Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345109

RESUMO

The field of developmental biology has declined in prominence in recent decades, with off-shoots from the field becoming more fashionable and highly funded. This has created inequity in discovery and opportunity, partly due to the perception that the field is antiquated or not cutting edge. A 'think tank' of scientists from multiple developmental biology-related disciplines came together to define specific challenges in the field that may have inhibited innovation, and to provide tangible solutions to some of the issues facing developmental biology. The community suggestions include a call to the community to help 'rebrand' the field, alongside proposals for additional funding apparatuses, frameworks for interdisciplinary innovative collaborations, pedagogical access, improved science communication, increased diversity and inclusion, and equity of resources to provide maximal impact to the community.


Assuntos
Biologia do Desenvolvimento
2.
Proc Natl Acad Sci U S A ; 120(51): e2311961120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096411

RESUMO

Crop engineering and de novo domestication using gene editing are new frontiers in agriculture. However, outside of well-studied crops and model systems, prioritizing engineering targets remains challenging. Evolution can guide us, revealing genes with deeply conserved roles that have repeatedly been selected in the evolution of plant form. Homologs of the transcription factor genes GRASSY TILLERS1 (GT1) and SIX-ROWED SPIKE1 (VRS1) have repeatedly been targets of selection in domestication and evolution, where they repress growth in many developmental contexts. This suggests a conserved role for these genes in regulating growth repression. To test this, we determined the roles of GT1 and VRS1 homologs in maize (Zea mays) and the distantly related grass brachypodium (Brachypodium distachyon) using gene editing and mutant analysis. In maize, gt1; vrs1-like1 (vrl1) mutants have derepressed growth of floral organs. In addition, gt1; vrl1 mutants bore more ears and more branches, indicating broad roles in growth repression. In brachypodium, Bdgt1; Bdvrl1 mutants have more branches, spikelets, and flowers than wild-type plants, indicating conserved roles for GT1 and VRS1 homologs in growth suppression over ca. 59 My of grass evolution. Importantly, many of these traits influence crop productivity. Notably, maize GT1 can suppress growth in arabidopsis (Arabidopsis thaliana) floral organs, despite ca. 160 My of evolution separating the grasses and arabidopsis. Thus, GT1 and VRS1 maintain their potency as growth regulators across vast timescales and in distinct developmental contexts. This work highlights the power of evolution to inform gene editing in crop improvement.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fenótipo , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Mol Biol Evol ; 40(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37787619

RESUMO

The coding sequences of developmental genes are expected to be deeply conserved, with cis-regulatory change driving the modulation of gene function. In contrast, proteins with roles in defense are expected to evolve rapidly, in molecular arms races with pathogens. However, some gene families include both developmental and defense genes. In these families, does the tempo and mode of evolution differ between genes with divergent functions, despite shared ancestry and structure? The leucine-rich repeat receptor-like kinase (LRR-RLKs) protein family includes members with roles in plant development and defense, thus providing an ideal system for answering this question. LRR-RLKs are receptors that traverse plasma membranes. LRR domains bind extracellular ligands; RLK domains initiate intracellular signaling cascades in response to ligand binding. In LRR-RLKs with roles in defense, LRR domains evolve faster than RLK domains. To determine whether this asymmetry extends to LRR-RLKs that function primarily in development, we assessed evolutionary rates and tested for selection acting on 11 subfamilies of LRR-RLKs, using deeply sampled protein trees. To assess functional evolution, we performed heterologous complementation assays in Arabidopsis thaliana (Arabidopsis). We found that the LRR domains of all tested LRR-RLK proteins evolved faster than their cognate RLK domains. All tested subfamilies of LRR-RLKs had strikingly similar patterns of molecular evolution, despite divergent functions. Heterologous transformation experiments revealed that multiple mechanisms likely contribute to the evolution of LRR-RLK function, including escape from adaptive conflict. Our results indicate specific and distinct evolutionary pressures acting on LRR versus RLK domains, despite diverse organismal roles for LRR-RLK proteins.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Leucina/genética , Domínios Proteicos , Proteínas Quinases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Tirosina Quinases/genética , Evolução Molecular , Filogenia
5.
Integr Comp Biol ; 63(4): 946-959, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37024265

RESUMO

How did plant sexuality come to so hauntingly resemble human sexual formations? How did plant biology come to theorize plant sexuality with binary formulations of male/female, sex/gender, sperm/egg, active males and passive females-all of which resemble western categories of sex, gender, and sexuality? Tracing the extant language of sex and sexuality in plant reproductive biology, we examine the histories of science to explore how plant reproductive biology emerged historically from formations of colonial racial and sexual politics and how evolutionary biology was premised on the imaginations of racialized heterosexual romance. Drawing on key examples, the paper aims to (un)read plant sexuality and sexual anatomy and bodies to imagine new possibilities for plant sex, sexualities, and their relationalities. In short, plant sex and sexuality are not two different objects of inquiry but are intimately related-it is their inter-relation that is the focus of this essay. One of the key impulses from the humanities that we bring to this essay is a careful consideration of how terms and terminologies are related to each other historically and culturally. In anthropomorphizing plants, if plant sexuality were modeled on human sexual formations, might a re-imagination of plant sexuality open new vistas for the biological sciences? While our definitions of plant sexuality will always be informed by contemporary society and culture, interrogating the histories of our theories and terminologies can help us reimagine a biology that allows for new and more accurate understandings of plants, plant biology, and the evolution of reproduction.


Assuntos
Sêmen , Minorias Sexuais e de Gênero , Masculino , Feminino , Humanos , Animais , Comportamento Sexual , Sexualidade , Reprodução
6.
Annu Rev Plant Biol ; 74: 727-750, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36413578

RESUMO

There is intense interest in using genome editing technologies to domesticate wild plants, or accelerate the improvement of weakly domesticated crops, in de novo domestication. Here, we discuss promising genetic strategies, with a focus on plant development. Importantly, genome editing releases us from dependence on random mutagenesis or intraspecific diversity, allowing us to draw solutions more broadly from diversity. However, sparse understanding of the complex genetics of diversity limits innovation. Beyond genetics, we urge the ethical use of indigenous knowledge, indigenous plants, and ethnobotany. De novo domestication still requires conventional breeding by phenotypic selection, especially in the development of crops for diverse environments and cultures. Indeed, uniting genome editing with selective breeding could facilitate faster and better outcomes than either technology alone. Domestication is complex and incompletely understood, involving changes to many aspects of plant biology and human culture. Success in de novo domestication requires careful attention to history and collaboration across traditional boundaries.


Assuntos
Domesticação , Edição de Genes , Humanos , Melhoramento Vegetal , Produtos Agrícolas/genética , Etnobotânica
7.
Sci Adv ; 8(24): eabm6835, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35704576

RESUMO

Grass inflorescence development is diverse and complex and involves sophisticated but poorly understood interactions of genes regulating branch determinacy and leaf growth. Here, we use a combination of transcript profiling and genetic and phylogenetic analyses to investigate tasselsheath1 (tsh1) and tsh4, two maize genes that simultaneously suppress inflorescence leaf growth and promote branching. We identify a regulatory network of inflorescence leaf suppression that involves the phase change gene tsh4 upstream of tsh1 and the ligule identity gene liguleless2 (lg2). We also find that a series of duplications in the tsh1 gene lineage facilitated its shift from boundary domain in nongrasses to suppressed inflorescence leaves of grasses. Collectively, these results suggest that the boundary domain genes tsh1 and lg2 were recruited to inflorescence leaves where they suppress growth and regulate a nonautonomous signaling center that promotes inflorescence branching, an important component of yield in cereal grasses.

8.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996873

RESUMO

Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Sequência de Aminoácidos , Apoptose , Flores/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Inflorescência , Meristema/genética , Meristema/crescimento & desenvolvimento , Monoéster Fosfórico Hidrolases , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Mol Plant ; 15(4): 755-777, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35093593

RESUMO

Poaceae (the grasses) includes rice, maize, wheat, and other crops, and is the most economically important angiosperm family. Poaceae is also one of the largest plant families, consisting of over 11 000 species with a global distribution that contributes to diverse ecosystems. Poaceae species are classified into 12 subfamilies, with generally strong phylogenetic support for their monophyly. However, many relationships within subfamilies, among tribes and/or subtribes, remain uncertain. To better resolve the Poaceae phylogeny, we generated 342 transcriptomic and seven genomic datasets; these were combined with other genomic and transcriptomic datasets to provide sequences for 357 Poaceae species in 231 genera, representing 45 tribes and all 12 subfamilies. Over 1200 low-copy nuclear genes were retrieved from these datasets, with several subsets obtained using additional criteria, and used for coalescent analyses to reconstruct a Poaceae phylogeny. Our results strongly support the monophyly of 11 subfamilies; however, the subfamily Puelioideae was separated into two non-sister clades, one for each of the two previously defined tribes, supporting a hypothesis that places each tribe in a separate subfamily. Molecular clock analyses estimated the crown age of Poaceae to be ∼101 million years old. Ancestral character reconstruction of C3/C4 photosynthesis supports the hypothesis of multiple independent origins of C4 photosynthesis. These origins are further supported by phylogenetic analysis of the ppc gene family that encodes the phosphoenolpyruvate carboxylase, which suggests that members of three paralogous subclades (ppc-aL1a, ppc-aL1b, and ppc-B2) were recruited as functional C4ppc genes. This study provides valuable resources and a robust phylogenetic framework for evolutionary analyses of the grass family.


Assuntos
Ecossistema , Poaceae , Núcleo Celular , Evolução Molecular , Fotossíntese/genética , Filogenia , Poaceae/genética
10.
Cell ; 184(7): 1724-1739.e16, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33667348

RESUMO

Divergence of gene function is a hallmark of evolution, but assessing functional divergence over deep time is not trivial. The few alleles available for cross-species studies often fail to expose the entire functional spectrum of genes, potentially obscuring deeply conserved pleiotropic roles. Here, we explore the functional divergence of WUSCHEL HOMEOBOX9 (WOX9), suggested to have species-specific roles in embryo and inflorescence development. Using a cis-regulatory editing drive system, we generate a comprehensive allelic series in tomato, which revealed hidden pleiotropic roles for WOX9. Analysis of accessible chromatin and conserved cis-regulatory sequences identifies the regions responsible for this pleiotropic activity, the functions of which are conserved in groundcherry, a tomato relative. Mimicking these alleles in Arabidopsis, distantly related to tomato and groundcherry, reveals new inflorescence phenotypes, exposing a deeply conserved pleiotropy. We suggest that targeted cis-regulatory mutations can uncover conserved gene functions and reduce undesirable effects in crop improvement.


Assuntos
Genes de Plantas , Pleiotropia Genética/genética , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Solanum lycopersicum/genética , Mutagênese , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Solanaceae/genética , Solanaceae/crescimento & desenvolvimento
11.
Nat Plants ; 7(3): 287-294, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33619356

RESUMO

Several yield-related traits selected during crop domestication and improvement1,2 are associated with increases in meristem size3, which is controlled by CLE peptide signals in the CLAVATA-WUSCHEL pathway4-13. Here, we engineered quantitative variation for yield-related traits in maize by making weak promoter alleles of CLE genes, and a null allele of a newly identified partially redundant compensating CLE gene, using CRISPR-Cas9 genome editing. These strategies increased multiple maize grain-yield-related traits, supporting the enormous potential for genomic editing in crop enhancement.


Assuntos
Grão Comestível/genética , Genes de Plantas , Regiões Promotoras Genéticas , Zea mays/genética , Sistemas CRISPR-Cas , Grão Comestível/crescimento & desenvolvimento , Edição de Genes , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Transdução de Sinais , Zea mays/crescimento & desenvolvimento
12.
Plant Direct ; 4(8): e00252, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32904806

RESUMO

Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020-2030 frames our ability to perform vital and far-reaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1-4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plant-based medicines, and "green infrastructure." Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a "parts store" that supports tinkering and supports query, prediction, and rapid-response problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on non-invasive imaging, sensors, and plug-and-play portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligence-assisted data integration, pattern identification, and decision making. Implementation of this vision will transform plant systems science and ripple outwards through society and across the globe. Beyond deepening our biological understanding, we envision entirely new applications. We further anticipate a wave of diversification of plant systems practitioners while stimulating community engagement, underpinning increasing entrepreneurship. This surge of engagement and knowledge will help satisfy and stoke people's natural curiosity about the future, and their desire to prepare for it, as they seek fuller information about food, health, climate and ecological systems.

13.
Plant Cell ; 32(11): 3408-3424, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32873631

RESUMO

Interactions between MADS box transcription factors are critical in the regulation of floral development, and shifting MADS box protein-protein interactions are predicted to have influenced floral evolution. However, precisely how evolutionary variation in protein-protein interactions affects MADS box protein function remains unknown. To assess the impact of changing MADS box protein-protein interactions on transcription factor function, we turned to the grasses, where interactions between B-class MADS box proteins vary. We tested the functional consequences of this evolutionary variability using maize (Zea mays) as an experimental system. We found that differential B-class dimerization was associated with subtle, quantitative differences in stamen shape. In contrast, differential dimerization resulted in large-scale changes to downstream gene expression. Differential dimerization also affected B-class complex composition and abundance, independent of transcript levels. This indicates that differential B-class dimerization affects protein degradation, revealing an important consequence for evolutionary variability in MADS box interactions. Our results highlight complexity in the evolution of developmental gene networks: changing protein-protein interactions could affect not only the composition of transcription factor complexes but also their degradation and persistence in developing flowers. Our results also show how coding change in a pleiotropic master regulator could have small, quantitative effects on development.


Assuntos
Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Plantas/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Montagem e Desmontagem da Cromatina , Evolução Molecular , Flores/genética , Regulação da Expressão Gênica de Plantas , Pleiotropia Genética , Proteínas de Domínio MADS/metabolismo , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Ubiquitinação , Zea mays/genética
14.
New Phytol ; 226(5): 1492-1505, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31990988

RESUMO

●Cells are continuously exposed to chemical signals that they must discriminate between and respond to appropriately. In embryophytes, the leucine-rich repeat receptor-like kinases (LRR-RLKs) are signal receptors critical in development and defense. LRR-RLKs have diversified to hundreds of genes in many plant genomes. Although intensively studied, a well-resolved LRR-RLK gene tree has remained elusive. ●To resolve the LRR-RLK gene tree, we developed an improved gene discovery method based on iterative hidden Markov model searching and phylogenetic inference. We used this method to infer complete gene trees for each of the LRR-RLK subclades and reconstructed the deepest nodes of the full gene family. ●We discovered that the LRR-RLK gene family is even larger than previously thought, and that protein domain gains and losses are prevalent. These structural modifications, some of which likely predate embryophyte diversification, led to misclassification of some LRR-RLK variants as members of other gene families. Our work corrects this misclassification. ●Our results reveal ongoing structural evolution generating novel LRR-RLK genes. These new genes are raw material for the diversification of signaling in development and defense. Our methods also enable phylogenetic reconstruction in any large gene family.


Assuntos
Evolução Molecular , Genoma de Planta , Filogenia , Domínios Proteicos
16.
New Phytol ; 225(3): 1127-1133, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31494948

RESUMO

The evolutionary modification of development was fundamental in generating extant plant diversity. Similarly, the modification of development is a path forward to engineering the plants of the future, provided we know enough about what to modify. Understanding how extant diversity was generated will reveal productive pathways forward for modifying development. Here, I discuss four examples of developmental pathways that have been remodeled by changes to protein-protein interactions. These are cases where changes to developmental pathways have been paralleled by recent changes, selected for or engineered by humans. Extant plant diversity represents a vast treasure trove of molecular solutions to ecological problems. Mining this treasure trove will allow for the intentional modification of plant development for solving future problems.


Assuntos
Evolução Biológica , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Phytoplasma , Proteínas de Plantas/química , Transdução de Sinais
17.
Nat Genet ; 51(5): 786-792, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30988512

RESUMO

Precise control of plant stem cell proliferation is necessary for the continuous and reproducible development of plant organs1,2. The peptide ligand CLAVATA3 (CLV3) and its receptor protein kinase CLAVATA1 (CLV1) maintain stem cell homeostasis within a deeply conserved negative feedback circuit1,2. In Arabidopsis, CLV1 paralogs also contribute to homeostasis, by compensating for the loss of CLV1 through transcriptional upregulation3. Here, we show that compensation4,5 operates in diverse lineages for both ligands and receptors, but while the core CLV signaling module is conserved, compensation mechanisms have diversified. Transcriptional compensation between ligand paralogs operates in tomato, facilitated by an ancient gene duplication that impacted the domestication of fruit size. In contrast, we found little evidence for transcriptional compensation between ligands in Arabidopsis and maize, and receptor compensation differs between tomato and Arabidopsis. Our findings show that compensation among ligand and receptor paralogs is critical for stem cell homeostasis, but that diverse genetic mechanisms buffer conserved developmental programs.


Assuntos
Meristema/citologia , Meristema/genética , Desenvolvimento Vegetal/genética , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proliferação de Células/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ligantes , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Modelos Genéticos , Mutação , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Células-Tronco/citologia , Zea mays/citologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento
18.
New Phytol ; 221(1): 540-552, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281798

RESUMO

Epidermal cells of leaves are diverse: tabular pavement cells, trichomes, and stomatal complexes. Pavement cells from the monocot Zea mays (maize) and the eudicot Arabidopsis thaliana (Arabidopsis) have highly undulate anticlinal walls. The molecular basis for generating these undulating margins has been extensively investigated in these species. This has led to two assumptions: first, that particular plant lineages are characterized by particular pavement cell shapes; and second, that undulatory cell shapes are common enough to be model shapes. To test these assumptions, we quantified pavement cell shape in epidermides from the leaves of 278 vascular plant taxa. We found that monocot pavement cells tended to have weakly undulating margins, fern cells had strongly undulating margins, and eudicot cells showed no particular undulation degree. Cells with highly undulating margins, like those of Arabidopsis and maize, were in the minority. We also found a trend towards more undulating cell margins on abaxial leaf surfaces; and that highly elongated leaves in ferns, monocots and gymnosperms tended to have highly elongated cells. Our results reveal the diversity of pavement cell shapes, and lays the quantitative groundwork for testing hypotheses about pavement cell form and function within a phylogenetic context.


Assuntos
Filogenia , Células Vegetais , Folhas de Planta/citologia , Anisotropia , Forma Celular , Processamento de Imagem Assistida por Computador , Epiderme Vegetal/citologia , Plantas/genética
19.
G3 (Bethesda) ; 8(11): 3583-3592, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30194092

RESUMO

Forward genetics remains a powerful method for revealing the genes underpinning organismal form and function, and for revealing how these genes are tied together in gene networks. In maize, forward genetics has been tremendously successful, but the size and complexity of the maize genome made identifying mutant genes an often arduous process with traditional methods. The next generation sequencing revolution has allowed for the gene cloning process to be significantly accelerated in many organisms, even when genomes are large and complex. Here, we describe a bulked-segregant analysis sequencing (BSA-Seq) protocol for cloning mutant genes in maize. Our simple strategy can be used to quickly identify a mapping interval and candidate single nucleotide polymorphisms (SNPs) from whole genome sequencing of pooled F2 individuals. We employed this strategy to identify narrow odd dwarf as an enhancer of teosinte branched1, and to identify a new allele of defective kernel1 Our method provides a quick, simple way to clone genes in maize.


Assuntos
Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Zea mays/genética , Clonagem Molecular , Mutação , Polimorfismo de Nucleotídeo Único
20.
Elife ; 72018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543153

RESUMO

Meristems contain groups of indeterminate stem cells, which are maintained by a feedback loop between CLAVATA (CLV) and WUSCHEL (WUS) signaling. CLV signaling involves the secretion of the CLV3 peptide and its perception by a number of Leucine-Rich-Repeat (LRR) receptors, including the receptor-like kinase CLV1 and the receptor-like protein CLV2 coupled with the CORYNE (CRN) pseudokinase. CLV2, and its maize ortholog FASCIATED EAR2 (FEA2) appear to function in signaling by CLV3 and several related CLV3/EMBRYO-SURROUNDING REGION (CLE) peptide ligands. Nevertheless, how signaling specificity is achieved remains unknown. Here we show that FEA2 transmits signaling from two distinct CLE peptides, the maize CLV3 ortholog ZmCLE7 and ZmFON2-LIKE CLE PROTEIN1 (ZmFCP1) through two different candidate downstream effectors, the alpha subunit of the maize heterotrimeric G protein COMPACT PLANT2 (CT2), and ZmCRN. Our data provide a novel framework to understand how diverse signaling peptides can activate different downstream pathways through common receptor proteins.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Membrana/genética , Meristema/genética , Proteínas Serina-Treonina Quinases/genética , Zea mays/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligantes , Meristema/crescimento & desenvolvimento , Receptores de Superfície Celular/genética , Transdução de Sinais/genética , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA