Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(31): 8426-8433, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037948

RESUMO

We developed a surface plasmon resonance (SPR)-enhanced angular Goos-Hänchen (GH) shift measurement system capable of tracking small refractive index changes with high sensitivity in a liquid environment. Our method can be performed in angular interrogation schemes, where we demonstrate a simple zero-finding algorithm to locate the SPR angle instead of the complicated data processing algorithms used in conventional sensors. We also propose a displacement interrogation scheme for dynamic measurement of small refractive index changes in the sample. The main advantage of our method is the controllability of the measured displacement by standard geometrical optics, allowing measurement sensitivity enhancement without the need to modify the sensor material.

2.
Opt Express ; 24(23): 26175-26185, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857354

RESUMO

We present the use of a "double optical pump" technique in terahertz time-domain emission spectroscopy as an alternative method to investigate the lifetime of photo-excited carriers in semiconductors. Compared to the commonly employed optical pump-probe transient photo-reflectance, this non-contact and room temperature characterization technique allows relative ease in achieving optical alignment. The technique was implemented to evaluate the carrier lifetime in low temperature-grown gallium arsenide (LT-GaAs). The carrier lifetime values deduced from "double optical pump" THz emission decay curves show good agreement with data obtained from standard transient photo-reflectance measurements on the same LT-GaAs samples grown at 250 °C and 310 °C.

3.
Nanoscale Res Lett ; 10(1): 1050, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26293496

RESUMO

GaAs/Al0.1Ga0.9As core-shell nanowires (CSNWs), with average lateral size of 125 nm, were grown on gold nanoparticle-activated Si (100) and Si (111) substrates via molecular beam epitaxy. Room temperature-photoluminescence (RT-PL) from the samples showed bulk-like GaAs and Al0.1Ga0.9As bandgap emission peaks at 1.43 and 1.56 eV, respectively. Higher PL emission intensity of the sample on Si (111) compared to that on Si (100) is attributed to uniform Al0.1Ga0.9As shell passivation of surface states on Si (111)-grown CSNWs. Carrier dynamics in two different temporal regimes were studied. In the sub-nanosecond time scale (300-500 ps), time-resolved radiative recombination efficiency of carriers was examined. In the 0-4 ps range, surface field-driven ballistic transport of carriers was probed in terms of the radiated terahertz (THz) waves. Time-resolved PL measurements at 300 K revealed that the carrier recombination lifetime of the GaAs core on Si (100)-grown CSNWs is 333 ps while that on Si (111)-grown sample is 500 ps. Ultrafast photoexcitation of GaAs core on the two samples generated a negligible difference in the intensity and bandwidth of emitted THz radiation. This result is ascribed to the fact that the deposited GaAs material on both substrates produced samples with comparable NW densities and similar GaAs core average diameter of about 75 nm. The samples' difference in GaAs core's carrier recombination lifetime did not influence THz emission since the two processes involve distinct mechanisms. The THz spectrum of CSNWs grown on Si (111) exhibited Fabry-Perot modes that originated from multiple reflections of THz waves within the Si substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA