Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 24(21): e202300184, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37582049

RESUMO

A novel analysis of the dynamical behavior of nanoalloy systems, as represented by model Ni/Al 13-atom clusters, over a broad range of energies that cover the stage-wise transition of the systems from their solid-like to liquid-like state is presented. Conceptually, the analysis is rooted in partitioning the systems into judiciously chosen subsystems and characterizing the latter in terms of subsystem-specific dynamical descriptors that include dynamical degrees of freedom, root-mean-square bond-length fluctuation, and element-specific subsystem temperature. The analysis reveals a host of intriguing new peculiarities in the dynamical behavior of the Ni/Al 13-mers, among which are what we call the chameleon effect and the difference in the temperatures of the Ni and Al subsystems at high energies, a difference that strongly depends on the cluster composition and also changes with energy. These do not have an analog in pure Ni13 and Al13 and are explained in terms of the coupled effects of the difference between the masses of the Ni and Al atoms (the mass effect) and of the difference in the anharmonicity of the overall interaction potential as experienced by the Ni and Al subsystems of the clusters (the potential effect).

2.
J Chem Phys ; 144(21): 214103, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27276941

RESUMO

Density of states is a fundamental physical characteristic that lies at the foundation of statistical mechanics and theoretical constructs that derive from them (e.g., kinetic rate theories, phase diagrams, and others). Even though most real physical systems are anharmonic, the vibrational density of states is customarily treated within the harmonic approximation, or with some partial, often limited, account for anharmonicity. The reason for this is that the problem of anharmonic densities of states stubbornly resisted a general and exact, yet convenient and straightforward in applications, solution. Here we formulate such a solution within both classical and quantum mechanics. It is based on actual dynamical behavior of systems as a function of energy and as observed, or monitored, on a chosen time scale, short or long. As a consequence, the resulting anharmonic densities of states are fully dynamically informed and, in general, time-dependent. As such, they lay the ground for formulation of new statistical mechanical frameworks that incorporate time and are ergodic, by construction, with respect to actual dynamical behavior of systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA