Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-32049261

RESUMO

Aedes aegypti is associated with epidemic diseases in Brazil, such as urban yellow fever, dengue, and more recently, chikungunya and Zika viruses infections. More information about Ae. aegypti infestation is fundamental to virological surveillance in order to ensure the effectiveness of control measures in use. Thus, the present study aims to identify and compare infestation and infectivity of Ae. aegypti females in Macapa city, Amapa State (Amazon region), Brazil, between the epidemiological weeks 2017/02 and 2018/20. A total number of 303 Ae. aegypti females were collected at 21 fixed collection points, 171 at the 10 collection points in the Marabaixo neighborhood and 132 at the 11 collection points in the Central neighborhood. Among the collected samples, only two were positive for dengue virus, with a 2.08% (2/96 pools) infectivity rate for Marabaixo. The difference between the medians of Ae. aegypti females captured in Central and Marabaixo sites was not statistically significant. The findings indicate similar mosquito infestation levels between the neighborhoods, and a low-level of mosquito infectivity, although dengue virus was found only in Marabaixo. Virological surveillance of Ae. aegypti was important to identify sites of infection and determine possible routes of transmission to enable health surveillance teams to adopt preventive strategies where infected mosquitoes are present and act faster.

2.
Acta Trop ; : 105390, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32044285

RESUMO

The southeastern region of Brazil has recently experienced the largest yellow fever disease outbreak in decades. Since July 2016 epizootic events were reported in São Paulo state's north region, where 787 Culicidae were captured as part of public health surveillance efforts and tested using real-time quantitative PCR. One Aedes scapularis pool collected in November 2016 in an agriculture area in Urupês city tested positive for YFV-RNA. Using a validated multiplex PCR approach we were able to recover a complete virus genome sequence from this pool. Phylogenetic analysis of the novel strain and publicly available data indicates that the belongs to the South American genotype 1 clade circulating in Sao Paulo state and is basal to the recent outbreak clade in southeast Brazil. Our findings highlight the need of additional studies, including vector competence studies, to disentangle the role of Aedes scapularis in yellow fever transmission in the Americas.

3.
Virol J ; 17(1): 9, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31973727

RESUMO

Yellow fever (YF) is an acute viral disease, affecting humans and non-human primates (NHP), caused by the yellow fever virus (YFV). Despite the existence of a safe vaccine, YF continues to cause morbidity and mortality in thousands of people in Africa and South America. Since 2016, massive YF outbreaks have taken place in Brazil, reaching YF-free zones, causing thousands of deaths of humans and NHP. Here we reviewed the main epidemiological aspects, new clinical findings in humans, and issues regarding YFV infection in vectors and NHP in Brazil. The 2016-2019 YF epidemics have been considered the most significant outbreaks of the last 70 years in the country, and the number of human cases was 2.8 times higher than total cases in the previous 36 years. A new YFV lineage was associated with the recent outbreaks, with persistent circulation in Southeast Brazil until 2019. Due to the high number of infected patients, it was possible to evaluate severity and death predictors and new clinical features of YF. Haemagogus janthinomys and Haemagogus leucocelaenus were considered the primary vectors during the outbreaks, and no human case suggested the occurrence of the urban transmission cycle. YFV was detected in a variety of NHP specimens presenting viscerotropic disease, similar to that described experimentally. Further studies regarding NHP sensitivity to YFV, YF pathogenesis, and the duration of the immune response in NHP could contribute to YF surveillance, control, and future strategies for NHP conservation.

4.
Transfusion ; 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31957887

RESUMO

BACKGROUND: The reemergence of yellow fever virus (YFV) in Africa and Brazil, and massive vaccine campaigns triggered to contain the outbreaks, have raised concerns over blood transfusion safety and availability with increased risk of YFV transfusion-transmitted infections (TTIs) by native and vaccine-acquired YFV. Blood donor deferral for 2 to 4 weeks following live attenuated YFV vaccination, and deferral for travel to endemic/epidemic areas, may result in blood donor loss and impact platelet component (PC) stocks. This study investigated the efficacy of INTERCEPT Blood System pathogen reduction (PR) with use of amotosalen and ultraviolet A (UVA) light to inactivate high levels of YFV in PCs. MATERIALS: Four units of apheresis platelets prepared in 35% plasma/65% platelet additive solution (PC-PAS) and 4 units of PC in 100% human plasma (PC-Plasma) were spiked with high infectious titers of YFV (YFV-17D vaccine strain). YFV-17D infectious titers were measured by plaque assay and expressed as plaque-forming units (PFU) before and after amotosalen/UVA treatment to determine log reduction. RESULTS: The mean YFV-17D infectious titers in PC before inactivation were 5.5 ± 0.1 log PFU/mL in PC-PAS and 5.3 ± 0.1 log PFU/mL in PC-Plasma. No infectivity was detected immediately after amotosalen/UVA treatment. CONCLUSION: The amotosalen/UVA PR system inactivated high titers of infectious YFV-17D in PC. This PR technology could reduce the risk of YFV TTI and help secure PC supplies in areas experiencing YFV outbreaks where massive vaccination campaigns are required.

5.
Pediatr Infect Dis J ; 39(1): 68-69, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31725551

RESUMO

Yellow fever is an endemic disease in tropical areas in America and Africa. We report a case where the wild-type yellow fever virus was detected in a breast milk sample of a 33-year-old woman, from a rural area in the municipality of São Paulo, thus highlighting a potential risk for transmission of yellow fever virus through breast-feeding.

6.
Clin Infect Dis ; 70(1): 149-151, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077278

RESUMO

Yellow fever has never previously been reported in transplant recipients. The first reported case of yellow fever in a kidney transplant recipient in Brazil and the re-emergence of arboviruses in many areas of the world dictate the need of studies aimed to answer multiple unanswered questions.

7.
J Biomol Struct Dyn ; : 1-17, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31854239

RESUMO

Yellow fever disease is considered a re-emerging major health issue which has caused recent outbreaks with a high number of deaths. Tropical countries, mainly African and South American, are the most affected by Yellow fever outbreaks. Despite the availability of an attenuated vaccine, its use is limited for some groups such as pregnant and nursing women, immunocompromised and immunosuppressed patients, elderly people >65 years, infants <6 months and patients with biological disorders like thymus disorders. In order to achieve new preventive measures, we applied immunoinformatics approaches to develop a multi-epitope-based subunit vaccine for Yellow fever virus. Different epitopes, related to humoral and cell-mediated immunity, were predicted for complete polyproteins of two Yellow fever strains (Asibi and 17 D vaccine). Those epitopes common for both strains were mapped into a set of 137 sequences of Yellow fever virus, including 77 sequences from a recent outbreak at the state of Minas Gerais, southeast Brazil. Therefore, the present work uses robust bioinformatics approaches for the identification of a multi-epitope vaccine against the Yellow fever virus. Our results indicate that the identified multi-epitope vaccine might stimulate humoral and cellular immune responses and could be a potential vaccine candidate against Yellow fever virus infection. Hence, it should be subjected to further experimental validations. Communicated by Ramaswamy H. Sarma.

8.
J Virol ; 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801869

RESUMO

The Amazon basin is home to numerous arthropod-borne viral pathogens that cause febrile disease in humans. Among these, Oropouche orthobunyavirus (OROV) is a relatively understudied member of the genus Orthobunyavirus, family Peribunyaviridae, that causes periodic outbreaks in human populations in Brazil and other South American countries. Although several studies have described the genetic diversity of the virus, the evolutionary processes that shape the OROV genome remain poorly understood. Here we present a comprehensive study of the genomic dynamics of OROV that encompasses phylogenetic analysis, evolutionary rate estimates, inference of natural selective pressures, recombination and reassortment, and structural analysis of OROV variants. Our study includes all available published sequences, as well as a set of new OROV genomes sequences obtained from patients in Ecuador, representing the first set of genomes from this country. Our results show differing evolutionary processes on the three segments that comprise the viral genome. We infer differing times of the most recent common ancestors (TMRCAs) of the genome segments and propose this can be explained by cryptic reassortment. We also present the discovery of previously unobserved putative N-linked glycosylation sites, and codons that evolve under positive selection on the viral surface proteins, and discuss the potential role of these features in the evolution of OROV through a combined phylogenetic and structural approach.Importance The emergence and re-emergence of pathogens such as Zika virus (ZIKV), Chikungunya virus (CHIKV) and yellow fever virus (YFV) have drawn attention towards other co-circulating arboviruses in South America. Oropouche virus (OROV) is a poorly-studied pathogen responsible for over a dozen outbreaks since the early 1960s, and represents a public health burden to countries such as Brazil, Panama and Peru. OROV is likely underreported as its symptomatology can be easily confounded with other febrile illnesses (e.g. dengue fever and leptospirosis), and point-of-care testing for the virus is still uncommon. With limited data, there is a need to optimise the information currently available. Analysis of OROV genomes can help us understand how the virus circulates in nature and can reveal the evolutionary forces that shape the genetic diversity of the virus, which has implications for molecular diagnostics and the design of potential vaccines.

9.
Vaccines (Basel) ; 7(4)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817103

RESUMO

The yellow fever (YF) vaccine consists of an attenuated virus, and despite its relative safety, some adverse events following YF vaccination have been described. At the end of 2016, Brazil experienced the most massive sylvatic yellow fever outbreak over the last 70 years and an intense campaign of YF vaccination occurred in Minas Gerais state in Southeast Brazil from 2016 to 2018. The present study aimed to develop a genotyping tool and investigate 21 cases of suspected adverse events following YF vaccination. Initial in silico analyses were performed using partial NS5 nucleotide sequences to verify the discriminatory potential between wild-type and vaccine viruses. Samples from patients were screened for the presence of the YFV RNA, using 5'UTR as the target, and then used for amplification of partial NS5 gene amplification, sequencing, and phylogenetic analysis. Genotyping indicated that 17 suspected cases were infected by the wild-type yellow fever virus, but four cases remained inconclusive. The genotyping tool was efficient in distinguishing the vaccine from wild-type virus, and it has the potential to be used for the differentiation of all yellow fever virus genotypes.

10.
J Med Entomol ; 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31840745

RESUMO

Siparuna guianensis (Laurales: Siparunaceae) has a terpene-rich essential oil with great potential for larvicides. The poor water miscibility of their compounds makes nano-emulsions of great interest for novel bioactive systems, including for control of Aedes aegypti (Diptera: Culicidae). This species is adapted to urban environments with important role in the epidemiology of some arboviruses such as dengue, chikungunya fever, zika, and urban yellow fever. The aim of the present study was to evaluate the feasibility of nano-emulsification to affect Ae. aegypti larvae. An optimal system was achieved by using a nonionic single surfactant, highlighted by its satisfactory size distribution profile. Moreover, improved larvicidal activity in comparison to bulk essential oil can be observed for the nano-emulsions. The estimated LC50 and LC90 values after 24 h of treatment of larvae with the essential oil were, respectively, 86.5232 and 134.814 µg/ml, while the estimated LC50 and LC90 value after treatment with the nano-emulsion were 24.7572 and 75.2452 µg/ml, respectively. The utilization of a simple technique to produce a fine nano-emulsion opens perspective for further integrative practices of mosquito control and giving value to this Amazon plant species may encourage its sustainable use and contribute to conservation policies.

11.
PeerJ ; 7: e7920, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31745446

RESUMO

Background: Zika is of great medical relevance due to its rapid geographical spread in 2015 and 2016 in South America and its serious implications, for example, certain birth defects. Recent epidemics urgently require a better understanding of geographic patterns of the Zika virus transmission risk. This study aims to map the Zika virus transmission risk in South and Central America. We applied the maximum entropy approach, which is common for species distribution modelling, but is now also widely in use for estimating the geographical distribution of infectious diseases. Methods: As predictor variables we used a set of variables considered to be potential drivers of both direct and indirect effects on the emergence of Zika. Specifically, we considered (a) the modelled habitat suitability for the two main vector species Aedes aegypti and Ae. albopictus as a proxy of vector species distributions; (b) temperature, as it has a great influence on virus transmission; (c) commonly called evidence consensus maps (ECM) of human Zika virus infections on a regional scale as a proxy for virus distribution; (d) ECM of human dengue virus infections and, (e) as possibly relevant socio-economic factors, population density and the gross domestic product. Results: The highest values for the Zika transmission risk were modelled for the eastern coast of Brazil as well as in Central America, moderate values for the Amazon basin and low values for southern parts of South America. The following countries were modelled to be particularly affected: Brazil, Colombia, Cuba, Dominican Republic, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico, Puerto Rico and Venezuela. While modelled vector habitat suitability as predictor variable showed the highest contribution to the transmission risk model, temperature of the warmest quarter contributed only comparatively little. Areas with optimal temperature conditions for virus transmission overlapped only little with areas of suitable habitat conditions for the two main vector species. Instead, areas with the highest transmission risk were characterised as areas with temperatures below the optimum of the virus, but high habitat suitability modelled for the two main vector species. Conclusion: Modelling approaches can help estimating the spatial and temporal dynamics of a disease. We focused on the key drivers relevant in the Zika transmission cycle (vector, pathogen, and hosts) and integrated each single component into the model. Despite the uncertainties generally associated with modelling, the approach applied in this study can be used as a tool and assist decision making and managing the spread of Zika.

12.
Hum Vaccin Immunother ; : 1-4, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31634051

RESUMO

Yellow fever has been recently described in nonurban areas of Brazil despite 80 years of commercial vaccine use. Although the disease does not spread fear in the general population as it did in the past, yellow fever virus continues to cause many cases of severe disease. Persistence of the virus in the host is a new mechanism to be considered in the pathology of the disease. Immunization with a fractional dose of vaccine during emergency situations needs to be evaluated for antibody duration, and new and improved vaccines should be considered.

13.
J Virol ; 94(1)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597773

RESUMO

The recent reemergence of yellow fever virus (YFV) in Brazil has raised serious concerns due to the rapid dissemination of the virus in the southeastern region. To better understand YFV genetic diversity and dynamics during the recent outbreak in southeastern Brazil, we generated 18 complete and nearly complete genomes from the peak of the epidemic curve from nonhuman primates (NHPs) and human infected cases across the Espírito Santo and Rio de Janeiro states. Genomic sequencing of 18 YFV genomes revealed the estimated timing, source, and likely routes of yellow fever virus transmission and dispersion during one of the largest outbreaks ever registered in Brazil. We showed that during the recent epidemic, YFV was reintroduced from Minas Gerais to the Espírito Santo and Rio de Janeiro states multiple times between 2016 and 2019. The analysis of data from portable sequencing could identify the corridor of spread of YFV. These findings reinforce the idea that continued genomic surveillance strategies can provide information on virus genetic diversity and transmission dynamics that might assist in understanding arbovirus epidemics.IMPORTANCE Arbovirus infections in Brazil, including yellow fever, dengue, zika, and chikungunya, result in considerable morbidity and mortality and are pressing public health concerns. However, our understanding of these outbreaks is hampered by the limited availability of genomic data. In this study, we investigated the genetic diversity and spatial distribution of YFV during the current outbreak by analyzing genomic data from areas in southeastern Brazil not covered by other previous studies. To gain insights into the routes of YFV introduction and dispersion, we tracked the virus by sequencing YFV genomes sampled from nonhuman primates and infected patients from the southeastern region. Our study provides an understanding of how YFV initiates transmission in new Brazilian regions and illustrates that genomics in the field can augment traditional approaches to infectious disease surveillance and control.

14.
Recurso educacional aberto em Português | CVSP - Brasil | ID: cfc-393800

RESUMO

Título completo: Controle de Mosquitos, vetores de Arbovírus como Zika, Dengue, Febre Amarela e Chikungunya e outros com substâncias naturais extraídas de plantas brasileiras. Vídeoaula sobre "Controle de Mosquitos, vetores de Arbovírus como Zica, Dengue, Febre Amarela e Chikungunya e outros com substâncias naturais extraídas de plantas brasileiras", por Margareth Queiroz, pesquisadora titular em saúde pública do Instituto Oswaldo Cruz da Fiocruz e chefe do Laboratório de Entomologia médica e Forense, durante o evento: Colóquios da Semana Nacional de Ciência e Tecnologia 2019, tem como tema "Bioeconomia: Diversidade e Riqueza para o Desenvolvimento Sustentável". Data: 16 Outubro de 2019


Assuntos
Controle de Vetores , Dengue , Zika virus , Vírus Chikungunya , Febre Amarela , Extratos Vegetais , Brasil
15.
Sci Rep ; 9(1): 13047, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506595

RESUMO

In an attempt to control the mosquito-borne diseases yellow fever, dengue, chikungunya, and Zika fevers, a strain of transgenically modified Aedes aegypti mosquitoes containing a dominant lethal gene has been developed by a commercial company, Oxitec Ltd. If lethality is complete, releasing this strain should only reduce population size and not affect the genetics of the target populations. Approximately 450 thousand males of this strain were released each week for 27 months in Jacobina, Bahia, Brazil. We genotyped the release strain and the target Jacobina population before releases began for >21,000 single nucleotide polymorphisms (SNPs). Genetic sampling from the target population six, 12, and 27-30 months after releases commenced provides clear evidence that portions of the transgenic strain genome have been incorporated into the target population. Evidently, rare viable hybrid offspring between the release strain and the Jacobina population are sufficiently robust to be able to reproduce in nature. The release strain was developed using a strain originally from Cuba, then outcrossed to a Mexican population. Thus, Jacobina Ae. aegypti are now a mix of three populations. It is unclear how this may affect disease transmission or affect other efforts to control these dangerous vectors. These results highlight the importance of having in place a genetic monitoring program during such releases to detect un-anticipated outcomes.

16.
J Med Entomol ; 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31559435

RESUMO

Dengue, yellow fever, Zika, and chikungunya arboviruses are endemic in tropical countries and are transmitted by Aedes aegypti. Resistant populations of this mosquito against chemical insecticides are spreading worldwide. This study aimed to evaluate the biological effects of exposure of pesticide-sensitive Ae. aegypti larvae (Rockefeller) to conidia of the entomopathogen, Metarhizium brunneum, laboratory strains ARSEF 4556 and V275, and any synergistic activity of phenylthiourea (PTU). In addition, to investigate the nature of any cross-resistance mechanisms, these M. brunneum strains were tested against the Rockefeller larvae and two temephos- and deltamethrin-resistant wild mosquito populations from Rio de Janeiro. Treatment of Rockefeller larvae with 106 conidia/ml of ARSEF 4556 and V275 fungal strains resulted in significant decreased survival rates to 40 and 53.33%, respectively (P < 0.0001), compared with untreated controls. In contrast, exposure to 104 or 105 conidia/ml showed no such significant survival differences. However, the addition of PTU to the conidia in the bioassays significantly increased mortalities in all groups and induced a molt block. Experiments also showed no differences in Ae. aegypti mortalities between the fungal treated, wild pesticide-resistant populations and the Rockefeller sensitive strain. The results show the efficacy of M. brunneum in controlling Ae. aegypti larvae and the synergistic role of PTU in this process. Importantly, there was no indication of any cross-resistance mechanisms between Ae. aegypti sensitive or resistant to pesticides following treatment with the fungi. These results further support using M. brunneum as an alternative biological control agent against mosquito populations resistant to chemical insecticides.

17.
Philos Trans R Soc Lond B Biol Sci ; 374(1782): 20180335, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31401964

RESUMO

Many (re)emerging infectious diseases in humans arise from pathogen spillover from wildlife or livestock, and accurately predicting pathogen spillover is an important public health goal. In the Americas, yellow fever in humans primarily occurs following spillover from non-human primates via mosquitoes. Predicting yellow fever spillover can improve public health responses through vector control and mass vaccination. Here, we develop and test a mechanistic model of pathogen spillover to predict human risk for yellow fever in Brazil. This environmental risk model, based on the ecology of mosquito vectors and non-human primate hosts, distinguished municipality-months with yellow fever spillover from 2001 to 2016 with high accuracy (AUC = 0.72). Incorporating hypothesized cyclical dynamics of infected primates improved accuracy (AUC = 0.79). Using boosted regression trees to identify gaps in the mechanistic model, we found that important predictors include current and one-month lagged environmental risk, vaccine coverage, population density, temperature and precipitation. More broadly, we show that for a widespread human viral pathogen, the ecological interactions between environment, vectors, reservoir hosts and humans can predict spillover with surprising accuracy, suggesting the potential to improve preventive action to reduce yellow fever spillover and avert onward epidemics in humans. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.

18.
Mem Inst Oswaldo Cruz ; 114: e190098, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31411310

RESUMO

BACKGROUND: Dengue virus (DENV) has circulated in Brazil for over 30 years. During this time, one serotype has cyclically replaced the other, until recently, when all four distinct serotypes began to circulate together. Persistent circulation of DENV for long time periods makes sequential infections throughout a person's life possible. After primary DENV infection, life-long immunity is developed for the infecting serotype. Since DENV and Zika virus (ZIKV) are antigenically similar, the possibility of cross-reactions has attracted attention and has been demonstrated in vitro. OBJECTIVE: The aim of this study was to investigate whether immune-sera from DENV and ZIKV infected patients would cross-react in vitro with other Flaviviridae family members. METHODS: Cross-reaction of the studied samples with yellow fever virus (YFV), West Nile virus (WNV), Rocio virus (ROCV), Saint Louis virus (SLEV) and Ilheus virus (ILHV) has been investigated by plaque reduction neutralisation test (PRNT) and the antibody-dependent enhancement (ADE) by flow-cytometry. FINDINGS: Antibodies against ZIKV and DENV virus cross-reacted with other flaviviruses either neutralising or enhancing the infection. Thus, viral entrance into FcRFcɣRII-expressing cells were influenced by the cross-reactive antibodies. ZIKV or DENV immune sera enhanced cellular infection by WNV, ILHV, ROCV and SLEV. Finally, DENV immune sera presented higher neutralising activity for YFV and SLEV. While ZIKV immune sera neutralised WNV, ILHV and ROCV with high frequencies of positivity. MAIN CONCLUSIONS: The co-circulation of those viruses in the same area represents a risk for the development of severe infections if they spread throughout the country. Successive flavivirus infections may have an impact on disease pathogenesis, as well as on the development of safe vaccine strategies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Zika virus/imunologia , Reações Cruzadas/imunologia , Flavivirus/classificação , Flavivirus/imunologia , Citometria de Fluxo , Humanos , Testes de Neutralização
19.
PLoS One ; 14(8): e0220773, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31374109

RESUMO

Aedes albopictus is an invasive mosquito species that has spread globally and can transmit several arboviruses, including dengue, chikungunya and yellow fever. The species was first reported in Brazil in 1986 and since then has been found in 24 of the 27 Brazilian states, often in peri-urban environments close to highly urbanized areas. To date, population genetics of this important mosquito in areas in the city of São Paulo has not been investigated. In this study, we used 12 microsatellite loci to investigate the microgeographic population genetics of Ae. albopictus, which is present throughout the city of São Paulo. All the analyses revealed structuring of the populations studied, divided into two groups with restricted gene flow between them and without evidence of isolation by distance. We propose two hypotheses to explain the results: (i) low dispersal capability-limited gene flow between populations is due to the low dispersal capability inherent to Ae. albopictus; and (ii) multiple introductions-the structure identified here results from multiple introductions, which led to different dispersal patterns within the city and more genetic heterogeneity. The ability of Ae. albopictus to invade new areas and expand may explain why these mosquito populations appear to be well established and thriving in the city of São Paulo.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31380302

RESUMO

The present study shows that the most prominent human arboviruses worldwide (dengue viruses 1, 2, 3, and 4, Chikungunya virus, and Zika virus) can infect wild animals and transfer from urban to sylvatic maintenance cycles in South America, as did the yellow fever virus (YFV) in the past. All these viruses are transmitted by the anthropophilic mosquito Aedes aegypti and cause epidemics throughout Brazil. The YFV is the oldest example of an urban arbovirus that became sylvatic in South America. Currently, the disease is a zoonosis of non-human primates that moves like a wave through the forests of the Brazilian countryside, traveling thousands of kilometers, killing many animals and eventually infecting man. However, since 2016, this zoonotic wave has reached the highly populated areas of Southeast Brazil, producing the largest human outbreak in the past 60 years. As with the YFV, sylvatic cycles may occur with dengue, Chikungunya, and Zika. In order to become sylvatic, arboviruses require an apparently unlikely conjunction of factors to unexpectedly take place. These arboviruses could start to infect sylvatic primates and be transmitted by Haemagogus mosquitoes that inhabit tree canopies. We mention here publications reporting evidence of sylvatic cycles of dengue, Chikungunya, and Zika virus in South America. Indeed, it is almost unfeasible to control these cycles of arboviruses since it is impossible to know where, when or why an arboviral spill-over would occur in wild animals. The sylvatic maintenance cycle could preclude the eradication of an arbovirus. Moreover, an arbovirus in a sylvatic cycle could re-emerge anytime, infecting humans and producing outbreaks. In case of the reemergence of an arbovirus, it is crucial to prevent the occurrence of an urban cycle as a spill-back from the sylvatic cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA