Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 11(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920764

RESUMO

The rare Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mutations, c.1826A > G (H609R) and c.3067_3072delATAGTG (I1023_V1024del), are associated with severe lung disease. Despite the existence of four CFTR targeted therapies, none have been approved for individuals with these mutations because the associated molecular defects were not known. In this study we examined the consequences of these mutations on protein processing and channel function in HEK293 cells. We found that, similar to F508del, H609R and I1023_V1024del-CFTR exhibited reduced protein processing and altered channel function. Because the I1023_V1024del mutation can be linked with the mutation, I148T, we also examined the protein conferred by transfection of a plasmid bearing both mutations. Interestingly, together with I148T, there was no further reduction in channel function exhibited by I1023-V1024del. Both H609R and I1023_V1024del failed to exhibit significant correction of their functional expression with lumacaftor and ivacaftor. In contrast, the triple modulator combination found in TRIKAFTATM, i.e., tezacaftor, elexacaftor and ivacaftor rescued trafficking and function of both of these mutants. These in-vitro findings suggest that patients harbouring H609R or I1023_V1024del, alone or with I148T, may benefit clinically from treatment with TRIKAFTATM.

2.
FEBS Lett ; 594(23): 4085-4108, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33113586

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) is an unusual ABC transporter. It acts as an anion-selective channel that drives osmotic fluid transport across many epithelia. In the gut, CFTR is crucial for maintaining fluid and acid-base homeostasis, and its activity is tightly controlled by multiple neuro-endocrine factors. However, microbial toxins can disrupt this intricate control mechanism and trigger protracted activation of CFTR. This results in the massive faecal water loss, metabolic acidosis and dehydration that characterize secretory diarrhoeas, a major cause of malnutrition and death of children under 5 years of age. Compounds that inhibit CFTR could improve emergency treatment of diarrhoeal disease. Drawing on recent structural and functional insight, we discuss how existing CFTR inhibitors function at the molecular and cellular level. We compare their mechanisms of action to those of inhibitors of related ABC transporters, revealing some unexpected features of drug action on CFTR. Although challenges remain, especially relating to the practical effectiveness of currently available CFTR inhibitors, we discuss how recent technological advances might help develop therapies to better address this important global health need.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diarreia/tratamento farmacológico , Diarreia/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/química , Humanos , Mucosa Intestinal/metabolismo , Modelos Moleculares , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA