Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7758, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237615

RESUMO

Lysine-specific histone demethylase 1 (LSD1), which demethylates mono- or di- methylated histone H3 on lysine 4 (H3K4me1/2), is essential for early embryogenesis and development. Here we show that LSD1 is dispensable for mouse embryonic stem cell (ESC) self-renewal but is required for mouse ESC growth and differentiation. Reintroduction of a catalytically-impaired LSD1 (LSD1MUT) recovers the proliferation capability of mouse ESCs, yet the enzymatic activity of LSD1 is essential to ensure proper differentiation. Indeed, increased H3K4me1 in Lsd1 knockout (KO) mouse ESCs does not lead to major changes in global gene expression programs related to stemness. However, ablation of LSD1 but not LSD1MUT results in decreased DNMT1 and UHRF1 proteins coupled to global hypomethylation. We show that both LSD1 and LSD1MUT control protein stability of UHRF1 and DNMT1 through interaction with HDAC1 and the ubiquitin-specific peptidase 7 (USP7), consequently, facilitating the deacetylation and deubiquitination of DNMT1 and UHRF1. Our studies elucidate a mechanism by which LSD1 controls DNA methylation in mouse ESCs, independently of its lysine demethylase activity.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Diferenciação Celular , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Histona Desmetilases , Camundongos Knockout , Células-Tronco Embrionárias Murinas , Ubiquitina-Proteína Ligases , Animais , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Camundongos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Células-Tronco Embrionárias Murinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Histonas/metabolismo , Proliferação de Células , Ubiquitinação
2.
NAR Cancer ; 6(3): zcae031, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39045152
3.
NAR Cancer ; 6(1): zcae009, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444581

RESUMO

Translational regulation is an important step in the control of gene expression. In cancer cells, the orchestration of both global control of protein synthesis and selective translation of specific mRNAs promote tumor cell survival, angiogenesis, transformation, invasion and metastasis. N6-methyladenosine (m6A), the most prevalent mRNA modification in higher eukaryotes, impacts protein translation. Over the past decade, the development of m6A mapping tools has facilitated comprehensive functional investigations, revealing the involvement of this chemical mark, together with its writer METTL3, in promoting the translation of both oncogenes and tumor suppressor transcripts, with the impact being context-dependent. This review aims to consolidate our current understanding of how m6A and METTL3 shape translation regulation in the realm of cancer biology. In addition, it delves into the role of cytoplasmic METTL3 in protein synthesis, operating independently of its catalytic activity. Ultimately, our goal is to provide critical insights into the interplay between m6A, METTL3 and translational regulation in cancer, offering a deeper comprehension of the mechanisms sustaining tumorigenesis.

4.
Nat Commun ; 14(1): 1694, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973285

RESUMO

N6-methyladenosine (m6A), one of the most prevalent mRNA modifications in eukaryotes, plays a critical role in modulating both biological and pathological processes. However, it is unknown whether mutant p53 neomorphic oncogenic functions exploit dysregulation of m6A epitranscriptomic networks. Here, we investigate Li-Fraumeni syndrome (LFS)-associated neoplastic transformation driven by mutant p53 in iPSC-derived astrocytes, the cell-of-origin of gliomas. We find that mutant p53 but not wild-type (WT) p53 physically interacts with SVIL to recruit the H3K4me3 methyltransferase MLL1 to activate the expression of m6A reader YTHDF2, culminating in an oncogenic phenotype. Aberrant YTHDF2 upregulation markedly hampers expression of multiple m6A-marked tumor-suppressing transcripts, including CDKN2B and SPOCK2, and induces oncogenic reprogramming. Mutant p53 neoplastic behaviors are significantly impaired by genetic depletion of YTHDF2 or by pharmacological inhibition using MLL1 complex inhibitors. Our study reveals how mutant p53 hijacks epigenetic and epitranscriptomic machinery to initiate gliomagenesis and suggests potential treatment strategies for LFS gliomas.


Assuntos
Glioma , Síndrome de Li-Fraumeni , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Síndrome de Li-Fraumeni/genética , Transformação Celular Neoplásica/genética , Glioma/genética , Proteoglicanas/metabolismo
5.
Oncogene ; 42(12): 911-925, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36725888

RESUMO

Alternative splicing (AS) enables differential inclusion of exons from a given transcript, thereby contributing to the transcriptome and proteome diversity. Aberrant AS patterns play major roles in the development of different pathologies, including breast cancer. N6-methyladenosine (m6A), the most abundant internal modification of eukaryotic mRNA, influences tumor progression and metastasis of breast cancer, and it has been recently linked to AS regulation. Here, we identify a specific AS signature associated with breast tumorigenesis in vitro. We characterize for the first time the role of METTL3 in modulating breast cancer-associated AS programs, expanding the role of the m6A-methyltransferase in tumorigenesis. Specifically, we find that both m6A deposition in splice site boundaries and in splicing and transcription factor transcripts, such as MYC, direct AS switches of specific breast cancer-associated transcripts. Finally, we show that five of the AS events validated in vitro are associated with a poor overall survival rate for patients with breast cancer, suggesting the use of these AS events as a novel potential prognostic biomarker.


Assuntos
Processamento Alternativo , Neoplasias da Mama , Humanos , Feminino , Processamento Alternativo/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Transcriptoma , Carcinogênese
6.
EMBO Rep ; 23(3): e53191, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037361

RESUMO

The pluripotent state is not solely governed by the action of the core transcription factors OCT4, SOX2, and NANOG, but also by a series of co-transcriptional and post-transcriptional events, including alternative splicing (AS) and the interaction of RNA-binding proteins (RBPs) with defined subpopulations of RNAs. Zinc Finger Protein 207 (ZFP207) is an essential transcription factor for mammalian embryonic development. Here, we employ multiple functional analyses to characterize its role in mouse embryonic stem cells (ESCs). We find that ZFP207 plays a pivotal role in ESC maintenance, and silencing of Zfp207 leads to severe neuroectodermal differentiation defects. In striking contrast to human ESCs, mouse ZFP207 does not transcriptionally regulate neuronal and stem cell-related genes but exerts its effects by controlling AS networks and by acting as an RBP. Our study expands the role of ZFP207 in maintaining ESC identity, and underscores the functional versatility of ZFP207 in regulating neural fate commitment.


Assuntos
Processamento Alternativo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , RNA , Animais , Diferenciação Celular/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , RNA/metabolismo
7.
Methods Mol Biol ; 2404: 355-362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34694619

RESUMO

N6-methyladenosine (m6A) is the most abundant internal modification on messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) in eukaryotes. It influences gene expression by regulating RNA processing, nuclear export, mRNA decay, and translation. Hence, m6A controls fundamental cellular processes, and dysregulated deposition of m6A has been acknowledged to play a role in a broad range of human diseases, including cancer. m6A RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq or m6A-seq) is a powerful technique to map m6A in a transcriptome-wide level. After immunoprecipitation of fragmented polyadenylated (poly(A)+) rich RNA by using specific anti-m6A antibodies, both the immunoprecipitated RNA fragments together with the input control are subjected to massively parallel sequencing. The generation of such comprehensive methylation profiles of signal enrichment relative to input control is necessary in order to better comprehend the pathogenesis behind aberrant m6A deposition.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Adenosina/análogos & derivados , Perfilação da Expressão Gênica , Humanos , Imunoprecipitação , RNA/genética
8.
Nucleic Acids Res ; 50(D1): D231-D235, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34893873

RESUMO

The MODOMICS database has been, since 2006, a manually curated and centralized resource, storing and distributing comprehensive information about modified ribonucleosides. Originally, it only contained data on the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. Over the years, prompted by the accumulation of new knowledge and new types of data, it has been updated with new information and functionalities. In this new release, we have created a catalog of RNA modifications linked to human diseases, e.g., due to mutations in genes encoding modification enzymes. MODOMICS has been linked extensively to RCSB Protein Data Bank, and sequences of experimentally determined RNA structures with modified residues have been added. This expansion was accompanied by including nucleotide 5'-monophosphate residues. We redesigned the web interface and upgraded the database backend. In addition, a search engine for chemically similar modified residues has been included that can be queried by SMILES codes or by drawing chemical molecules. Finally, previously available datasets of modified residues, biosynthetic pathways, and RNA-modifying enzymes have been updated. Overall, we provide users with a new, enhanced, and restyled tool for research on RNA modification. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.


Assuntos
Bases de Dados de Ácidos Nucleicos , Enzimas/genética , RNA/genética , Ribonucleosídeos/genética , Interface Usuário-Computador , Sequência de Bases , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Gráficos por Computador , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Enzimas/metabolismo , Gastroenteropatias/genética , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Doenças Hematológicas/genética , Doenças Hematológicas/metabolismo , Doenças Hematológicas/patologia , Humanos , Internet , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , Doenças Musculoesqueléticas/genética , Doenças Musculoesqueléticas/metabolismo , Doenças Musculoesqueléticas/patologia , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Ribonucleosídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Cells ; 10(11)2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831474

RESUMO

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) provide a powerful model system to uncover fundamental mechanisms that control cellular identity during mammalian development. Histone methylation governs gene expression programs that play a key role in the regulation of the balance between self-renewal and differentiation of ESCs. Lysine-specific demethylase 1 (LSD1, also known as KDM1A), the first identified histone lysine demethylase, demethylates H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. Moreover, it has also been shown to demethylate non-histone substrates playing a central role in the regulation of numerous cellular processes. In this review, we summarize current knowledge about LSD1 and the molecular mechanism by which LSD1 influences the stem cells state, including the regulatory circuitry underlying self-renewal and pluripotency.


Assuntos
Diferenciação Celular , Histona Desmetilases/metabolismo , Células-Tronco/citologia , Células-Tronco/enzimologia , Animais , Autorrenovação Celular , Reprogramação Celular , Metilação de DNA/genética , Histona Desmetilases/química , Humanos
10.
NAR Cancer ; 3(3): zcab036, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34541538

RESUMO

Collectively referred to as the epitranscriptome, RNA modifications play important roles in gene expression control regulating relevant cellular processes. In the last few decades, growing numbers of RNA modifications have been identified not only in abundant ribosomal (rRNA) and transfer RNA (tRNA) but also in messenger RNA (mRNA). In addition, many writers, erasers and readers that dynamically regulate the chemical marks have also been characterized. Correct deposition of RNA modifications is prerequisite for cellular homeostasis, and its alteration results in aberrant transcriptional programs that dictate human disease, including breast cancer, the most frequent female malignancy, and the leading cause of cancer-related death in women. In this review, we emphasize the major RNA modifications that are present in tRNA, rRNA and mRNA. We have categorized breast cancer-associated chemical marks and summarize their contribution to breast tumorigenesis. In addition, we describe less abundant tRNA modifications with related pathways implicated in breast cancer. Finally, we discuss current limitations and perspectives on epitranscriptomics for use in therapeutic strategies against breast and other cancers.

11.
Nat Commun ; 12(1): 1716, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741917

RESUMO

Cancer stem cells (CSCs) are a small but critical cell population for cancer biology since they display inherent resistance to standard therapies and give rise to metastases. Despite accruing evidence establishing a link between deregulation of epitranscriptome-related players and tumorigenic process, the role of messenger RNA (mRNA) modifications in the regulation of CSC properties remains poorly understood. Here, we show that the cytoplasmic pool of fat mass and obesity-associated protein (FTO) impedes CSC abilities in colorectal cancer through its N6,2'-O-dimethyladenosine (m6Am) demethylase activity. While m6Am is strategically located next to the m7G-mRNA cap, its biological function is not well understood and has not been addressed in cancer. Low FTO expression in patient-derived cell lines elevates m6Am level in mRNA which results in enhanced in vivo tumorigenicity and chemoresistance. Inhibition of the nuclear m6Am methyltransferase, PCIF1/CAPAM, fully reverses this phenotype, stressing the role of m6Am modification in stem-like properties acquisition. FTO-mediated regulation of m6Am marking constitutes a reversible pathway controlling CSC abilities. Altogether, our findings bring to light the first biological function of the m6Am modification and its potential adverse consequences for colorectal cancer management.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Neoplasias Colorretais/metabolismo , Citoplasma/metabolismo , Desmetilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo
12.
RNA ; 27(4): 367-389, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33376192

RESUMO

RNA modifications have recently emerged as a widespread and complex facet of gene expression regulation. Counting more than 170 distinct chemical modifications with far-reaching implications for RNA fate, they are collectively referred to as the epitranscriptome. These modifications can occur in all RNA species, including messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). In mRNAs the deposition, removal, and recognition of chemical marks by writers, erasers and readers influence their structure, localization, stability, and translation. In turn, this modulates key molecular and cellular processes such as RNA metabolism, cell cycle, apoptosis, and others. Unsurprisingly, given their relevance for cellular and organismal functions, alterations of epitranscriptomic marks have been observed in a broad range of human diseases, including cancer, neurological and metabolic disorders. Here, we will review the major types of mRNA modifications and editing processes in conjunction with the enzymes involved in their metabolism and describe their impact on human diseases. We present the current knowledge in an updated catalog. We will also discuss the emerging evidence on the crosstalk of epitranscriptomic marks and what this interplay could imply for the dynamics of mRNA modifications. Understanding how this complex regulatory layer can affect the course of human pathologies will ultimately lead to its exploitation toward novel epitranscriptomic therapeutic strategies.


Assuntos
Doenças Metabólicas/genética , Neoplasias/genética , Doenças do Sistema Nervoso/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA não Traduzido/genética , Apoptose/genética , Ciclo Celular/genética , Epigênese Genética , Marcadores Genéticos , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo
13.
Biochim Biophys Acta Gene Regul Mech ; 1862(3): 394-402, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30412796

RESUMO

Chemical modifications of RNA provide a direct and rapid way to modulate the existing transcriptome, allowing the cells to adapt rapidly to the changing environment. Among these modifications, N6-methyladenosine (m6A) has recently emerged as a widely prevalent mark of messenger RNA in eukaryotes, linking external stimuli to an intricate network of transcriptional, post-transcriptional and translational processes. m6A modification modulates a broad spectrum of biochemical processes, including mRNA decay, translation and splicing. Both m6A modification and the enzymes that control m6A metabolism are essential for normal development. In this review, we summarized the most recent findings on the role of m6A modification in maintenance of the pluripotency of embryonic stem cells (ESCs), cell fate specification, the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs), and differentiation of stem and progenitor cells. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.


Assuntos
Adenosina/análogos & derivados , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Processamento Pós-Transcricional do RNA , Adenosina/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
14.
Front Biosci (Landmark Ed) ; 23(11): 2106-2132, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29772549

RESUMO

High-throughput analyses have revealed that the vast majority of the transcriptome does not code for proteins. These non-translated transcripts, when larger than 200 nucleotides, are termed long non-coding RNAs (lncRNAs), and play fundamental roles in diverse cellular processes. LncRNAs are subject to dynamic chemical modification, adding another layer of complexity to our understanding of the potential roles that lncRNAs play in health and disease. Many lncRNAs regulate transcriptional programs by influencing the epigenetic state through direct interactions with chromatin-modifying proteins. Among these proteins, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) have been shown to be recruited by lncRNAs to silence target genes. Aberrant expression, deficiency or mutation of both lncRNA and Polycomb have been associated with numerous human diseases, including cancer. In this review, we have highlighted recent findings regarding the concerted mechanism of action of Polycomb group proteins (PcG), acting together with some classically defined lncRNAs including X-inactive specific transcript (XIST), antisense non-coding RNA in the INK4 locus (ANRIL), metastasis associated lung adenocarcinoma transcript 1 (MALAT1), and HOX transcript antisense RNA (HOTAIR).


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteínas do Grupo Polycomb/genética , RNA Longo não Codificante/genética , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética
15.
Nucleic Acids Res ; 45(19): 11106-11120, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977470

RESUMO

We observed overexpression and increased intra-nuclear accumulation of the PRMT5/WDR77 in breast cancer cell lines relative to immortalized breast epithelial cells. Utilizing mass spectrometry and biochemistry approaches we identified the Zn-finger protein ZNF326, as a novel interaction partner and substrate of the nuclear PRMT5/WDR77 complex. ZNF326 is symmetrically dimethylated at arginine 175 (R175) and this modification is lost in a PRMT5 and WDR77-dependent manner. Loss of PRMT5 or WDR77 in MDA-MB-231 cells leads to defects in alternative splicing, including inclusion of A-T rich exons in target genes, a phenomenon that has previously been observed upon loss of ZNF326. We observed that the alternatively spliced transcripts of a subset of these genes, involved in proliferation and tumor cell migration like REPIN1/AP4, ST3GAL6, TRNAU1AP and PFKM are degraded upon loss of PRMT5. In summary, we have identified a novel mechanism through which the PRMT5/WDR77 complex maintains the balance between splicing and mRNA stability through methylation of ZNF326.


Assuntos
Processamento Alternativo , Proteínas de Transporte/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Immunoblotting , Células MCF-7 , Ligação Proteica , Proteína-Arginina N-Metiltransferases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem , Fatores de Transcrição/genética
16.
Curr Opin Genet Dev ; 46: 77-82, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28683341

RESUMO

Chemical modifications of RNA provide a direct and rapid way to manipulate the existing transcriptome, allowing rapid responses to the changing environment further enriching the regulatory capacity of RNA. N6-Methyladenosine (m6A) has been identified as the most abundant internal modification of messenger RNA in eukaryotes, linking external stimuli to an intricate network of transcriptional, post-transcriptional and translational processes. M6A modification affects a broad spectrum of cellular functions, including maintenance of the pluripotency of embryonic stem cells (ESCs) and the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). In this review, we summarize the most recent findings on m6A modification with special focus on the different studies describing how m6A is implicated in ESC self-renewal, cell fate specification and iPSC generation.


Assuntos
Adenosina/análogos & derivados , Diferenciação Celular/genética , Reprogramação Celular/genética , Células-Tronco Pluripotentes , Adenosina/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , Transcriptoma/genética
17.
Stem Cell Reports ; 9(1): 92-107, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28579396

RESUMO

THAP1 (THAP [Thanatos-associated protein] domain-containing, apoptosis-associated protein 1) is a ubiquitously expressed member of a family of transcription factors with highly conserved DNA-binding and protein-interacting regions. Mutations in THAP1 cause dystonia, DYT6, a neurologic movement disorder. THAP1 downstream targets and the mechanism via which it causes dystonia are largely unknown. Here, we show that wild-type THAP1 regulates embryonic stem cell (ESC) potential, survival, and proliferation. Our findings identify THAP1 as an essential factor underlying mouse ESC survival and to some extent, differentiation, particularly neuroectodermal. Loss of THAP1 or replacement with a disease-causing mutation results in an enhanced rate of cell death, prolongs Nanog, Prdm14, and/or Rex1 expression upon differentiation, and results in failure to upregulate ectodermal genes. ChIP-Seq reveals that these activities are likely due in part to indirect regulation of gene expression.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Distonia/genética , Distonia/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Mutação
18.
Trends Biochem Sci ; 41(12): 986-988, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27519282
19.
Cancer Res ; 76(19): 5615-5627, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27520449

RESUMO

Cancer-initiating cells (CIC) undergo asymmetric growth patterns that increase phenotypic diversity and drive selection for chemotherapeutic resistance and tumor relapse. WNT signaling is a hallmark of colon CIC, often caused by APC mutations, which enable activation of ß-catenin and MYC Accumulating evidence indicates that long noncoding RNAs (lncRNA) contribute to the stem-like character of colon cancer cells. In this study, we report enrichment of the lncRNA RBM5-AS1/LUST during sphere formation of colon CIC. Its silencing impaired WNT signaling, whereas its overexpression enforced WNT signaling, cell growth, and survival in serum-free media. RBM5-AS1 has been little characterized previously, and we determined it to be a nuclear-retained transcript that selectively interacted with ß-catenin. Mechanistic investigations showed that silencing or overexpression of RBM5-AS1 caused a respective loss or retention of ß-catenin from TCF4 complexes bound to the WNT target genes SGK1, YAP1, and MYC Our work suggests that RBM5-AS1 activity is critical for the functional enablement of colon cancer stem-like cells. Furthermore, it defines the mechanism of action of RBM5-AS1 in the WNT pathway via physical interactions with ß-catenin, helping organize transcriptional complexes that sustain colon CIC function. Cancer Res; 76(19); 5615-27. ©2016 AACR.


Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/genética , Células-Tronco Neoplásicas/fisiologia , RNA Antissenso/fisiologia , RNA Longo não Codificante/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas Supressoras de Tumor/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Antígeno CD24/genética , Linhagem Celular Tumoral , Ciclina D1/genética , Genes myc , Humanos , Receptores de Hialuronatos/genética , Proteínas Imediatamente Precoces/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição 4 , Fatores de Transcrição/fisiologia , Via de Sinalização Wnt , beta Catenina/fisiologia
20.
ACS Med Chem Lett ; 7(6): 601-5, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27326334

RESUMO

The chromobox 7 (CBX7) protein of the polycomb repressive complex 1 (PRC1) functions to repress transcription of tumor suppressor p16 (INK4a) through long noncoding RNA, ANRIL (antisense noncoding RNA in the INK4 locus) directed chromodomain (ChD) binding to trimethylated lysine 27 of histone H3 (H3K27me3), resulting in chromatin compaction at the INK4a/ARF locus. In this study, we report structure-guided discovery of two distinct classes of small-molecule antagonists for the CBX7ChD. Our Class A compounds, a series including analogues of the previously reported MS452, inhibit CBX7ChD/methyl-lysine binding by occupying the H3K27me3 peptide binding site, whereas our Class B compound, the newly discovered MS351, appears to inhibit H3K27me3 binding when CBX7ChD is bound to RNA. Our crystal structure of the CBX7ChD/MS351 complex reveals the molecular details of ligand recognition by the aromatic cage residues that typically engage in methyl-lysine binding. We further demonstrate that MS351 effectively induces transcriptional derepression of CBX7 target genes, including p16 (INK4a) in mouse embryonic stem cells and human prostate cancer PC3 cells. Thus, MS351 represents a new class of ChD antagonists that selectively targets the biologically active form of CBX7 of the PRC1 in long noncoding RNA- and H3K27me3-directed gene transcriptional repression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA