Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(5): 749-759, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38641663

RESUMO

Epigenetic gene silencing induced by expanded repeats can cause diverse phenotypes ranging from severe growth defects in plants to genetic diseases such as Friedreich's ataxia in humans. The molecular mechanisms underlying repeat expansion-induced epigenetic silencing remain largely unknown. Using a plant model with a temperature-sensitive phenotype, we have previously shown that expanded repeats can induce small RNAs, which in turn can lead to epigenetic silencing through the RNA-dependent DNA methylation pathway. Here, using a genetic suppressor screen and yeast two-hybrid assays, we identified novel components required for epigenetic silencing caused by expanded repeats. We show that FOURTH ULP GENE CLASS 1 (FUG1)-an uncharacterized SUMO protease with no known role in gene silencing-is required for epigenetic silencing caused by expanded repeats. In addition, we demonstrate that FUG1 physically interacts with ALFIN-LIKE 3 (AL3)-a histone reader that is known to bind to active histone mark H3K4me2/3. Loss of function of AL3 abolishes epigenetic silencing caused by expanded repeats. AL3 physically interacts with the chromodomain protein LIKE HETEROCHROMATIN 1 (LHP1)-known to be associated with the spread of the repressive histone mark H3K27me3 to cause repeat expansion-induced epigenetic silencing. Loss of any of these components suppresses repeat expansion-associated phenotypes coupled with an increase in IIL1 expression with the reversal of gene silencing and associated change in epigenetic marks. Our findings suggest that the FUG1-AL3-LHP1 module is essential to confer repeat expansion-associated epigenetic silencing and highlight the importance of post-translational modifiers and histone readers in epigenetic silencing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Inativação Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Expansão das Repetições de DNA/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Histonas/genética
2.
Cell ; 174(5): 1095-1105.e11, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30057112

RESUMO

Transcriptional downregulation caused by intronic triplet repeat expansions underlies diseases such as Friedreich's ataxia. This downregulation of gene expression is coupled with epigenetic changes, but the underlying mechanisms are unknown. Here, we show that an intronic GAA/TTC triplet expansion within the IIL1 gene of Arabidopsis thaliana results in accumulation of 24-nt short interfering RNAs (siRNAs) and repressive histone marks at the IIL1 locus, which in turn causes its transcriptional downregulation and an associated phenotype. Knocking down DICER LIKE-3 (DCL3), which produces 24-nt siRNAs, suppressed transcriptional downregulation of IIL1 and the triplet expansion-associated phenotype. Furthermore, knocking down additional components of the RNA-dependent DNA methylation (RdDM) pathway also suppressed both transcriptional downregulation of IIL1 and the repeat expansion-associated phenotype. Thus, our results show that triplet repeat expansions can lead to local siRNA biogenesis, which in turn downregulates transcription through an RdDM-dependent epigenetic modification.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigênese Genética , Íntrons , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Ribonuclease III/genética , Transcrição Gênica , Metilação de DNA , DNA Polimerase beta/genética , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oligonucleotídeos Antissenso/genética , Fenótipo , Interferência de RNA , Transgenes , Expansão das Repetições de Trinucleotídeos
3.
Theor Appl Genet ; 122(3): 609-22, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20981402

RESUMO

Perennial ryegrass is a globally cultivated obligate outbreeding diploid species (2n = 2x = 14) which is subjected to periods of waterlogging stress due to flood irrigation during winter and the lead-up to summer. Reduction of oxygen supply to root systems due to waterlogging produces consequent deleterious effects on plant performance. Framework genetic maps for a large-scale genetic mapping family [F1(NA(x) × AU6)] were constructed containing 91 simple sequence repeat and 24 single nucleotide polymorphism genetic markers. Genetic trait dissection using both control and waterlogging treatments was performed in the glasshouse, a total of 143 maximally recombinant genotypes being selected from the overall sib-ship and replicated threefold in the trial. Analysis was performed for nine quantitative morphological traits measured 8 weeks after stress treatments were applied. A total of 37 quantitative trait loci (QTLs) were identified; 19 on the NA(x) parental genetic map, and 18 on the AU6 parental genetic map. Regions of particular interest were identified on linkage groups (LGs) 4 and 3 of the respective maps, which have been targeted for further analysis by selection of critical recombinants. This first study of genetic control of waterlogging tolerance in ryegrasses has important implications for breeding improvement of abiotic stress adaptation.


Assuntos
Adaptação Fisiológica/genética , Inundações , Lolium/anatomia & histologia , Lolium/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Mapeamento Cromossômico , Padrões de Herança/genética , Lolium/crescimento & desenvolvimento , Fenótipo , Recombinação Genética/genética , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA