during the epidemic-namely Absalom Jones and Richard Allen-to challenge the belief in fundamental and innate differences between Blacks and Whites.I conclude by asking us to consider how the false belief that there is something peculiar about Black people's bodies has become a feature, not an aberration, in the production of medical knowledge. Indeed, I point out how medical experimentation in the 20th century and in the marketing of new drugs in the 21st century have been buttressed by this persistent yet incorrect assumption that innate racial differences exist.

18.
Am J Public Health ; 109(10): 1337-1338, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31415205
19.
PLoS Negl Trop Dis ; 13(7): e0007625, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31329590

RESUMO

BACKGROUND: New strategies for collecting post-mortem tissue are necessary, particularly in areas with emerging infections. Minimally invasive autopsy (MIA) has been proposed as an alternative to conventional autopsy (CA), with promising results. Previous studies using MIA addressed the cause of death in adults and children in developing countries. However, none of these studies was conducted in areas with an undergoing infectious disease epidemic. We have recently experienced an epidemic of yellow fever (YF) in Brazil. Aiming to provide new information on low-cost post-mortem techniques that could be applied in regions at risk for infectious outbreaks, we tested the efficacy of ultrasound-guided MIA (MIA-US) in the diagnosis of patients who died during the epidemic. METHODOLOGY/PRINCIPAL FINDINGS: In this observational study, we performed MIA-US in 20 patients with suspected or confirmed YF and compared the results with those obtained in subsequent CAs. Ultrasound-guided biopsies were used for tissue sampling of liver, kidneys, lungs, spleen, and heart. Liver samples from MIA-US and CA were submitted for RT-PCR and immunohistochemistry for detection of YF virus antigen. Of the 20 patients, 17 had YF diagnosis confirmed after autopsy by histopathological and molecular analysis. There was 100% agreement between MIA-US and CA in determining the cause of death (panlobular hepatitis with hepatic failure) and main disease (yellow fever). Further, MIA-US obtained samples with good quality for molecular studies and for the assessment of the systemic involvement of the disease. Main extrahepatic findings were pulmonary hemorrhage, pneumonia, acute tubular necrosis, and glomerulonephritis. One patient was a 24-year-old, 27-week pregnant woman; MIA-US assessed the placenta and provided adequate placental tissue for analysis. CONCLUSIONS: MIA-US is a reliable tool for rapid post-mortem diagnosis of yellow fever and can be used as an alternative to conventional autopsy in regions at risk for hemorrhagic fever outbreaks with limited resources to perform complete diagnostic autopsy.


Assuntos
Autopsia/métodos , Epidemias , Ultrassonografia de Intervenção/métodos , Febre Amarela/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mudanças Depois da Morte , Estudos Prospectivos , Febre Amarela/epidemiologia , Adulto Jovem
20.
Can J Infect Dis Med Microbiol ; 2019: 9464768, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236149

RESUMO

Yellow fever (YF) is a zoonotic arthropod-borne disease that is caused by the yellow fever virus (YFV) and characterized by a sylvatic and urban cycle. Its most severe presentation is manifested as a hemorrhagic disease, and it has been responsible for thousands of deaths in the last decades. This study describes the public health approaches taken to control the 2016-2017 YF outbreak in nonhuman primates (NHPs) that took place in the northeastern region of São Paulo state, Brazil. NHPs recovered from the field were necropsied, and YF diagnoses were made at the Laboratory of Molecular Virology, Ribeirão Preto Medical School and the Center of Pathology, Adolfo Lutz Institute of São Paulo. NHP samples were inoculated into Vero cells for YFV isolation. RNA extraction was performed directly from NHP tissues and tested by RT-qPCR. YFV-positive samples were confirmed by sequencing. Based on the rapid RT-qPCR results, surveillance actions were implemented in the entire region. Confirmatory histopathology and immunohistochemistry for YFV were also performed. Among nine NHPs, gross hepatic involvement was observed in six animals, five of which were YFV-RT-qPCR-positive. One YFV was isolated from the serum of an infant NHP. YFV RNA sequences diverged from the virus responsible for the last epizootic that occurred in São Paulo state, but it was similar to the current Brazilian epizootic. Public health actions included dissemination of information on YF transmission, investigation of the probable location of NHP infection, characterization of the environment, and subsequent creation of the blueprint from which prevention and control measures were implemented. The YFV sylvatic cycle occurred in the periurban areas of the northeastern region of São Paulo state, but no human cases were reported during this period, showing that integrated actions between human, animal, and environmental health professionals were critical to restrain the virus to the sylvatic cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA