Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 183(2): 123-9, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17624453

RESUMO

Numerous peripheral and hypothalamic peptides control food intake. Among these signals are orexin, an orexigenic molecule released into the olfactory bulb by centrifugal hypothalamic fibres and leptin, an anorexigenic molecule that is released peripherally and can pass through the blood-brain barrier. In the present study, we injected either orexin or leptin, intracerebroventricularly, and their effect on olfactory performance was evaluated in two groups of rats, using a behavioral paradigm based on conditioned olfactory aversion. Rats were made aversive to water odorized with isoamyl acetate (ISO) at 10(-5) (1microl in 100ml of water). One group was injected with orexin versus saline and the other with leptin versus saline. They were then presented with different concentrations (lower than 10(-5)) of ISO-odorized water to compare their ability to avoid the ISO-drink. Orexin decreased ISO-drink consumption, showing increased avoidance of the ISO concentrations tested which ranged from 10(-9) to 10(-7). Conversely, the administration of leptin resulted in a dose dependant increase in the odorized-drink consumption for ISO 10(-10). Orexin therefore increases and leptin decreases olfactory sensitivity. Orexin and leptin modulate the olfactory performance in a similar way as do physiological induced fasting and satiation and appear to be important factors in the interdependency of olfaction and food intake.


Assuntos
Jejum , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Leptina/administração & dosagem , Neuropeptídeos/administração & dosagem , Neurotransmissores/administração & dosagem , Saciação/efeitos dos fármacos , Detecção de Sinal Psicológico/efeitos dos fármacos , Olfato/efeitos dos fármacos , Análise de Variância , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Comportamento Alimentar/efeitos dos fármacos , Injeções Intraventriculares/métodos , Masculino , Orexinas , Ratos , Ratos Wistar , Detecção de Sinal Psicológico/fisiologia , Olfato/fisiologia
2.
Regul Pept ; 129(1-3): 49-61, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15927698

RESUMO

The mitral cells (MCs) of the olfactory bulb (OB) are relay neurons between the periphery and the central nervous structures. MCs receive in turn a centrifugal control from several higher brain centers that depends on the nutritional state. In this study, we investigated the effects of orexin A (ORX), a novel molecule known to regulate food intake and whose receptors are present in the OB, on the electrophysiological activity of single MCs. Using icv-injections and direct applications on the OB, we determined the respective central and local effects of this molecule on the MCs' spontaneous firing activity and responsiveness to different odors. Icv-injections and local OB-applications were found to induce a significant decrease in spontaneous firing activity in 14% and 50% of the recorded MCs, respectively. In one case, ORX application on the OB caused a significant firing increase. Effects of OB-applications had shorter delays. The responsiveness of some MCs to food and non-food odors was also changed, but the proportion of changes was not statistically significant. Icv-injection effects likely resulted from a local action of ORX on the OB. Changes of spontaneous firing activity and odor responsiveness are discussed in terms of regulation of the functioning of the olfactory system.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Neuropeptídeos/administração & dosagem , Bulbo Olfatório/fisiologia , Respiração , Olfato/efeitos dos fármacos , Animais , Injeções , Masculino , Odorantes , Orexinas , Ratos , Ratos Wistar , Respiração/efeitos dos fármacos , Olfato/fisiologia
3.
Chem Senses ; 28(5): 389-95, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12826535

RESUMO

During the 1970s, the multiunit reactivity of the olfactory bulb to food odor was extensively shown to increase before their usual meal in rats habituated to having a single 2 h daily meal compared to the same rats recorded after their usual meal. More recently, we reported dramatic modifications of mitral cell single-unit reactivity in adult rats following a simple a manipulation of the olfactory environment--exposure to an odor. The present study aimed at testing the hypothesis that a simple behavioral change such as habituation to chronic food restriction may induce profound changes in olfactory bulb responsiveness compared to occasional fasting. We compared mitral cell reactivity in non-fasted rats, in rats fasted during 22 h for the very first time, and in rats habituated during 15 days to a chronic 22 h food restriction. Mitral cell single-unit reactivity was found to increase less in rats habituated to fasting than in newly fasted rats. Indeed, the proportion of mitral cell responses to food and non-food odors was significantly higher in rats habituated to fasting than in non-fasted rats, but lower than in newly fasted rats. The proportion of simple unsynchronized and synchronized responses of 1b and 2b types was also lower in habituated rats whereas the proportion of complex synchronized responses of 4b type increased. This decreased responsiveness in habituated rats, similar to that observed in rats repeatedly exposed for 20 min per day to an odor during six consecutive days in our previous studies, is discussed with respect to olfactory bulb plasticity.


Assuntos
Jejum/fisiologia , Privação de Alimentos/fisiologia , Bulbo Olfatório/fisiologia , Animais , Eletrofisiologia , Masculino , Odorantes , Bulbo Olfatório/efeitos dos fármacos , Estimulação Física , Ratos , Ratos Wistar
5.
Plant Physiol ; 88: 996-8, 1988.
Artigo em Inglês | MEDLINE | ID: mdl-11537444

RESUMO

The mechanism by which spermidine induces the appearances of floral buds in thin-layer tobacco (Nicotiana tabacum) tissue culture was studied by following the fate of the radioactive compound. [3H]Spermidine was taken up rapidly by the tissue, and after a brief lag, a portion was bound to trichloroacetic acid precipitable macromolecules. Such binding increased to a maximum on day 4 of culture, coinciding with the onset of bud differentiation, and declined thereafter until shortly before flowering. About 82% of the label in the trichloroacetic acid precipitate remained as spermidine, 14% was metabolized to putrescine, 3% to spermine, and 1% to gamma-aminobutyric acid. Spermidine was covalently bound to a protein with a molecular size of about 18 kilodaltons. Hydrolysis of this protein and analysis of the labeled entities revealed 81% spermidine, 16% putrescine, and 3% spermine. This post-translational modification of a unique protein by attachment of spermidine may be causally connected to the appearance of flower buds in thin-layer tobacco cultures.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Plantas Tóxicas , Espermidina/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Técnicas de Cultura , Hidrólise , Peso Molecular , Proteínas de Plantas/análise , Ligação Proteica , Putrescina/análise , Putrescina/metabolismo , Espermina/análise , Espermina/metabolismo , Fatores de Tempo , Nicotiana/química , Nicotiana/crescimento & desenvolvimento , Trítio , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo
6.
Plant Physiol ; 84(4): 972-4, 1987 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16665629

RESUMO

An extract prepared from the apical meristematic region of etiolated pea seedlings was able to catalyze the incorporation of putrescine into trichloroacetic acid precipitable material. The enzyme was found to be soluble and followed a typical Michaelis-Menten kinetics when N-N-dimethyl casein was used as a substrate. Its activity was promoted by Ca(2+) and inhibited by Cu(2+) and dl-dithiothreitol. Other polyamines competed with putrescine as substrates and cadaverine was the most potent inhibitor of putrescine incorporation. Plant transglutaminase is capable of recognizing specific sites in substrates described for animal transglutaminase, like insulin, fibrinogen, pepsin, and thrombin. However, it can also use as substrates cellulase and creatine kinase which have not been described for transglutaminase from other sources.

7.
Plant Physiol ; 82(2): 607-9, 1986 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16665078

RESUMO

Exposing etiolated pea seedlings to ethylene which inhibited the activity of arginine decarboxylase and S-adenosylmethionine decarboxylase caused an increase in the level of cadaverine. The elevated level of cadaverine resulted from an increase in lysine decarboxylase activity in the tissue exposed to ethylene. The hormone did not affect the apparent K(m) of the enzyme, but the apparent V(max) was increased by 96%. While lysine decarboxylase activity in the ethylene-treated plants increased in both the meristematic and the elongation zone tissue, cadaverine accumulation was observed in the latter only. The enhancement by ethylene of the enzyme activity was reversed completely 24 hours after transferring the plants to an ethylene-free atmosphere. It is postulated that the increase in lysine decarboxylase activity, and the consequent accumulation of cadaverine in ethylene-treated plants, is of a compensatory nature as a response to the inhibition of arginine and S-adenosylmethionine decarboxylase activity provoked by ethylene.

8.
Plant Physiol ; 79(3): 635-40, 1985 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16664464

RESUMO

Activity of arginine decarboxylase in etiolated pea seedlings appears 24 hours after seed imbibition, reaches its highest level on the 4th day, and levels off until the 7th day. This activity was found in the apical and subapical tissue of the roots and shoots where intensive DNA synthesis occurs. Exposure of the seedlings to ethylene greatly reduced the specific activity of this enzyme. The inhibition was observed within 30 min of the hormone application, and maximal effect-90% inhibition-after 18 hours. Ethylene at physiological concentrations affected the enzyme activity; 50% inhibitory rate was recorded at 0.12 microliters per liter ethylene and maximal response at 1.2 microliters per liter. Ethylene provoked a 5-fold increase in the K(m) (app) of arginine decarboxylase for its substrate and reduced the V(max) (app) by 10-fold. However, the enzyme recovered from the inhibition and regained control activity 7 hours after transferral of the seedlings to ethylene-free atmosphere. Reducing the endogenous level of ethylene in the tissue by hypobaric pressure, or by exposure to light, as well as interfering with ethylene action by treatment with silver thiosulfate or 2,5-norbornadiene, caused a gradual increase in the specific activity of arginine decarboxylase in the apical tissue of the etiolated seedlings. On the basis of these findings, the possible control of arginine decarboxylase activity by endogenous ethylene, and its implication for the hormone effect on plant growth, are discussed.

9.
J Nematol ; 17(1): 61-3, 1985 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19294059

RESUMO

Gall size and rates of ethylene production by various hosts infected with Meloidogyne javanica and by excised tomato root cultures infected with M. javanica or M. hapla were measured. Infection with M. javanica increased the rate of ethylene production in dicotyledonous plants (cabbage, pea, carrot, cucumber, carnation, and tomato), but not in infected monocotyledonous plants (corn, wheat, and onion). Nematode infection induced large galls on roots of dicotyledonous, but not monocotyledonous, plants. Excised tomato roots in culture infected with M. javanica produced ethylene at high rates and formed large galls, whereas roots infected with M. hapla produced ethylene at low rates and induced smaller galls.

10.
J Nematol ; 17(2): 145-9, 1985 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19294073

RESUMO

Excised tomato roots infected with Meloidogyne javanica produced ethylene at 3-6 times the rate of noninfected roots. This increase in ethylene production started 5 days after inoculation. Gall growth and ethylene production in infected roots were accelerated by 1-aminocyclopropane-1-carboxylic acid (ACC), indole acetic acid (IAA), and ethrel known as ethylene production stimulators. When inhibitors of ethylene production, like aminoethoxyvinylglycine (AVG) or aminoxyacetic acid (AOA), or inhibitors of ethylene action like silver thiosulfate (STS), were applied, gall growth and ethylene production were inhibited. Enhanced expansion of parenchymatous cells was observed in sections from nematode-induced galls and ethylene-treated roots. Lignification of xylem elements and fibers in the vascular cylinder was markedly inhibited in the gall, compared with noninfected root tissue. Because ethylene is known to induce cell expansion and to inhibit lignification, it is suggested that this plant hormone plays a major role in the development of M. javanica-induced galls. Ethylene affects gall size by enhancing parenchymatous tissue development and allows expansion of giant cells and the nematode body by reducing tissue lignification.

11.
Plant Cell Rep ; 4(6): 297-9, 1985 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24254066

RESUMO

Cadaverine was found to be formed in Pisum sativum seedlings via a specific lysine decarboxylation pathway as revealed by specific inhibitor studies. Lysine decarboxylation activity was recorded in the meristems and non-meristematic tissue of the shoots and the roots. In the shoot elongation zone, the specific activity was double that in the other tissues and cadaverine level was 90-fold higher. The results presented in this study suggest possible regulatory control by polyamines of lysine decarboxylase activity in Pisum sativum seedlings.

12.
Plant Physiol ; 76(2): 461-4, 1984 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16663865

RESUMO

A purified mitochondrial fraction was isolated from potato (Solanum tuberosum L.) tubers respiring normally at 23 degrees C or at an accelerated rate in response to treatment with ethylene (10 microliters per liter).A pronounced increase in various mitochondrial enzymic activities was observed in response to exposure of the whole tubers to ethylene. Cytochrome c oxidase activity increased more than 50%, DNA polymerase activity increased about 2-fold, and RNA polymerase activity increased 2.5-fold. Moreover, DNA or RNA polymerase activities of mitochondria isolated from tubers not treated with ethylene were not affected by ethylene treatment in vitro. Respiratory control ratios decreased from 2.84 to 1.50 with increasing periods of ethylene treatment from 0 to 15 hours. None of these changes were observed in untreated tubers. It is concluded that the stimulation of respiration by ethylene in potato tubers is accompanied in vivo by an enhancement of mitochondrial enzymic activity of both membrane-associated enzymes which participate in the mitochondrial oxidative electron transport as well as soluble enzymes which are not directly involved in respiration.

13.
Plant Physiol ; 76(1): 233-7, 1984 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16663805

RESUMO

A partially purified preparation of arginine decarboxylase (EC 4.1.1.19), a key enzyme in polyamine metabolism in plants, was isolated from avocado (Persea americana Mill. cv Fuerte) fruit. The preparation obtained from the crude extract after ammonium sulfate precipitation, dialysis, and heat treatment, had maximal activity between pH 8.0 and 9.0 at 60 degrees C, in the presence of 1.2 millimolar MnCl(2), 2 millimolar dithiothreitol, and 0.06 millimolar pyridoxal phosphate. The K(m), of arginine for the decarboxylation reaction was determined for enzymes prepared from the seed coat of both 4-week-old avocado fruitlet and fully developed fruit, and was found to have a value of 1.85 and 2.84 millimolar, respectively. The value of V(app) (max) of these enzymes was 1613 and 68 nanomoles of CO(2) produced per milligram of protein per hour for the fruitlet and the fully developed fruit, respectively. Spermine, an end product of polyamine metabolism, caused less than 5% inhibition of the enzyme from fully developed fruit and 65% inhibition of the enzyme from the seed coat of 4-week-old fruitlets at 1 millimolar under similar conditions. The effect of different inhibitors on the enzyme and the change in the nature of the enzyme during fruit development are discussed.

15.
Biochem Biophys Res Commun ; 113(2): 586-91, 1983 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-6603216

RESUMO

The antifungal antibiotics Sinefungin and A9145C isolated from Streptomyces griseolus and the synthetic nucleoside Siba, which are analogs of S-adenosylmethionine, inhibit the activity of 1-aminocyclopropane 1-carboxylic acid synthase from tomato fruits. Sinefungin and Siba were shown to be more potent inhibitors than A9145C. In extracts of green fruits, the enzyme activity was inhibited by Sinefungin with an I50 of 1 microM, which was similar to that caused by aminoethoxyvinylglycine, and by Siba with an I50 of 100 microM; in extracts from red tomatoes, the I50's were 25 microM and 100 microM, respectively. The inhibition of ACC synthase by these analogs could be reversed by gel filtration chromatography.


Assuntos
Antifúngicos/farmacologia , Desoxiadenosinas/análogos & derivados , Liases/antagonistas & inibidores , Tionucleosídeos/farmacologia , Desoxiadenosinas/farmacologia , Plantas/enzimologia , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/farmacologia
16.
J Nematol ; 15(4): 539-44, 1983 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19295844

RESUMO

Ethylene production was determined in excised tomato (Lycopersicon esculentum) root cultures of Meloidogyne javanica susceptible and resistant cultivars infected with M. javanica. Uninfected cultivars produced very low amounts of ethylene. Relatively high amounts of ethylene were produced by the infected susceptible cultivars. Peak production of 1.6 n moles * g root(1) * h(1) occurred between 9 and 16 days after inoculation (DAI). The period of high ethylene production coincided with that of rapid increase in gall weight. Low amounts of ethylene were also released by the infected resistant cultivar between 9 and 12 DAI, which follows the hypersensitivity reaction. Ethylene production in infected intact plants during the period of rapid gall growth was twice as much as in uninfected plants during the same time. Exposing excised root cultures to 0.5 or l0 ppm ethylene accelerated the rate of increase in gall weight of M. javanica infected roots. In contrast, overall root growth was inhibited by these treatments, compared to infected roots which were not exposed to ethylene.

17.
Plant Physiol ; 70(4): 1221-3, 1982 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16662642

RESUMO

Applied diamines and polyamines inhibited the incorporation of radioactively labeled leucine and uridine into trichloroacetic acid-insoluble material in apple (Malus domestica Borkh, cv Golden Delicious) fruit tissue. The inhibitory effect was in general more pronounced with the higher molecular weight amines. Putrescine at 5 millimolar inhibited leucine incorporation by 37% and uridine by 44%. Spermidine and spermine at the same concentration inhibited uridine incorporation by 60%. The polyamines at concentrations between 0.1 and 1.0 millimolar inhibited leucine incorporation by 55 to 90%. The inhibitory effect of 0.1 to 10 millimolar polyamines on dark- and wound-induced senescence or ethylene production, is discussed in the light of interference with macromolecular synthesis.

18.
Plant Physiol ; 69(1): 93-7, 1982 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16662192

RESUMO

This study was conducted to determine if aminoethoxyvinylglycine (AVG) insensitivity in avocado (Persea americana Mill., Lula, Haas, and Bacon) tissue was due to an alternate pathway of ethylene biosynthesis from methionine. AVG, at 0.1 millimolar, had little or no inhibitory effect on either total ethylene production or [(14)C] ethylene production from [(14)C]methionine in avocado tissue at various stages of ripening. However, aminoxyacetic acid (AOA), which inhibits 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (the AVG-sensitive enzyme of ethylene biosynthesis), inhibited ethylene production in avocado tissue. Total ethylene production was stimulated, and [(14)C]ethylene production from [(14)C]methionine was lowered by treating avocado tissue with 1 millimolar ACC. An inhibitor of methionine adenosyltransferase (EC 2.5.1.6), l-2-amino-4-hexynoic acid (AHA), at 1.5 millimolar, effectively inhibited [(14)C]ethylene production from [(14)C]methionine in avocado tissue but had no effect on total ethylene production during a 2-hour incubation. Rates of [(14)C]AVG uptake by avocado and apple (Malus domestica Borkh., Golden Delicious) tissues were similar, and [(14)C]AVG was the only radioactive compound in alcohol-soluble fractions of the tissues. Hence, AVG-insensitivity in avocado tissue does not appear to be due to lack of uptake or to metabolism of AVG by avocado tissue. ACC synthase activity in extracts of avocado tissue was strongly inhibited (about 60%) by 10 micromolar AVG. Insensitivity of ethylene production in avocado tissue to AVG may be due to inaccessibility of ACC synthase to AVG. AVG-resistance in the avocado system is, therefore, different from that of early climacteric apple tissue, in which AVG-insensitivity of total ethylene production appears to be due to a high level of endogenous ACC relative to its rate of conversion to ethylene. However, the sensitivity of the avocado system to AOA and AHA, dilution of labeled ethylene production by ACC, and stimulation of total ethylene production by ACC provide evidence for the methionine --> SAM --> ACC --> ethylene pathway in avocado and do not suggest the operation of an alternate pathway.

19.
Plant Physiol ; 68(3): 594-6, 1981 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16661963

RESUMO

Wheat leaves normally produced very little ethylene, but following a water deficit stress which caused a loss of 9% initial fresh weight, ethylene production increased more than 30-fold within 4 hours and declined rapidly thereafter. The changes in ethylene production were paralleled by an increase and subsequent decrease in 1-aminocyclopropanecarboxylic acid (ACC) content. The level of S-adenosylmethionine was unaffected, suggesting that the conversion of S-adenosylmethionine to ACC is a key reaction in the production of water stress-induced ethylene. This view was further supported by the observation that application of ACC to nonstressed leaf tissue caused a 70-fold increase in ethylene production, while aminoethoxyvinylglycine, a known inhibitor of the conversion of S-adenosylmethionine to ACC, inhibited ACC accumulation as well as the surge in ethylene production if the inhibitor was applied prior to the stress treatment. Cycloheximide, an inhibitor of protein synthesis, effectively blocked both ethylene production and ACC formation, suggesting that water stress induces de novo synthesis of ACC synthase, which is the rate-controlling enzyme in the pathway of ethylene biosynthesis.

20.
Plant Physiol ; 68(2): 453-6, 1981 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16661935

RESUMO

Ethylene production in apple fruit and protoplasts and in leaf tissue was inhibited by spermidine or spermine. These polyamines, as well as putrescine, inhibited auxin-induced ethylene production and the conversion of methionine and 1-aminocyclopropane-1-carboxylic acid to ethylene. Polyamines were more effective as inhibitors of ethylene synthesis at the early, rather than at the late, stages of fruit ripening. Ca(2+) in the incubation medium reduced the inhibitory effect caused by the amines. A possible mode of action by which polyamines inhibit ethylene production is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA