Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Glycobiology ; 26(8): 862-870, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26976619

RESUMO

Heparan sulfates (HS) are glycosaminoglycans of the extracellular matrices and characterized by complex modification patterns owing to sulfations, epimerization, and acetylation. Distinct HS modification patterns have been shown to modulate protein-protein interactions during development in general and of the nervous system in particular. This has led to the heparan sulfate code hypothesis, which posits that specifically modified HS epitopes are distributed in a tissue and cell-specific fashion to orchestrate neural circuit formation. Whether an HS code exists in vivo, how specific or how evolutionarily conserved the anatomical distribution of an HS code may be has remained unknown. Here we conduct a systematic comparison of HS modification patterns in the nematode Caenorhabditis elegans using transgenic expression of 33 different HS-specific single chain variable fragment antibodies. We find that some HS modification patterns are widely distributed in the nervous system. In contrast, other HS modification patterns appear highly cell-specific in both non-neuronal and neuronal cells. Some patterns can be as restricted in their localization as to single neurites or synaptic connections between two neurons. This restricted anatomical localization of specific HS patterns can be evolutionarily conserved over a span of 80-100 million years in the divergent nematode species Caenorhabditis briggsae suggesting structural and, possibly functional conservation of glycosaminoglycan structures similar to proteins. These findings suggest a HS code with subcellularly localized, unique glycan identities in the nervous system.


Assuntos
Caenorhabditis elegans/química , Caenorhabditis/química , Evolução Molecular , Heparitina Sulfato/química , Sistema Nervoso/química , Neurônios/química , Sinapses/química , Animais , Animais Geneticamente Modificados , Caenorhabditis/classificação , Caenorhabditis/metabolismo , Caenorhabditis/ultraestrutura , Caenorhabditis elegans/classificação , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestrutura , Sequência de Carboidratos , Sequência Conservada , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Heparitina Sulfato/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Filogenia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Sinapses/metabolismo , Transgenes , Proteína Vermelha Fluorescente
3.
Methods Mol Biol ; 1229: 253-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25325959

RESUMO

Heparan sulfate (HS) glycosaminoglycan chains contain highly modified HS domains that are separated by sections of sparse or no modification. HS domains are central to the role of HS in protein binding and mediating protein-protein interactions in the extracellular matrix. Since HS domains are not genetically encoded, they are impossible to visualize and study with conventional methods in vivo. Here we describe a transgenic approach using previously described single chain variable fragment (scFv) antibodies that bind HS in vitro and on tissue sections with different specificities. By engineering a secretion signal and a fluorescent protein to the scFvs and transgenically expressing these fluorescently tagged antibodies in Caenorhabditis elegans, we are able to directly visualize specific HS domains in live animals (Attreed et al. Nat Methods 9(5):477-479, 2012). The approach allows concomitant colabeling of multiple epitopes, the study of HS dynamics and, could lend itself to a genetic analysis of HS domain biosynthesis or to visualize other nongenetically encoded or posttranslational modifications.


Assuntos
Caenorhabditis elegans/genética , Heparitina Sulfato/metabolismo , Imageamento Tridimensional/métodos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Fluorescência Verde/metabolismo , Heparitina Sulfato/química , Microscopia de Fluorescência , Dados de Sequência Molecular , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia
4.
Cell ; 155(2): 308-20, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120132

RESUMO

Sensory dendrites depend on cues from their environment to pattern their growth and direct them toward their correct target tissues. Yet, little is known about dendrite-substrate interactions during dendrite morphogenesis. Here, we describe MNR-1/menorin, which is part of the conserved Fam151 family of proteins and is expressed in the skin to control the elaboration of "menorah"-like dendrites of mechanosensory neurons in Caenorhabditis elegans. We provide biochemical and genetic evidence that MNR-1 acts as a contact-dependent or short-range cue in concert with the neural cell adhesion molecule SAX-7/L1CAM in the skin and through the neuronal leucine-rich repeat transmembrane receptor DMA-1 on sensory dendrites. Our data describe an unknown pathway that provides spatial information from the skin substrate to pattern sensory dendrite development nonautonomously.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/genética , Clonagem Molecular , Técnicas de Silenciamento de Genes , Proteínas de Membrana/genética , Dados de Sequência Molecular , Alinhamento de Sequência
5.
Nat Methods ; 9(5): 477-9, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22466794

RESUMO

Modification patterns of heparan sulfate coordinate protein function in metazoans, yet in vivo imaging of such non-genetically encoded structures has been impossible. Here we report a transgenic method in Caenorhabditis elegans that allows direct live imaging of specific heparan sulfate modification patterns. This experimental approach reveals a dynamic and cell-specific heparan sulfate landscape and could in principle be adapted to visualize and analyze any extracellular molecule in vivo.


Assuntos
Caenorhabditis elegans/química , Proteínas de Fluorescência Verde/química , Heparitina Sulfato/química , Anticorpos de Cadeia Única/química , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Fluorescência Verde/genética , Heparitina Sulfato/genética , Microscopia de Fluorescência/métodos , Anticorpos de Cadeia Única/genética
6.
Cell ; 141(6): 956-69, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20550932

RESUMO

During X chromosome inactivation (XCI), Xist RNA coats and silences one of the two X chromosomes in female cells. Little is known about how XCI spreads across the chromosome, although LINE-1 elements have been proposed to play a role. Here we show that LINEs participate in creating a silent nuclear compartment into which genes become recruited. A subset of young LINE-1 elements, however, is expressed during XCI, rather than being silenced. We demonstrate that such LINE expression requires the specific heterochromatic state induced by Xist. These LINEs often lie within escape-prone regions of the X chromosome, but close to genes that are subject to XCI, and are associated with putative endo-siRNAs. LINEs may thus facilitate XCI at different levels, with silent LINEs participating in assembly of a heterochromatic nuclear compartment induced by Xist, and active LINEs participating in local propagation of XCI into regions that would otherwise be prone to escape.


Assuntos
Heterocromatina/metabolismo , Elementos Nucleotídeos Longos e Dispersos , Inativação do Cromossomo X , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Humanos , Camundongos , RNA Longo não Codificante , RNA não Traduzido/metabolismo , Transcrição Gênica , Cromossomo X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA