Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 3(1): 646, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159171

RESUMO

Over a decade ago Polymerase δ interacting protein of 38 kDa (PDIP38) was proposed to play a role in DNA repair. Since this time, both the physiological function and subcellular location of PDIP38 has remained ambiguous and our present understanding of PDIP38 function has been hampered by a lack of detailed biochemical and structural studies. Here we show, that human PDIP38 is directed to the mitochondrion in a membrane potential dependent manner, where it resides in the matrix compartment, together with its partner protein CLPX. Our structural analysis revealed that PDIP38 is composed of two conserved domains separated by an α/ß linker region. The N-terminal (YccV-like) domain of PDIP38 forms an SH3-like ß-barrel, which interacts specifically with CLPX, via the adaptor docking loop within the N-terminal Zinc binding domain of CLPX. In contrast, the C-terminal (DUF525) domain forms an immunoglobin-like ß-sandwich fold, which contains a highly conserved putative substrate binding pocket. Importantly, PDIP38 modulates the substrate specificity of CLPX and protects CLPX from LONM-mediated degradation, which stabilises the cellular levels of CLPX. Collectively, our findings shed new light on the mechanism and function of mitochondrial PDIP38, demonstrating that PDIP38 is a bona fide adaptor protein for the mitochondrial protease, CLPXP.


Assuntos
Endopeptidase Clp/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Endopeptidase Clp/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Recombinantes
2.
Artigo em Inglês | MEDLINE | ID: mdl-23519810

RESUMO

The enzyme N-acetylneuraminate lyase (EC 4.1.3.3) is involved in the metabolism of sialic acids. Specifically, the enzyme catalyzes the retro-aldol cleavage of N-acetylneuraminic acid to form N-acetyl-D-mannosamine and pyruvate. Sialic acids comprise a large family of nine-carbon amino sugars, all of which are derived from the parent compound N-acetylneuraminic acid. In recent years, N-acetylneuraminate lyase has received considerable attention from both mechanistic and structural viewpoints and has been recognized as a potential antimicrobial drug target. The N-acetylneuraminate lyase gene was cloned from methicillin-resistant Staphylococcus aureus genomic DNA, and recombinant protein was expressed and purified from Escherichia coli BL21 (DE3). The enzyme crystallized in a number of crystal forms, predominantly from PEG precipitants, with the best crystal diffracting to beyond 1.70 Šresolution in space group P21. Molecular replacement indicates the presence of eight monomers per asymmetric unit. Understanding the structural biology of N-acetylneuraminate lyase in pathogenic bacteria, such as methicillin-resistant S. aureus, will provide insights for the development of future antimicrobials.


Assuntos
Proteínas de Bactérias/química , Staphylococcus aureus Resistente à Meticilina/química , Oxo-Ácido-Liases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/genética , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
3.
J Biol Chem ; 285(28): 21807-16, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20444706

RESUMO

Huntington disease is caused by expanded polyglutamine sequences in huntingtin, which procures its aggregation into intracellular inclusion bodies (IBs). Aggregate intermediates, such as soluble oligomers, are predicted to be toxic to cells, yet because of a lack of quantitative methods, the kinetics of aggregation in cells remains poorly understood. We used sedimentation velocity analysis to define and compare the heterogeneity and flux of purified huntingtin with huntingtin expressed in mammalian cells under non-denaturing conditions. Non-pathogenic huntingtin remained as hydrodynamically elongated monomers in vitro and in cells. Purified polyglutamine-expanded pathogenic huntingtin formed elongated monomers (2.4 S) that evolved into a heterogeneous aggregate population of increasing size over time (100-6,000 S). However, in cells, mutant huntingtin formed three major populations: monomers (2.3 S), oligomers (mode s(20,w) = 140 S) and IBs (mode s(20,w) = 320,000 S). Strikingly, the oligomers did not change in size heterogeneity or in their proportion of total huntingtin over 3 days despite continued monomer conversion to IBs, suggesting that oligomers are rate-limiting intermediates to IB formation. We also determined how a chaperone known to modulate huntingtin toxicity, Hsc70, influences in-cell huntingtin partitioning. Hsc70 decreased the pool of 140 S oligomers but increased the overall flux of monomers to IBs, suggesting that Hsc70 reduces toxicity by facilitating transfer of oligomers into IBs. Together, our data suggest that huntingtin aggregation is streamlined in cells and is consistent with the 140 S oligomers, which remain invariant over time, as a constant source of toxicity to cells irrespective of total load of insoluble aggregates.


Assuntos
Doença de Huntington/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Amiloide/química , Animais , Biofísica/métodos , Clonagem Molecular , Éxons , Humanos , Proteína Huntingtina , Cinética , Mutagênese , Peptídeos/química , Peptídeos/genética , Desnaturação Proteica , Dobramento de Proteína , Ultracentrifugação
4.
Biochimie ; 92(1): 116-20, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19800933

RESUMO

Pyruvate kinase (PK) is the key control point of glycolysis-the biochemical pathway central to energy metabolism and the production of precursors used in biosynthesis. PK type 1 from Escherichia coli (Ec-PK1) is activated by both fructose-1,6-bisphosphate (FBP) and its substrate, phosphoenol pyruvate (PEP). To date, it has not been possible to determine whether the enzyme is tetrameric at the low concentrations (i.e. low nM range) used to study the steady-state kinetics, or assess whether its allosteric effectors alter the oligomeric state of the enzyme at these concentrations. Employing the new technique of analytical ultracentrifugation with fluorescence detection we have, for the first time, shown that the K(D)(4-2) for Ec-PK1 is in the subnanomolar range, well below the concentrations used in kinetic studies. In addition, we show that, unlike some other PK isoenzymes, the modulation of oligomeric state by the allosteric effectors FBP and PEP does not occur at a concentration of 10 nM or above.


Assuntos
Escherichia coli/enzimologia , Estrutura Quaternária de Proteína , Piruvato Quinase/química , Regulação Alostérica/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Frutosedifosfatos/farmacologia , Cinética , Modelos Moleculares , Fosfoenolpiruvato/farmacologia , Multimerização Proteica , Piruvato Quinase/isolamento & purificação , Piruvato Quinase/metabolismo , Espectrometria de Fluorescência , Ultracentrifugação
5.
Anal Biochem ; 390(2): 218-20, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19348779

RESUMO

The fluorescence detection system for the analytical ultracentrifuge (AU-FDS) enables the measurement of hydrodynamic properties and interactions of biomolecules at subnanomolar concentrations. In this study, we describe methods for (i) preparing and purifying fluorescently labeled biomolecules and (ii) determining the meniscus position in the AU-FDS using BODIPY 493/503 fluorescent dye suspended in light oil. We subsequently use these methods to measure the interaction of DNA with Escherichia coli Klenow fragment (KF) and show that KF binds matched DNA to form 1:1 and 2:1 (protein/DNA) complexes with dissociation constants of 4.2 and 22 nM, respectively.


Assuntos
Compostos de Boro/análise , DNA Polimerase I/análise , DNA/análise , Escherichia coli/enzimologia , Corantes Fluorescentes/análise , Ultracentrifugação/métodos , DNA/metabolismo , DNA Polimerase I/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA