Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478265

RESUMO

Optimizing the optoelectronic characteristics of low-dimensional carbon dots (CDs) through surface modifications and doping has proven instrumental in tailoring them for diverse applications. This study explores a facile and economical hydrothermal synthesis method for generating Carbonized Polymer Dots using o-phenylenediamine at different temperatures. The resulting materials exhibit structural and morphological variations linked to the synthesis temperature. A transition from carbon dots (CDs) embedded in reduced graphene oxide (rGO)-like sheet structures at low temperatures to the core-shell structure at the highest temperature is observed in HR-TEM, implying the formation of CPDs. X-ray photoelectron spectroscopy (XPS) corroborates these findings, showing an augmented degree of graphitization in alignment with HR-TEM results. The photoluminescence spectra of CPDs synthesized at the lowest temperature exhibit multiple emission peaks, resulting in a yellowish-orange color. Utilizing these CPDs to fabricate light-emitting diodes (LEDs) produces a vivid bright-green emission with CIE coordinates (0.378, 0.522). Moreover, the CPDs demonstrate solvatochromism across diverse solvents of varying polarity, covering the entire visible spectrum. This intriguing solvatochromic effect positions the CPDs as promising materials for polarity probing applications.

2.
J Fluoresc ; 32(3): 887-906, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35303239

RESUMO

Fluorescent carbon dots (CDs) have acquired growing interest from different areas over decades. Their fascinating property of tunable fluorescence by changing the excitation wavelength has attracted researchers worldwide. Understanding the mechanisms behind fluorescence is of great importance, as they help with the synthesis and applications, significantly when narrowed down to applications with color-tunable mechanisms. But, due to a lack of practical and theoretical information, the fluorescence mechanisms of CDs remain unknown, preventing the production of CDs with desired optical qualities. This review focuses on the PL mechanisms of carbon dots. The quantum confinement effect determined the carbon core, the surface and edge states determined by various surface defects and the connected functional/chemical groups on the surface/edges, the molecular state solely determined the fluorophores in the interior or surface of the CDs, and the Crosslink Enhanced Emission Effect are the currently confirmed PL mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA