Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 54(21): 7602-20, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21928839

RESUMO

The discovery of two histamine H(3) antagonist clinical candidates is disclosed. The pathway to identification of the two clinical candidates, 6 (PF-03654746) and 7 (PF-03654764) required five hypothesis driven design cycles. The key to success in identifying these clinical candidates was the development of a compound design strategy that leveraged medicinal chemistry knowledge and traditional assays in conjunction with computational and in vitro safety tools. Overall, clinical compounds 6 and 7 exceeded conservative safety margins and possessed optimal pharmacological and pharmacokinetic profiles, thus achieving our initial goal of identifying compounds with fully aligned oral drug attributes, "best-in-class" molecules.


Assuntos
Ciclobutanos/síntese química , Desenho de Fármacos , Antagonistas dos Receptores Histamínicos/síntese química , Pirrolidinas/síntese química , Receptores Histamínicos H3/metabolismo , Animais , Proteínas Sanguíneas/metabolismo , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Ciclobutanos/farmacologia , Ciclobutanos/toxicidade , Cães , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/toxicidade , Humanos , Técnicas In Vitro , Rim/metabolismo , Lipidoses/induzido quimicamente , Lipidoses/metabolismo , Pulmão/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Fosfolipídeos/metabolismo , Ligação Proteica , Pirrolidinas/farmacologia , Pirrolidinas/toxicidade , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade
2.
Toxicol Lett ; 197(3): 175-82, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20576494

RESUMO

The selection and application of appropriate safety screening paradigms could revolutionize the drug discovery process by reducing safety-related attrition. While mechanism specific genotoxicity and safety pharmacology assays are routinely used in screening, the overall value of employing nonspecific cytotoxicity assays remains controversial. A retrospective analysis of safety findings from rat exploratory toxicity studies (4-14 days) utilizing compounds that spanned broad therapeutic targets (protease, transport, G-protein-coupled receptors, and kinase inhibitors, cGMP modulators) demonstrated that safety toleration in vivo could be approximated using cytotoxicity values. A composite safety score was calculated for each compound dose based on findings in each of the following categories: systemic toleration (mortality, food consumption, and adverse clinical signs), clinical chemistry/hematology parameters (deviations from normal ranges), and multiorgan pathology (necrosis or incidence/severity of histologic change). Binning compounds into potent (LC(50)<10 microM) and non-potent (LC(50)>100 microM) cytotoxicants in vitro showed that compared to non-potent cytotoxicants the exposure to potent cytotoxicants in vivo resulted in higher overall severity scores at lower exposures. Correlating overall toleration for individual compounds was further refined when in vivo exposure was considered. When average plasma exposure (Cp(ave)) for a compound exceeded its mean lethal concentration (LC(50)) in vitro (Cp(ave)/LC(50)>1), higher overall severity scores were achieved compared to lower exposure margins (Cp(ave)/LC(50) <0.01). Based on this analysis, the ability to select lead series and individual compounds with better safety characteristics is presented. In summary, cytotoxicity screening can be used to approximate, not define, the safety characteristics of lead pharmaceutical series early in the drug discovery process.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Testes de Toxicidade/métodos , Animais , Avaliação Pré-Clínica de Medicamentos , Masculino , Valor Preditivo dos Testes , Ratos
3.
J Law Med Ethics ; 37(4): 732-48, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20122113

RESUMO

Societal evaluation of new technologies, specifically nanotechnology and genetically engineered organisms (GEOs), challenges current practices of governance and science. Employing environmental risk assessment (ERA) for governance and oversight assumes we have a reasonable ability to understand consequences and predict adverse effects. However, traditional ERA has come under considerable criticism for its many shortcomings and current governance institutions have demonstrated limitations in transparency, public input, and capacity. Problem Formulation and Options Assessment (PFOA) is a methodology founded on three key concepts in risk assessment (science-based consideration, deliberation, and multi-criteria analysis) and three in governance (participation, transparency, and accountability). Developed through a series of international workshops, the PFOA process emphasizes engagement with stakeholders in iterative stages, from identification of the problem(s) through comparison of multiple technology solutions that could be used in the future with their relative benefits, harms, and risk. It provides "upstream public engagement" in a deliberation informed by science that identifies values for improved decision making.


Assuntos
Engenharia Genética/legislação & jurisprudência , Regulamentação Governamental , Nanotecnologia/legislação & jurisprudência , Organismos Geneticamente Modificados , Formulação de Políticas , Avaliação da Tecnologia Biomédica/métodos , Ecologia , Saúde Ambiental , Humanos , Medição de Risco , Estados Unidos
4.
Curr Drug Metab ; 9(9): 854-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18991581

RESUMO

The binding of a drug to serum or plasma proteins enables the transport of drugs via the blood to sites of action throughout the body. For expediency we will use serum proteins throughout this discussion with the understanding that one can substitute the term plasma proteins in all experimental instances. Only the fraction of drug unbound from serum proteins is available to diffuse from the vascular system and accumulate in tissues thereby enabling interaction with therapeutic targets and accessibility to xenobiotic clearance pathways. Therefore, the extent of drug binding to serum proteins can have a significant impact on pharmacokinetic (PK) parameters such as clearance rates and volume of distribution. In addition, because only the unbound drug is available to interact with therapeutic targets, the extent of serum binding can have significant effects on the pharmacodynamic properties of a compound as well [1, 2] Determining the fraction of drug bound to serum proteins is a standard parameter evaluated in the process of drug discovery. Although the clinical importance of changes in serum protein binding has been questioned [3-8] the need for serum protein binding studies in the discovery and preclinical development stages is essential for the pharmacokinetic modeling of drugs [1, 3, 9]. The extent of serum protein binding is an important parameter used in many in vivo modeling calculations to estimate the volume of distribution, organ clearance, and for scale-up of pharmacokinetic and pharmacodynamic parameters from animal models to humans [3, 10, 11]. The convergence of several trends in the pharmaceutical industry including high speed chemical synthesis technologies, the increasing use of in silico ADME modeling together with early in vivo evaluations of lead compounds has increased the demand for serum protein binding determinations [12].


Assuntos
Proteínas Sanguíneas/metabolismo , Preparações Farmacêuticas/metabolismo , Algoritmos , Animais , Humanos , Microdiálise , Ligação Proteica
5.
J Pharm Sci ; 92(5): 967-74, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12712416

RESUMO

A 96-well equilibrium dialysis block was designed and constructed that is compatible with most standard 96-well format laboratory supplies and instruments. The unique design of the dialysis apparatus allows one to dispense and aspirate from either or both the sample and dialysate sides from the top of the apparatus, which is not possible with systems currently on the market. This feature permits the investigator to analyze a large number of samples, time points, or replicates in the same experiment. The novel alignment of the dialysis membrane vertically in the well maximizes the surface-to-volume ratio, eliminates problems associated with trapped air pockets, and allows one to add or remove samples independently or all at once. Furthermore, the design of the apparatus allows both the sample and dialysate sides of the dialysis well to be accessible by robotic systems, so assays can be readily automated. Teflon construction is used to minimize nonspecific binding of test samples to the apparatus. The device is reusable, easily assembled, and can be shaken in controlled temperature environments to decrease the time required to reach equilibrium as well as facilitate dissolution of test compounds. Plasma protein binding values obtained for 10 diverse compounds using standard dialysis equipment and the 96-well dialysis block validates this method.


Assuntos
Proteínas Sanguíneas/metabolismo , Diálise/instrumentação , Cromatografia , Diálise/métodos , Feminino , Humanos , Técnicas In Vitro , Masculino , Espectrometria de Massas , Preparações Farmacêuticas/metabolismo , Ligação Proteica , Solubilidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA