Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 141: 112934, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39178516

RESUMO

Hepatic fibrosis is a common pathology present in most chronic liver diseases. Autophagy is a lysosome-mediated intracellular catabolic and recycling process that plays an essential role in maintaining normal hepatic functions. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor responsible for the regulation of cellular anti-oxidative stress response. This study was designed to assess the cytoprotective effect of mesenchymal stem cell-derived exosomes (MSC-exos) on endothelial-mesenchymal transition (EMT) in Carbon Tetrachloride (CCL4) induced liver fibrosis. Rats were treated with 0.1 ml of CCL4 twice weekly for 8 weeks, followed by administration of a single dose of MSC-exos. Rats were then sacrificed after 4 weeks, and liver samples were collected for gene expression analyses, Western blot, histological studies, immunohistochemistry, and transmission electron microscopy. Our results showed that MSC-exos administration decreased collagen deposition, apoptosis, and inflammation. Exosomes modulate the Nrf2/Keap1/p62 pathway, restoring autophagy and Nrf2 levels through modulation of the non-canonical pathway of Nrf2/Keap1/p62. Additionally, MSC-exos regulated miR-153-3p, miR-27a, miR-144 and miRNA-34a expression. In conclusion, the present study shed light on MSC-exos as a cytoprotective agent against EMT and tumorigenesis in chronic liver inflammation.


Assuntos
Tetracloreto de Carbono , Exossomos , Proteína 1 Associada a ECH Semelhante a Kelch , Cirrose Hepática , Células-Tronco Mesenquimais , MicroRNAs , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Animais , Exossomos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/terapia , Masculino , Ratos , MicroRNAs/metabolismo , MicroRNAs/genética , Ratos Sprague-Dawley , Fígado/patologia , Fígado/metabolismo , Autofagia , Proteína Sequestossoma-1/metabolismo
2.
Int J Mol Sci ; 24(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37686424

RESUMO

There have been concerns about the potential health risks posed by microplastics (MP). The detection of MP in a variety of food products revealed that humans are ingesting MP. Nevertheless, there is a paucity of data about their impacts, as well as their uptake, on intestinal barrier integrity. This study examined the toxic effects of oral administration of two doses of polyethylene microplastics (PE-MP) (3.75 or 15 mg/kg/day for 5 weeks; mean particle size: 4.0-6.0 µm) on the intestinal barrier integrity in rats. Moreover, the effect of melatonin treatment with MP exposure was also assessed. The PE-MP particle uptake, histopathological changes, Alcian blue staining, Muc2 mRNA, proinflammatory cytokines (IL-1ß and TNF-α), and cleaved caspase-3, as well as tight junction proteins (claudin-1, myosin light-chain kinase (MLCK), occludin, and zonula occludens-1 (ZO-1)) were assessed. Oral administration of PE-MP resulted in apparent jejunal histopathological alterations; significantly decreased mucin secretion, occludin, ZO-1, and claudin-1 expression; and significantly upregulated MLCK mRNA, IL-1ß concentration, and cleaved caspase-3 expression. Melatonin reversed these altered parameters and improved the PE-MP-induced histopathological and ultrastructure changes. This study highlighted the PE-MP's toxic effect on intestinal barrier integrity and revealed the protective effect of melatonin.


Assuntos
Melatonina , Polietileno , Humanos , Animais , Ratos , Caspase 3 , Melatonina/farmacologia , Microplásticos/toxicidade , Plásticos , Claudina-1 , Ocludina
3.
Cells ; 12(7)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048067

RESUMO

Although the classic form of asthma is characterized by chronic pneumonitis with eosinophil infiltration and steroid responsivity, asthma has multifactorial pathogenesis and various clinical phenotypes. Previous studies strongly suggested that chemical exposure could influence the severity and course of asthma and reduce its steroid responsiveness. Cypermethrin (CYP), a common pesticide used in agriculture, was investigated for the possible aggravation of the ovalbumin (OVA)-induced allergic pneumonitis and the possible induction of steroid resistance in rats. Additionally, it was investigated whether pirfenidone (PFD) could substitute dexamethasone, as an alternative treatment option, for the induced steroid resistance. Fifty-six male Wistar albino rats were randomly divided into seven groups: control, PFD alone, allergic pneumonitis, CYP alone, allergic pneumonitis/CYP-exposed, allergic pneumonitis/CYP/dexamethasone (Dex), and allergic pneumonitis/CYP/PFD-treated groups. Allergic pneumonitis was induced by three intraperitoneal OVA injections administered once a week, followed by an intranasal OVA instillation challenge. CYP (25 mg/kg/d), Dex (1 mg/kg/d), and PFD (100 mg/kg/d) were administered orally from day 15 to the end of the experiment. Bronchoalveolar lavage fluid (BALF) was analyzed for cytokine levels. Hematoxylin and eosin (H&E) and periodic acid Schiff (PAS)-stained lung sections were prepared. Immunohistochemical identification of p38 MAPK and lung macrophages was performed. The inflammatory/oxidative status of the lung and PCR-quantification of the STAT6, p38 MAPK, MUC5AC, and IL-13 genes were carried out. The allergic pneumonitis-only group showed eosinophil-mediated inflammation (p < 0.05). Further CYP exposure aggravated lung inflammation and showed steroid-resistant changes, p38 activation, neutrophil-mediated, M1 macrophage-related inflammation (p < 0.05). All changes were reversed (p < 0.05) by PFD, meanwhile not by dexamethasone treatment. Pirfenidone could replace dexamethasone treatment in the current rat model of CYP-induced severe steroid-resistant asthma via inhibiting the M1 macrophage differentiation through modulation of the STAT6/p38 MAPK pathway.


Assuntos
Alveolite Alérgica Extrínseca , Asma , Pneumonia , Animais , Ratos , Masculino , Ovalbumina/efeitos adversos , Ratos Wistar , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/genética , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Inflamação , Macrófagos/metabolismo , Dexametasona/efeitos adversos , Fenótipo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
4.
Biomed Pharmacother ; 143: 112154, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649332

RESUMO

Gentamicin (GM) is a commonly prescribed antimicrobial drug used for treatment of infections but associated hepatic and renal complications restrict its efficacy. Overproduction of free radicals and inflammation are involved in GM-induced hepato-renal damage. Date palm is renowned to have antioxidant and anti-inflammatory bioactive composites. In this context, the current research was purposed to assess the ameliorative influence of date palm extract (DE) supplementation against GM-induced hepato-renal injury. Gas chromatography-mass spectrometry (GC-MS) was used to detect the bioactive constitutes in DE. The protective action of high and low doses of DE was assessed alongside the GM remediation (80 mg/kg) in rats. GM evoked significant alterations in liver and kidney function biomarkers (aminotransferases, albumin, creatinine, and blood urea). Furthermore, notable elevations in malondialdehyde (MDA) level and increment expression of inducible nitric oxide synthase (iNOS) along with reduction in catalase (CAT) activity were observed in both organs after GM treatment. Oxidative stress was the main modulatory mechanism in GM-induced hepato-renal toxicity. However, DE could mitigate the GM-inflicted liver and kidney damage, in a dose-response pattern, due to its high content of phenolics and flavonoids.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Phoeniceae , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Frutas , Gentamicinas , Mediadores da Inflamação/metabolismo , Rim/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Phoeniceae/química , Extratos Vegetais/isolamento & purificação , Leucemia-Linfoma Linfoblástico de Células Precursoras , Ratos Wistar
5.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34577640

RESUMO

CPF (chlorpyrifos) is an organophosphate pesticide used in agricultural and veterinary applications. Our experiment aimed to explore the effects of thymoquinone (TQ) and/or lycopene (LP) against CPF-induced neurotoxicity. Wistar rats were categorized into seven groups: first group served as a control (corn oil only); second group, TQ (10 mg/kg); third group, LP (10 mg/kg); fourth group, CPF (10 mg/kg) and deemed as CPF toxic control; fifth group, TQ + CPF; sixth group, (LP + CPF); and seventh group, (TQ + LP + CPF). CPF intoxication inhibited acetylcholinesterase (AchE), decreased glutathione (GSH) content, and increased levels of malondialdehyde (MDA), an oxidative stress biomarker. Furthermore, CPF impaired the activity of antioxidant enzymes including superoxide dismutase (SOD) and catalase (CAT) along with enhancement of the level of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1ß. CPF evoked apoptosis in brain tissue. TQ or LP treatment of CPF-intoxicated rats greatly improved AchE activity, oxidative state, inflammatory responses, and cell death. Co-administration of TQ and LP showed better restoration than their sole treatment. In conclusion, TQ or LP supplementation may alleviate CPF-induced neuronal injury, most likely due to TQ or LPs' antioxidant, anti-inflammatory, and anti-apoptotic effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA