Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Prev Vet Med ; 174: 104775, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31785427

RESUMO

Measurement of the somatic cell count (SCC) in milk is commonly used to detect mastitis in lactating dairy cows. Many techniques and tools have been developed and adapted to quantify milk SCC, but few tools have been evaluated in their ability to enumerate somatic cells in non-lactating bovine mammary secretions. This limits the tools available for detecting mastitis in non-lactating animals. The objective of these studies was to evaluate methods of somatic cell quantification, originally developed for milk, in their ability to quantify the SCC in non-lactating bovine mammary secretions when compared to the gold standard microscopic quantification method. Two experiments were conducted. In a first experiment, 222 mammary secretions were collected and diluted 1:10 with PBS. Cells in these suspensions were quantified microscopically and with a DeLaval Cell Counter. Microscopic SCC (MSCC) ranged from 1.9 × 106 to 259.5 × 106 cells/mL while DeLaval Cell Counter SCC (DSCC) ranged from 1.8 × 106 to 27.0 × 106 cells/mL; a measurement of agreement between the 2 measures, based on the Lin's Concordance Correlation Coefficient (CCC) suggested moderate agreement between measures (CCC = 0.60). In a second experiment 72 mammary secretions were collected and diluted 1:50 in PBS. Somatic cells in these suspensions were quantified microscopically, with a DeLaval Cell Counter, and by a DHIA laboratory using a Fossomatic™ FC. MSCC ranged from 1.6 to 47.5 × 106 cells/mL, DSCC ranged from 1.0 to 35.7 × 106 cells/mL, and Fossomatic SCC (FMSCC) ranged from 1.6 to 46.7 × 106 cells/mL. CCCs of 0.81 and 0.88 resulted when DSCC and FMSCC were paired with the MSCC, respectively. The results of this work indicate that a significantly greater concentration of somatic cells exist in non-lactating mammary secretions and dilution of these mammary secretions influences accuracy of SCC estimates. Future studies seeking to quantify somatic cells in mammary secretions from non-lactating cows should identify the most appropriate dilution factors specific to each method of measure, given that these two factors will influence the accuracy of SCC estimates. Development of a standardized approach for quantifying somatic cells in non-lactating dairy animals such as heifers and cows, via a rapid automated counter, can allow for the detection of mastitis in non-lactating dairy animals.


Assuntos
Contagem de Células/veterinária , Indústria de Laticínios/métodos , Mastite Bovina/diagnóstico , Animais , Bovinos , Contagem de Células/instrumentação , Feminino , Lactação , Glândulas Mamárias Animais/metabolismo
2.
J Dairy Sci ; 102(3): 2607-2617, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30639023

RESUMO

Intramammary infections (IMI) are prevalent in nonlactating dairy cattle and are known to alter mammary structure and negatively affect the amount of mammary epithelium in the gland. Mechanisms responsible for the observed changes in mammary growth during an IMI are poorly understood, yet the importance of the key mammogenic hormones driving mammary growth is well recognized. This study's objective was to characterize the expression of estrogen receptor α (ESR1) and progesterone receptor (PGR) in mammary glands stimulated to grow and develop in the presence or absence of an IMI as well as preliminarily characterize myoepithelial cell response to IMI. Mammary growth was stimulated in 18 nonpregnant, nonlactating dairy cows using subcutaneous estradiol and progesterone injections, and 2 culture-negative quarters of each cow were subsequently infused with either saline (n = 18) or Staphylococcus aureus (n = 18). Mammary parenchyma tissues were collected 5 d (n = 9) or 10 d (n = 9) postchallenge and examined using immunofluorescence microscopy to quantify positive nuclei and characterize staining features. There tended to be a greater number of ESR1-positive nuclei observed across 8 random mammary parenchyma fields of view in saline quarters than in Staph. aureus quarters (201 vs. 163 ± 44 nuclei). Saline quarters also contained a greater number of PGR-positive nuclei (520 vs. 440 ± 45 nuclei) and myoepithelial cells (971 vs. 863 ± 48 nuclei) than Staph. aureus-challenged quarters. However, when ESR1, PGR, and myoepithelial nuclei counts were adjusted for Staph. aureus quarters containing less epithelium, differences between quarter treatments abated. The examined ESR1 and PGR staining characteristics were similar between saline and Staph. aureus quarters but were differentially affected by day of tissue collection. Additionally, nuclear staining area of myoepithelial cells was greater in Staph. aureus quarters than in saline quarters. These results indicate that IMI had little effect on the number or staining characteristics of ESR1- or PGR-positive nuclei relative to epithelial area, but myoepithelial cells appear to be affected by IMI and the associated inflammation in nonlactating mammary glands that were stimulated to grow rapidly using mammogenic hormones. Accordingly, reductions in mammary epithelium in affected glands are not suspected to be resultant of alterations in the number or staining characteristics of ESR1- or PGR-positive mammary epithelial cells.


Assuntos
Estradiol/administração & dosagem , Receptor alfa de Estrogênio/análise , Glândulas Mamárias Animais/química , Mastite Bovina/metabolismo , Progesterona/administração & dosagem , Receptores de Progesterona/análise , Animais , Bovinos , Contagem de Células/veterinária , Feminino , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Mastite Bovina/microbiologia , Leite/química , Infecções Estafilocócicas/veterinária , Staphylococcus aureus
3.
J Dairy Sci ; 102(1): 857-865, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30415855

RESUMO

Bovine mastitis is a common and costly disease in the dairy industry and is known to negatively affect the amount of epithelium in nonlactating mammary glands. Despite this recognition, an understanding of the mechanisms contributing to reductions in epithelium is lacking. The objective of this study was to evaluate cellular apoptosis and proliferation in uninfected and Staphylococcus aureus-infected mammary glands that were stimulated to rapidly grow and develop. Estradiol and progesterone injections were administered to 18 nonlactating dairy cows to induce mammary growth, and 2 quarters from each animal were infused with saline or Staph. aureus. Mammary tissues were collected at 5 (n = 9) and 10 d (n = 9) postinfusion and examined using quantitative bright field and florescent immunohistochemistry. Staphylococcus aureus mammary glands tended to have a greater number of mammary epithelial cells undergoing apoptosis than saline quarters. In the stromal compartment, challenged quarters contained a lower proportion of cells undergoing apoptosis than saline quarters overall; however, cell types undergoing apoptosis were differentially affected. Staphylococcus aureus quarters contained a lesser percentage of apoptotic fibroblasts while also containing more nonapoptotic immune cells than saline quarters in the intralobular stroma compartment. A similar number of proliferating epithelial cells were present in Staph. aureus and saline mammary tissues, but more proliferating cells were present in the intralobular stroma compartment of Staph. aureus-infused quarters than those infused with saline. When these cellular responses are considered together, it indicates that changes in cellular apoptosis and proliferation contribute to changes in the gland structure by potentiating the expansion of the intralobular stromal compartment, via cellular accumulation, and limiting the amount of epithelium due to increases in cellular apoptosis in affected glands. Reductions in mammary epithelium are expected to reduce future milk yields and productive herd life.


Assuntos
Apoptose , Estradiol/administração & dosagem , Mastite Bovina/microbiologia , Mastite Bovina/fisiopatologia , Progesterona/administração & dosagem , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/fisiologia , Animais , Bovinos , Contagem de Células/veterinária , Proliferação de Células , Feminino , Lactação , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/microbiologia , Leite/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/fisiopatologia
4.
J Dairy Sci ; 102(2): 1630-1641, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30594381

RESUMO

Increases in milk replacer dietary energy subsequently increase growth and weight in preweaned dairy heifers. However, the underlying effects of dietary component increases on key functional pathways have yet to be fully investigated. Elucidating these relationships may provide insights into the mechanisms through which protein and fat are partitioned for tissue growth and metabolism. We hypothesized that genes within key growth and metabolic pathways would be differentially expressed between calves fed a protein- and fat-restricted diet and calves fed a protein- and fat-enhanced diet. The objectives of this study were to (1) identify genes differentially expressed between dietary restricted calves and enhanced calves and (2) determine the key regulatory pathways influenced by these genes. Preweaned Holstein heifers (n = 12; 6 ± 0.02 d of age) were randomly assigned to 1 of 2 milk replacer diets: enhanced (28.9% crude protein, 26.2% fat; n = 6) or restricted (20.9% crude protein, 19.8% fat; n = 6). Growth measures included average daily gain and gain-to-feed ratio. After 56 d, calves were killed for tissue collection. Samples from longissimus dorsi, adipose, and liver tissues were collected and RNA was isolated for RNA sequencing analysis. The MIXED procedure of SAS (SAS Institute Inc., Cary, NC) was used to evaluate relationships of growth with dietary energy. Fixed effects included date of collection and time (day). Random effects included sire and birth weight. The RNA sequencing analysis was performed using CLC Genomics Workbench (Qiagen, Germantown, MD), and the Robinson and Smith exact test was used to identify differentially expressed genes between diets. The Protein Analysis Through Evolutionary Relationships (PANTHER) database was then used to identify functional categories of differentially expressed genes. Enhanced calves had increased growth rates and feed efficiency compared with restricted calves (average daily gain = 0.76 and 0.22, respectively; gain-to-feed ratio = 0.10 and 0.06, respectively). There were 238 differentially expressed genes in adipose, 227 in longissimus dorsi, and 40 in liver. We identified 10 genes concordant among tissues. As expected, functional analyses suggested that the majority of genes were associated with metabolic or cellular processes, predominantly cell communication and cell cycle. Overall, it appears that varying levels of dietary protein and fat influence calf growth and development through metabolic processes, including oxidative phosphorylation and glyceroneogenesis. However, protein- and fat-restricted calves appeared to experience metabolic stress at a cellular level, as evidenced by an upregulation in stress response pathways, including genes in the p53 pathway. Calves could be fed at a higher level of protein and fat to decrease the prevalence of metabolic stress at the cellular level, but evidence indicating the presence of inflammatory stress and adipose fibrosis in enhanced calves prompts further investigation of the effects of milk replacer component levels.


Assuntos
Ração Animal/análise , Bovinos , Gorduras na Dieta/farmacologia , Proteínas Alimentares/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Feminino , Leite , Obesidade , Transcriptoma , Desmame
5.
BMC Genomics ; 19(1): 900, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30537932

RESUMO

BACKGROUND: To reduce costs of rearing replacement heifers, researchers have focused on decreasing age at breeding and first calving. To increase returns upon initiation of lactation the focus has been on increasing mammary development prior to onset of first lactation. Enhanced plane of nutrition pre-weaning may benefit the entire replacement heifer operation by promoting mammary gland development and greater future production. METHODS: Twelve Holstein heifer calves (< 1 week old) were reared on 1 of 2 dietary treatments (n = 6/group) for 8 weeks: a control group fed a restricted milk replacer at 0.45 kg/d (R, 20% crude protein, 20% fat), or an accelerated group fed an enhanced milk replacer at 1.13 kg/d (EH, 28% crude protein, 25% fat). At weaning (8 weeks), calves were euthanized and sub-samples of mammary parenchyma (PAR) and mammary fat pad (MFP) were harvested upon removal from the body. Total RNA from both tissues was extracted and sequenced using the Illumina HiSeq2500 platform. The Dynamic Impact Approach (DIA) and Ingenuity Pathway Analysis (IPA) were used for pathway analysis and functions, gene networks, and cross-talk analyses of the two tissues. RESULTS: When comparing EH vs R 1561 genes (895 upregulated, 666 downregulated) and 970 genes (506 upregulated, 464 downregulated) were differentially expressed in PAR and MFP, respectively. DIA and IPA results highlight a greater proliferation and differentiation activity in both PAR and MFP, supported by an increased metabolic activity. When calves were fed EH, the PAR displayed transcriptional signs of greater overall organ development, with higher ductal growth and branching, together with a supportive blood vessel and nerve network. These activities were mediated by intracellular cascades, such as AKT, SHH, MAPK, and Wnt, probably activated by hormones, growth factors, and endogenous molecules. The analysis also revealed strong communication between MFP and PAR. CONCLUSION: The transcriptomics and bioinformatics approach highlighted key mechanisms that mediate the mammary gland response to a higher plane of nutrition in the pre-weaning period.


Assuntos
Tecido Adiposo/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Estado Nutricional/genética , Transcriptoma/genética , Desmame , Animais , Bovinos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
6.
Domest Anim Endocrinol ; 65: 49-55, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29894894

RESUMO

It is established that the ovary and estrogen are essential to bovine mammary development with the onset of puberty. Recent studies have shown that ovariectomy in the very early prepubertal period, well before onset of puberty, also dramatically impairs mammary growth. Similarly, prepubertal heifers treated with the antiestrogen tamoxifen (TAM) also exhibit markedly impaired mammary growth in correspondence with reduced estrogen receptor α (ESR1) expression. Our objective was to evaluate the effect of TAM on the mammary stroma and specifically to determine if the reported decrease in mammary development was related to changes in TAM-induced alterations in the stroma surrounding the mammary parenchyma. Briefly, 16 Holstein heifers calves were randomly assigned to one of 2 treatment groups: TAM-injected or control. Calves were administered TAM (0.3 mg kg1 d1) or placebo from 28 to 120 d of age. At day 120, calves were euthanized and udders removed. Mammary tissue from near the boundary between the parenchyma and surrounding mammary fat pad was collected for histology and morphometric analysis, expression of selected extracellular matrix-related genes, and quantitation of stromal collagen deposition by study of Sirius Red-stained tissue sections imaged with polarized light. Compared with tissue from control heifers, TAM heifers frequently exhibited areas with abundant fibroblasts and mesenchymal cells especially within the intralobular stroma, as well as less complex ductal structures. Among the array of extracellular matrix-related genes tested, only a small difference (P < 0.05) in expression of laminin was found between treatments. The relative tissue area occupied by stromal tissue was not impacted by treatment. However, the deposition of collagen within the stromal tissue was more than doubled (P < 0.0001) in TAM-treated heifers. These data suggest that blocking ESR1 expression with TAM allows for excessive collagen deposition in the stroma surrounding the developing epithelial structures and that this interferes with both the degree of overall mammary parenchymal development, as well as the pattern of normal ductal morphogenesis.


Assuntos
Bovinos , Colágeno/metabolismo , Antagonistas de Estrogênios/administração & dosagem , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Tamoxifeno/administração & dosagem , Animais , Colágeno/análise , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Glândulas Mamárias Animais/química , Placebos , Distribuição Aleatória
7.
J Dairy Sci ; 101(8): 7614-7617, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29729907

RESUMO

Tumor protein 63 (p63) is a nuclear antigen found in basal epithelial cells. To date, 10 isoforms of p63 have been identified, falling into 2 major groups identified by presence or absence of an N-terminal transactivation domain (TAp63 and ΔNp63, respectively). Literature suggests that ΔNp63 is the predominant form expressed in basal epithelial cells and myoepithelial cells (MYEC). The mouse anti-p63 antibody, clone 4B1E12, has been used as a specific nuclear marker for bovine MYEC. Unfortunately, this antibody is no longer commercially available. A new mouse monoclonal antibody, clone BC28, specific to ΔNp63 (designated p40) has been developed. We hypothesized that the p40 antibody would be an appropriate substitution as a MYEC and epithelial basal cell marker. An array of archived formalin-fixed, paraffin-embedded bovine tissues were subjected to immunohistochemical staining for either p40 or p63, with a subset being dual stained for direct comparison. Positive staining for p40 and p63 was observed in serial sections of mammary, skin, rumen, salivary gland, ureter, and bladder. As predicted, negative staining for p40 and p63 was observed in testis and intestine. Dual staining for p40 and p63 in calf mammary (n = 4), lactating mammary (n = 4), rumen (n = 4), and skin (n = 4) showed nearly 100% agreement. Thus, we established that the mouse monoclonal antibody, clone BC28, is a suitable replacement for anti-p63, clone 4B1E12, as a marker of MYEC and basal epithelial cells in bovine tissues.


Assuntos
Bovinos , Imuno-Histoquímica/veterinária , Proteínas Supressoras de Tumor/metabolismo , Animais , Anticorpos Monoclonais , Feminino , Imuno-Histoquímica/métodos , Lactação , Isoformas de Proteínas , Proteínas Supressoras de Tumor/análise
8.
J Dairy Sci ; 100(10): 8534-8543, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28755943

RESUMO

Preweaning diet and estradiol treatment alters mammary development. Our objectives were to study the effects of diet and estradiol on proliferation of mammary epithelial cells and expression of estrogen receptor α (ESR1) and progesterone receptors (PGR) in these cells. Thirty-six Holstein heifer calves were raised on (1) a control milk replacer fed at 0.44 kg of powder/head per day, dry matter (DM) basis (restricted, R; 20.9% crude protein, 19.8% fat, DM basis), or (2) an enhanced milk replacer fed at 1.08 kg of powder/head per day, DM basis (Enhanced, EH; 28.9% crude protein, 26.2% fat, DM basis). Milk replacer was fed for 8 wk. At weaning, a subset (n = 6/diet) of calves were euthanized and had tissue harvested. Remaining calves received estradiol implants (E2) or placebo and were euthanized at wk 10 to harvest tissue. Treatments were (1) R, (2) R + E2 (R-E2), (3) EH, and (4) EH + E2 (EH-E2). One day before euthanasia calves were given bromo-2'-deoxyuridine (BrdU; 5 mg/kg of body weight). At euthanization, mammary parenchyma was removed and fixed. Tissue sections from zone 1 (cisternal), 2 (medial), and 3 (distal) within the mammary gland were stained with hematoxylin and eosin and antibodies to measure expression of ESR1, PGR, and incorporation of BrdU. At wk 8, R-fed calves had more PGR-expressing cells in distal parenchyma; however, PGR expression intensity was greater in EH-fed calves. The proportion of cells expressing ESR1 was not affected by diet, but expression intensity (receptors per positive cell) was greater in EH-fed calves across all zones (62-81%). Overall, the percent BrdU-positive epithelial cells was 2 and 0.5 fold greater for EH-fed calves in zone 2 and 3. The proportion of labeled cells was greater in terminal ductal units than in subtending ducts, and treatment effects were more evident in terminal ductal units. At wk 10, calves treated with estradiol had 3.9-fold greater PGR expression intensity. The intensity and percent of cells expressing ESR1 was lowest in estradiol-treated calves. Overall, estradiol-treated calves had the greatest number of proliferating epithelial cells. Moreover, in zone 3, EH-E2 calves had a higher percentage of proliferating cells than in all other treatments. Results indicate both diet and estradiol administration alter proliferation rates of the mammary epithelium and that changes in expression of ESR1 and PGR are involved in enhanced mammary development. The data support our hypothesis that enhanced preweaning feeding increases the mammary tissue responsiveness to mammogenic stimulation.


Assuntos
Ração Animal , Proliferação de Células , Dieta/veterinária , Receptores de Esteroides/metabolismo , Animais , Bovinos , Feminino , Leite , Desmame
9.
J Anim Sci ; 95(12): 5653-5663, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29293751

RESUMO

Although peripubertal mammary development represents only a small fraction of the total mass of mammary parenchyma present in the udder at the end of gestation and into lactation, there is increasing evidence that the tissue foundations created in early life can affect future mammary development and function. Studies on expression of estrogen and progesterone receptors seem to confirm the relevance of these steroids in prepubertal mammary development, but connections with other growth factors, hormones, and local tissue factors remain elusive. Enhanced preweaning feeding in the bovine appears to enhance the capacity of mammary tissue to response to mammogenic stimulation. This suggests the possibility that improved early nutrition might allow for creation of stem or progenitor cell populations to better support the massive ductal growth and lobulo-alveolar development during gestation. Increasing evidence that immune cells are involved in mammary development suggests there are unexpected and poorly understood connections between the immune system and mammary development. This is nearly unexplored in ruminants. Development of new tools to identify, isolate, and characterize cell populations within the developing bovine mammary gland offer the possibility of identifying and perhaps altering populations of mammary stem cells or selected progenitor cells to modulate mammary development and, possibly, mammary function.


Assuntos
Bovinos/crescimento & desenvolvimento , Estrogênios/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Progesterona/metabolismo , Maturidade Sexual , Animais , Bovinos/fisiologia , Dieta/veterinária , Células Epiteliais/citologia , Feminino , Imuno-Histoquímica/veterinária , Lactação , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Células-Tronco/citologia
10.
J Dairy Sci ; 99(12): 10093-10101, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27743672

RESUMO

Prepubertal mammary development involves elongation and branching of ducts and stromal tissue remodeling. This process is closely linked with ovarian and pituitary hormones, growth factors, and local regulators. Accumulating evidence suggests that the myoepithelial cells also play a role in ductal development in addition to their well-recognized importance in the milk ejection reflex. Following reports that myoepithelial cells changed in correspondence with decreased mammary growth after ovariectomy of prepubertal heifers, we evaluated myoepithelial cells in mammary tissue collected from prepubertal heifers treated with the antiestrogen tamoxifen. Briefly, heifers were given placebo (n=7) or tamoxifen (n=8; 0.3mg/kg per day) beginning on d 28 of life until the animals were euthanized on d 120. Tissues were collected from each of 3 zones (near the gland cistern, midway between the gland cistern and mammary fat pad, and at the interface of the parenchyma and mammary fat pad). Samples were processed to measure expression of transformation-related protein 63 (p63), smooth muscle actin, and common acute lymphoblastic leukemia antigen. We found that smooth muscle actin and common acute lymphoblastic leukemia antigen were expressed in the cytoplasm and p63 in the nuclei of myoepithelial cells. In concert with a 50% impairment in mammary growth after tamoxifen, we found that the number of myoepithelial cells around developing mammary ducts was reduced. But the average intensity of p63 expression per nucleus was not affected. We used the very distinct and exclusive staining of p63 in myoepithelial cell nuclei to capture hundreds of nuclear images for subsequent analysis using CellProfiler software. From this image analysis, we found that the area of myoepithelial cell nuclei and perimeter distances were reduced by tamoxifen. When nuclei were classified based on nuclear shape (eccentricity), we found differences in area, perimeter, and patterns of p63 expression based on Zernike number evaluations as well as treatment differences within each shape classification. These data provide support to the concept that myoepithelial cells are also the involved in mammary development in the prepubertal bovine mammary gland and that use of multispectral imaging combined with image analysis software can provide quantitative data to better understand the complex cellular interactions that ultimately regulate mammary morphogenesis in the bovine.


Assuntos
Glândulas Mamárias Animais/metabolismo , Tamoxifeno , Animais , Bovinos , Células Epiteliais , Feminino , Ovariectomia/veterinária , Maturidade Sexual
11.
J Dairy Sci ; 99(9): 7654-7660, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27372582

RESUMO

The bovine rumen epidermis is a keratinized multilayered tissue that experiences persistent cell turnover. Because of this constant cell turnover, epidermal stem cells and their slightly more differentiated daughter cells, epidermal progenitor cells, must exist in the stratum basale of rumen epidermis. To date, these 2 epidermal cell populations and any unique cellular markers they may possess remain completely uncharacterized in the bovine rumen. An important first step in this new research area is the demonstration of the relative abundance and existence of markers for these cells in rumen tissue. A related second step is to document rumen epidermal proliferative responses to an extrinsic signal such as nutrient concentration within the rumen. The objectives of this experiment were to evaluate the extrinsic effect of diet on (1) gene expression of 6 potential rumen epidermal stem or progenitor cell markers and (2) rumen epidermal cell proliferation within the stratum basale. Twelve preweaned Holstein heifers were fed either a restricted diet (R) or an enhanced diet (EH). Animals on R received a milk replacer (MR) diet fed at 0.44kg of powder dry matter (DM)/d (20.9% crude protein, 29.8% fat, DM basis) and EH received MR at 1.08kg of powder dry matter/d (28.9% crude protein, 26.2% fat, DM basis). All calves had access to a 20% crude protein starter and were weaned during wk 7 of the experiment. Lifetime DM intake was 0.73kg of DM/calf per day for R (5.88 Mcal of net energy/calf per day) and 1.26kg of DM/calf per day for EH (10.68 Mcal of net energy/calf per day). Twenty-four hours before slaughter heifers received an intravenous dose of 5-bromo-2'-deoxyuridine to label proliferating cells. Heifers were slaughtered at 8 wk of age, and rumen samples from the ventral sac region were obtained and stored in RNA preservative and processed for routine histology. Quantitative real-time reverse transcriptase PCR was used to analyze relative abundance of genes. Candidate genes for markers of epidermal stem and progenitor cells were ß1-integrin (ITGB1), tumor protein p63 (TP63), keratin-14 (KRT14), Notch-1 (NOTCH1), Leu-rich repeat-containing G protein-coupled receptor 5-expressing (LGR5), and musashi-1 (MSI1). All genes were detected in the rumen tissue; ITGB1 was increased in EH compared with R. 5-Bromo-2'-deoxyuridine immunohistochemistry revealed that both R and EH rumen tissue had proliferating cells within the stratum basale of the rumen epidermis at the time of analysis. The EH diet resulted in an additive effect on cell proliferation. The percentage of cells in the stratum basale synthesizing DNA in preparation for mitosis nearly doubled (23.8±2.4% for EH vs. 14.7±2.0% for R) compared with calves fed R. This work represents the first attempt at characterizing rumen epidermal stem and progenitor cells. We demonstrated the relative abundance and existence of potential markers in rumen tissue and showed a rumen epidermal proliferative response to the extrinsic stimulus of nutrient concentration in the form of diet.


Assuntos
Bovinos/fisiologia , Proliferação de Células/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Substitutos do Leite/química , Rúmen/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Ração Animal/análise , Animais , Bovinos/genética , Dieta/veterinária , Epiderme/efeitos dos fármacos , Feminino
12.
J Dairy Sci ; 99(9): 7642-7653, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27372586

RESUMO

Feeding heifers a higher plane of nutrition postweaning but before puberty can negatively affect mammary gland development and future milk yield. However, enhanced nutrition preweaning may promote development and future production. Our objectives were to determine the effects of enhanced feeding preweaning and exogenous estrogen immediately postweaning on mammary gland development and the composition of the mammary parenchyma (PAR) and mammary fat pad (MFP). Thirty-six Holstein heifer calves (<1 wk old) were reared on 1 of 2 dietary treatments for 8 wk: (1) a restricted milk replacer fed at 0.45 kg/d (R; 20% crude protein, 20% fat), or (2) an enhanced milk replacer fed at 1.13 kg/d (EH; 28% crude protein, 25% fat). Upon weaning, calves from each diet (n=6) were given either a placebo or estrogen implant for 2 wk, creating 4 treatments: R, R + estrogen (R-E2), EH, and EH + estrogen (EH-E2). Calves were housed individually with ad libitum access to water. Starter feeding began at wk 5 and was balanced between treatments. Udders were evaluated by palpation and physical measurements weekly. Subsets of calves were killed at weaning (n=6 per diet) and at the conclusion of the trial (n=6 per treatment). Udders were removed, dissected, and weighed. At wk 8, EH calves had longer front and rear teats. Providing estrogen to EH calves increased the length of rear teats during wk 9 and 10. Enhanced-fed calves had 5.2-fold more trimmed mammary gland mass than R calves. Providing estrogen to EH calves further increased mammary gland weight. Masses of PAR and MFP were markedly greater for EH calves than for R calves (e.g., 7.3-fold greater PAR tissue). Estrogen increased the mass of both PAR and MFP in EH calves. Feeding a higher plane of nutrition increased total protein, DNA, and fat in the MFP and total protein and DNA in the PAR. Dual-energy x-ray absorptiometry estimates of mammary fat mass were highly correlated with biochemical analyses of fat content. From histological study, we observed that the degree of expansion of epithelium into the adjacent stromal tissue and the complexity of ductal development were minimal in R, increased in EH, and increased by estrogen in both dietary treatments. Results provide compelling evidence that preweaning nutrition and estrogen administration immediately postweaning markedly increase mammary gland development in dairy calves. Cellular and molecular mechanisms responsible for these differences are currently under study.


Assuntos
Bovinos/fisiologia , Estradiol/farmacologia , Glândulas Mamárias Animais/efeitos dos fármacos , Estado Nutricional , Desmame , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/crescimento & desenvolvimento , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Bovinos/crescimento & desenvolvimento , Dieta/veterinária , Feminino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Tecido Parenquimatoso/efeitos dos fármacos , Tecido Parenquimatoso/crescimento & desenvolvimento
13.
J Dairy Sci ; 99(7): 5780-5792, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27085397

RESUMO

Prepubertal exposure of the developing ovaries and reproductive tract (RT) to estrogen or xenoestrogens can have acute and long-term consequences that compromise the reproductive performance of cattle. This research examined effects of the selective estrogen receptor modulator tamoxifen (TAM) on gene and protein abundance in prepubertal ovaries and RT, with a particular focus on signaling pathways that affect morphology. Tamoxifen was administered to Holstein heifer calves (n=8) daily (0.3mg/kg subcutaneously) from 28 to 120 d of age, when tissues were collected. Control calves (n=7) received an equal volume of excipient. Weight, gross measurements, and samples of reproductive tissues were collected, and protein and mRNA were extracted from snap-frozen samples of vagina, cervix, uterus, oviduct, ovary, and liver. Neither estradiol nor insulin-like growth factor I (IGFI) concentrations in the serum were affected by TAM treatment. Tamoxifen treatment reduced ovarian weight independently from effects on antral follicle populations, as there was no difference in visible antral follicle numbers on the day of collection. Estrogen receptor α (ESR1) and ß (ESR2) mRNA, ESR1 protein, IGFI, progesterone receptor, total growth hormone receptor, WNT4, WNT5A, and WNT7A mRNA, in addition to mitogen-activated protein kinase (MAPK) and phosphorylated MAPK proteins were affected differently depending on the tissue examined. However, neither IGFI receptor mRNA nor protein abundance were affected by TAM treatment. Results indicate that reproductive development in prepubertal Holstein heifer calves is TAM-sensitive, and that bovine RT and ovarian development are supported, in part, by estrogen receptor-dependent mechanisms during the period studied here. Potential long-term consequences of such developmental disruption remain to be defined.


Assuntos
Bovinos/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Tamoxifeno , Animais , Estradiol/farmacologia , Feminino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ovário/efeitos dos fármacos , Receptores de Estrogênio/metabolismo
14.
J Dairy Sci ; 99(5): 3995-4004, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26898286

RESUMO

Research has shown that changes in nutrition both before and after weaning can affect mammary development. Additionally, estrogen is known to be a potent mammogenic stimulant. Our objectives were to determine effects of altered preweaning feeding and exogenous estradiol postweaning on growth, intake, and health. Thirty-six Holstein heifer calves were reared on (1) a restricted milk replacer (MR) diet fed at 0.44kg powder dry matter (DM)/day [R; 20.9% crude protein (CP), 19.8% fat, DM basis], or (2) an enhanced MR fed at 1.08kg powder DM/d (EH; 28.9% CP, 26.2% fat, DM basis). The MR feeding was reduced 50% during wk 8 to prepare for weaning. Starter was offered after wk 4 but balanced between treatments. Body weight and frame were measured weekly with intakes and health monitored daily. At weaning, a subset of calves were slaughtered (n=6/diet). Enhanced-fed calves had greater carcass, thymus, liver, spleen, and mammary gland (parenchyma and mammary fat pad) weights. The EH calves also had greater average daily gain (ADG) starting during wk 1 (0.36 vs. -0.06kg/d) and lasting through wk 7 (1.00 vs. 0.41kg/d). Remaining calves received estrogen implants or placebo and were slaughtered at the end of wk 10, creating 4 treatments: (1) R, (2) R + estrogen (R-E2), (3) EH, and (4) EH + estrogen (EH-E2). Postweaning ADG was similar between R, EH, and EH-E2 calves, but greater in R-E2 calves than E calves. The EH-E2 calves had the heaviest mammary glands, and R-E2 calves had heavier mammary glands than R calves. The EH calves consumed more MR DM, CP, and fat preweaning. The R-fed calves consumed more starter DM preweaning. Fecal score was greater for EH calves (1.74 vs. 1.50) preweaning, but days medicated did not differ. Fecal scores were lower for R-E2 calves postweaning. Improved preweaning feeding of calves increased body weights and frame measures. Differences in body weights remained postweaning. Enhanced-fed calves showed greater ADG during the preweaning period but not postweaning. Exogenous estrogen may elicit diet-dependent growth responses. Analysis of collected samples will allow determination of cellular and molecular processes responsible for the marked differences in mammary development observed.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Dieta/veterinária , Estradiol/farmacologia , Desmame , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos/crescimento & desenvolvimento , Feminino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Estado Nutricional , Distribuição Aleatória
15.
Domest Anim Endocrinol ; 54: 95-105, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26619291

RESUMO

Research has shown that prepubertal heifers experience allometric mammary growth that is influenced by the ovaries. Our purpose was to determine the role of estrogen in prepubertal mammary gland development. Sixteen Holstein calves were randomly assigned to 1 of 2 treatment groups: tamoxifen-injected (TAM) or control (CON). Calves were administered the antiestrogen tamoxifen (0.3 mg kg(1) d(1)) or placebo from 28 to 120 d of age. At 120 d, calves were euthanized and udders removed. Weight and DNA content of trimmed parenchymal tissue were halved (P ≤ 0.0001) in TAM compared with CON calves. Parenchymal samples from 3 zones of the left rear mammary gland (lower, middle, and outer regions) were processed for immunohistochemical staining for estrogen receptor α (ESR1) and progesterone receptor (PGR), Ki67-positive cells, and 5-bromo-2'-deoxyuridine label retaining cells (LRCs). Overall, neither the percentage nor location within the epithelial tissue layer of either ESR1- or PGR-positive cells was impacted by TAM treatment. However, image analysis indicated a 6.2-fold lower (P = 0.0001) level of ESR1 protein expression in TAM calves. Similarly, messenger RNA expression of ESR1 was also reduced (P = 0.0001) in TAM heifers. In contrast, expression of PGR protein was greater by 43% (P = 0.03) in TAM calves, but messenger RNA expression did not differ between treatments. Overall, TAM calves had a higher (P ≤ 0.03) percentage and density (cells per tissue area) of Ki67-positive cells. Irrespective of treatment, there were also more Ki67-labeled cells in the outer zones of the mammary gland (P ≤ 0.001). We were able to effectively use multispectral imaging to identify positive cells and quantify the expression of ESR1 and PGR protein. We also identified and counted the proportion of label retaining cells (LCR) (putative epithelial stem cells). We noted an overall 2.9-fold greater number of LRCs in TAM heifers and more LRCs in the outer sampling zones. This suggests that a cohort of LCR cells in TAM remained inactivated in comparison with CON heifers, which exhibited markedly increased growth of the mammary parenchymal tissue over the treatment period. These results suggest that the impacts of ovariectomy are partially explained by loss of ESR1 expression and/or estrogen receptor signaling in the prepubertal bovine mammary gland. The significance of mammary expression of PGR in control of prepubertal bovine mammary development remains unresolved.


Assuntos
Bovinos/crescimento & desenvolvimento , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/genética , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Receptores de Progesterona/genética , Animais , Bovinos/metabolismo , Células Epiteliais/química , Receptor alfa de Estrogênio/análise , Estrogênios/fisiologia , Feminino , Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Antígeno Ki-67/análise , Glândulas Mamárias Animais/química , RNA Mensageiro/análise , Receptores de Progesterona/análise , Maturidade Sexual , Tamoxifeno/farmacologia
16.
J Dairy Sci ; 99(1): 796-804, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26547646

RESUMO

Prepubertal mammary development involves elongation and branching of ducts and stromal tissue remodeling. This process is highly regulated and in mice is known to be affected by the presence of innate immune cells. Whether or not such immune cells are present or involved in bovine mammary development is unknown. For the first time, we determined the presence, location (relative to mammary ductal structures), and changes in numbers of eosinophils, mast cells, and macrophages in prepubertal bovine mammary tissue, and evaluated the effects of age, ovariectomy, and exogenous estrogen on numbers of each cell type. Chemical stains and immunofluorescence were used to identify the 3 cell types in formalin-fixed, paraffin-embedded mammary tissue from prepubertal female calves from 3 archived tissue sets. The ontogeny tissue set included samples of mammary tissue from female calves (n=4/wk) from birth to 6 wk of age. The ovary tissue set contained samples from ovary intact and ovariectomized heifers allowing us to investigate the influence of the ovaries on immune cells in the developing mammary gland in prepubertal heifers. Nineteen animals were intact or ovariectomized 30 d before sampling; they were 90, 120, or 150 d old at the time of sampling. A third tissue set, the estrogen set, allowed us to determine the effect of exogenous estrogen on innate immune cells in the gland. Eosinophils were identified via Luna staining, mast cells by May-Grunwald Giemsa staining, and macrophages with immunofluorescence. Key findings were that more eosinophils and mast cells were observed in near versus far stroma in the ontogeny and ovary tissue sets but not estrogen. More macrophages were observed in near versus far stroma in ontogeny animals. Eosinophils were more abundant in the younger animals, and fewer macrophages tended to be observed in ovariectomized heifers as compared with intact heifers and estrogen treatment resulted in a reduction in cell numbers. In summary, we show for the first time that innate immune cells are present in prepubertal bovine mammary tissue, localization varies by immune cell type, and abundance is related to proximity of epithelial structures and physiological state. We suggest a likely role for these cells in control of bovine mammary growth and ductal development.


Assuntos
Eosinófilos/citologia , Macrófagos/citologia , Glândulas Mamárias Animais/citologia , Mastócitos/citologia , Animais , Bovinos , Estrogênios/metabolismo , Feminino , Ovariectomia/veterinária
17.
Domest Anim Endocrinol ; 51: 8-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25460067

RESUMO

Mammary growth and development depends on ovarian steroids and particularly interaction of estrogen and progesterone with their intracellular receptors. The objectives of this study were to determine the effect of ovariectomy on the expression of protein and messenger RNA for estrogen receptor-alpha (ESR1) and progesterone receptor (PGR) and their relation to mammary ductal development and cell proliferation. Prepubertal Holstein heifers 2, 3, or 4 mo of age were randomly assigned to one of 2 treatments, ovariectomized (OVX; n = 8) or sham operated (INT; n = 12). Mammary parenchymal (PAR) tissue samples were harvested 30 d after surgery. Localization and quantitation of ESR1 and PGR in PAR were determined by immunohistochemistry and quantitative multispectral imaging. Relative messenger RNA expression of ESR1 and PGR in PAR was measured by quantitative real time polymerase chain reaction. We observed the complete absence of PGR-positive epithelial cell nuclei and reduced PGR transcript abundance in mammary parenchyma of OVX heifers. The percent of epithelial cells expressing ESR1 did not differ by treatment but was decreased with age. However, average intensity of ESR1 expression per cell was reduced in OVX heifers. The abundance of Ki67 labeled epithelial cells and stromal cells was reduced after ovariectomy. These data suggest that reduced mammary development after ovariectomy may be mediated by loss of PGR expression and reduced ESR1 expression in positive cells. A presumptive relationship with ovarian-derived circulating estradiol remains unresolved, but data suggest other ovarian-derived agents may play a role. Use of specific antagonists to manipulate expression or action of PGR and ESR1 receptors should provide direct evidence for roles of these receptors in prepubertal bovine mammary development.


Assuntos
Bovinos/metabolismo , Glândulas Mamárias Animais/química , Glândulas Mamárias Animais/crescimento & desenvolvimento , Ovariectomia , Receptores de Progesterona/análise , Maturidade Sexual/fisiologia , Animais , Proliferação de Células , Estradiol/sangue , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/genética , Feminino , Expressão Gênica , Imuno-Histoquímica/veterinária , Antígeno Ki-67/análise , Glândulas Mamárias Animais/citologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Progesterona/genética
18.
J Dairy Sci ; 97(1): 419-29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24183687

RESUMO

Regulation of mammary protein synthesis potentially changes the relationships between AA supply and milk protein output represented in current nutrient requirement models. Glucose and AA regulate muscle protein synthesis via cellular signaling pathways involving mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK). The objective of this study was to investigate the effects of essential AA (EAA) and acetate or glucose on mTOR and AMPK signaling pathways and milk protein synthesis rates. A bovine mammary epithelial cell line, MAC-T, was subjected to different media containing 0 or 3.5 mmol/L EAA concentrations with 0 or 5 mmol/L acetate or 0 or 17.5 mmol/L glucose in 2 separate 2 × 2 factorial studies. In a separate set of experiments, lactogenic bovine mammary tissue slices were subjected to the same treatments except that the low EAA treatment contained a low level of EAA (0.18 mmol/L). Supplementation of EAA enhanced phosphorylation of mTOR (Ser2448) and eukaryotic initiation factor 4E binding protein 1 (4EBP1, Thr37/46), and reduced phosphorylation of eukaryotic elongation factor 2 (eEF2, Thr56) in MAC-T cells. Concentration of ATP and phosphorylation of AMPK increased and decreased, respectively, in the presence of EAA in MAC-T cells. Acetate, EAA, or glucose numerically reduced AMPK phosphorylation by about 16% in mammary tissue slices. Provision of EAA increased phosphorylation of mTOR and 4EBP1, intracellular total EAA concentration, and casein synthesis rates in mammary tissue slices, irrespective of the presence of acetate or glucose in the medium. Phosphorylation of mTOR had a marginally negative association with AMPK phosphorylation, which was positively related to eEF2 phosphorylation. Casein synthesis rates were positively and more strongly linked to mTOR phosphorylation than the negative link between eEF2 phosphorylation and casein synthesis rates. A 100% increase in mTOR phosphorylation was associated with an increase in the casein synthesis rate of 0.74%·h(-1), whereas a 100% increase in eEF2 phosphorylation was related to a decline in the casein synthesis rate of 0.33%·h(-1). Although AMPK phosphorylation was responsive to cellular energy status and had a negative effect on mTOR-mediated signals in bovine mammary epithelial cells, its effect on milk protein synthesis rates appeared to be marginal compared with the mTOR-mediated regulation of milk protein synthesis by EAA.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos Essenciais/farmacologia , Células Epiteliais/metabolismo , Proteínas do Leite/biossíntese , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Bovinos , Linhagem Celular , Feminino , Glucose/farmacologia , Glândulas Mamárias Animais/citologia , Tamanho da Partícula , Fosforilação , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/genética
19.
Animal ; 6(6): 941-51, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22558965

RESUMO

Previous studies in prepubertal heifers suggest that the magnitude of reduction in mammary parenchymal growth in response to ovariectomy varies with the age at which surgery is performed. We hypothesized that ovarian secretions are essential for initiating mammary development but not required to maintain allometric mammary growth in prepubertal dairy heifers. The objectives of this study were to determine the effect of staged ovariectomy during the prepubertal period on mammary growth and tissue composition and the expression of selected genes. Prepubertal Holstein heifers at 2, 3 or 4 months of age were randomly assigned to one of two treatments, ovariectomized (OVX; n = 12) or sham operated (INT; n = 12). Mammary parenchyma (PAR) and fat pad (MFP) were harvested 30 days after surgery. Proximate composition of PAR and MFP (DNA, protein and lipid) as well as expression of the selected estrogen-responsive genes stanniocalcin1 (STC1), tissue factor pathway inhibitor precursor (TFPI) and proliferating cell nuclear antigen (PCNA) were determined in PAR and MFP by quantitative real-time PCR. The relative amount of epithelium and proportion of epithelia cell nuclei expressing the proliferation marker Ki67 were determined by histological and immunohistochemical analyses, respectively. MFP mass was not impacted by treatment but was decreased with age as was lipid content and concentration (P ⩽ 0.01). The mass of mammary PAR was reduced in OVX and increased with age (P ⩽ 0.01). Parenchymal tissue tended to have less total DNA, protein and lipid in OVX heifers. Parenchymal tissue concentrations of protein and DNA were increased with age and there was an age × treatment interaction. Treatment had no effect on either the Ki67 labeling index or percent epithelial area. The relative abundances of STC1, TFPI and PCNA mRNA in PAR were reduced in OVX. We did not find a significant impact of ovariectomy on mRNA expression when surgery was performed at 2 months compared with surgery at 3 or 4 months of age. However, having nearly undetectable PAR in two heifers ovariectomized at the earliest period (2 months of age) suggests that early ovariectomy is especially detrimental to subsequent parenchymal development.


Assuntos
Bovinos/crescimento & desenvolvimento , Glândulas Mamárias Animais/crescimento & desenvolvimento , Ovário/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Envelhecimento , Animais , Feminino , Perfilação da Expressão Gênica/veterinária , Antígeno Ki-67/metabolismo , Glândulas Mamárias Animais/citologia , Ovariectomia/veterinária , RNA Mensageiro/análise , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Maturidade Sexual
20.
J Dairy Sci ; 95(6): 2965-76, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22612934

RESUMO

We reported previously that ovariectomy alters prepubertal development of mammary myoepithelial cells (MC) by mechanisms that are not well understood. Therefore, in the present study, we analyzed expression of 2 myoepithelial differentiation markers, α-smooth muscle actin (SMA) and the common acute lymphoblastic leukemia antigen (CD10), in mammary parenchymal tissue from intact (INT) and ovariectomized (OVX) heifers. On d 40, Holstein heifers underwent either an ovariectomy (OVX; n=16) or a sham (INT; n=21) operation. At 55, 70, 85, 100, 130, and 160 d of age, tissues were collected, and multispectral imaging was used to quantify immunofluorescent staining for myoepithelial cell (MC) markers. Fluorescent intensity (FI) of the markers was normalized against a control sample. In the basal epithelial layer, CD10 FI was less and SMA FI was greater in OVX than INT. The ratio of SMA to CD10 FI, as a proxy indicator for MC differentiation, was greater in tissue from OVX compared with INT heifers after 55 d of age. The staining for SMA was frequently more intense along the basal aspect of cells, whereas CD10 expression was localized on the apical surface of the MC. In mammary tissue from both INT and OVX heifers, we observed basal cells that were negative for both CD10 and SMA, some of which appeared to span the distance from basement membrane to the ductal lumen. Interestingly, we also observed CD10+ cells adjacent to the ductal lumen, a situation that was more prevalent in OVX than in INT heifers. Also, ovariectomy affects MC expression of both SMA and CD10, as well as the pattern of MC development. Myoepithelial cells are known to limit parenchymal growth in other species. Involvement of MC as regulators of prepubertal bovine mammary development is worthy of further investigation.


Assuntos
Actinas/análise , Diferenciação Celular/fisiologia , Glândulas Mamárias Animais/citologia , Neprilisina/análise , Ovariectomia/veterinária , Actinas/fisiologia , Animais , Biomarcadores/análise , Bovinos , Epitélio/química , Epitélio/fisiologia , Feminino , Glândulas Mamárias Animais/química , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/fisiologia , Microscopia de Fluorescência/veterinária , Músculo Liso/química , Neprilisina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA