Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transportation (Amst) ; : 1-20, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37363369

RESUMO

In reducing greenhouse gas (GHG) emissions, there is a recognition triggered by the pandemic of the role that walking and cycling (active travel) can make to substitute motorized travel, particularly on short trips. However, there is a lack of evidence at the micro level on the realistic, empirically derived, potential of these options. Here, we used reliable tracing data to examine the potential of these mitigation options for reducing GHG emissions in Vietnam. Apart from similar categories of travel purposes as in other studies, we decided to categorize "visit relatives" and "eating out" as two more separate categories of travel purposes in Vietnamese case, which together accounts for nearly 16% of total trips. We discovered that 65% of all motorcycle trips in this case study were less than 3 miles in duration, therefore active travel was able to create a significant impact on GHG emissions from personal travel. Active travel can replace 62% of short motorcycle trips if considering travel patterns and constraints while saving 18% of GHG emissions that would have come from motorized transport. If active travel can further replace all shopping trips normally done by motorcycles, in total being equivalent to 84% of short trips, 22% of GHG emissions from motorcycles can be reduced. It should be noticed that active travels have time cost implications, impacting economy at both household and city levels, but from a comprehensive "co-benefit" standpoint, this transformation could act as a catalyst for addressing traffic congestion, air pollution, and even community health and well-being in urban areas.

2.
Front Plant Sci ; 8: 160, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28228772

RESUMO

Nitrogen (N) is an essential macronutrient for plant growth and excessive application rates can decrease crop yield and increase N loss into the environment. Field experiments were carried out to understand the effects of N fertilizers on N utilization, crop yield and net income in wheat and maize rotation system of the North China Plain (NCP). Compared to farmers' N rate (FN), the yield of wheat and maize in reduction N rate by 21-24% based on FN (RN) was improved by 451 kg ha-1, N uptakes improved by 17 kg ha-1 and net income increased by 1671 CNY ha-1, while apparent N loss was reduced by 156 kg ha-1. The controlled-release fertilizer with a 20% reduction of RN (CRF80%), a 20% reduction of RN together with dicyandiamide (RN80%+DCD) and a 20% reduction of RN added with nano-carbon (RN80%+NC) all resulted in an improvement in crop yield and decreased the apparent N losses compared to RN. Contrasted with RN80%+NC, the total crop yield in RN80%+DCD improved by 1185 kg ha-1, N uptake enhanced by 9 kg ha-1 and net income increased by 3929 CNY ha-1, while apparent N loss was similar. Therefore, a 37-39% overall decrease in N rate compared to farmers plus the nitrification inhibitor, DCD, was effective N control measure that increased crop yields, enhanced N efficiencies, and improved economic benefits, while mitigating apparent N loss. There is considerable scope for improved N use effieincy in the intensive wheat -maize rotation of the NCP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA