Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 674: 108082, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31473191

RESUMO

Plant lipoxygenases oxygenate linoleic acid to produce 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid (13(S)-HPOD) or 9-hydroperoxy-10E,12Z-octadecadienoic acid (9(S)-HPOD). The manner in which these enzymes bind substrates and the mechanisms by which they control regiospecificity are uncertain. Hornung et al. (Proc. Natl. Acad. Sci. USA96 (1999) 4192-4197) have identified an important residue, corresponding to phe-557 in soybean lipoxygenase-1 (SBLO-1). These authors proposed that large residues in this position favored binding of linoleate with the carboxylate group near the surface of the enzyme (tail-first binding), resulting in formation of 13(S)-HPOD. They also proposed that smaller residues in this position facilitate binding of linoleate in a head-first manner with its carboxylate group interacting with a conserved arginine residue (arg-707 in SBLO-1), which leads to 9(S)-HPOD. In the present work, we have tested these proposals on SBLO-1. The F557V mutant produced 33% 9-HPOD (S:R = 87:13) from linoleic acid at pH 7.5, compared with 8% for the wild-type enzyme and 12% with the F557V,R707L double mutant. Experiments with 11(S)-deuteriolinoleic acid indicated that the 9(S)-HPOD produced by the F557V mutant involves removal of hydrogen from the pro-R position on C-11 of linoleic acid, as expected if 9(S)-HPOD results from binding in an orientation that is inverted relative to that leading to 13(S)-HPOD. The product distributions obtained by oxygenation of 10Z,13Z-nonadecadienoic acid and arachidonic acid by the F557V mutant support the hypothesis that ω6 oxygenation results from tail-first binding and ω10 oxygenation from head-first binding. The results demonstrate that the regiospecificity of SBLO-1 can be altered by a mutation that facilitates an alternative mode of substrate binding and adds to the body of evidence that 13(S)-HPOD arises from tail-first binding.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Glycine max/enzimologia , Lipoxigenase/metabolismo , Sítios de Ligação , Catálise , Deutério/química , Ácidos Graxos Insaturados/química , Ácidos Linoleicos/química , Peróxidos Lipídicos/química , Lipoxigenase/genética , Mutação , Oxirredução , Fosfatidilcolinas/química , Ligação Proteica , Estereoisomerismo
2.
Bioorg Chem ; 78: 170-177, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29573638

RESUMO

Lipoxygenases catalyze the oxygenation of polyunsaturated fatty acids and their derivatives to produce conjugated diene hydroperoxides. Soybean lipoxygenase-1 (SBLO-1) has been the subject of intensive structural and mechanistic study, but the manner in which this enzyme binds substrates is uncertain. Previous studies suggest that the fatty acyl group of the substrate binds in an internal cavity near the catalytic iron with the polar end at the surface of the protein or perhaps external to the protein. To test this model, we have investigated two pairs of enantiomeric N-linoleoylamino acids as substrates for SBLO-1. If the amino acid moiety binds external to the protein, the kinetics and product distribution should show little or no sensitivity to the stereochemical configuration of the amino acid moiety. Consistent with this expectation, N-linoleoyl-l-valine (LLV) and N-linoleoyl-d-valine (LDV) are both good substrates with kcat/Km values that are equal within error and about 40% higher than kcat/Km for linoleic acid. Experiments with N-linoleoyl-l-tryptophan (LLT) and N-linoleoyl-d-tryptophan (LDT) were complicated by the low critical micelle concentrations (CMC = 6-8 µM) of these substances. Below the CMC, LDT is a better substrate by a factor of 2.7. The rates of oxygenation of LDT and LLT continue to rise above the CMC, with modest stereoselectivity in favor of the d enantiomer. With all of the substrates tested, the major product is the 13(S)-hydroperoxide, and the distribution of minor products is not appreciably affected by the configuration of the amino acid moiety. The absence of stereoselectivity with LLV and LDV, the modest magnitude of the stereoselectivity with LLT and LDT, and the ability micellar forms of LLT and LDT to increase the concentration of available substrate are all consistent with the hypothesis that the amino acid moiety binds largely external to SBLO-1 and interacts with it only weakly.


Assuntos
Glycine max/enzimologia , Ácidos Linoleicos/metabolismo , Lipoxigenase/metabolismo , Sondas Moleculares/metabolismo , Valina/metabolismo , Sítios de Ligação , Hidrólise , Cinética , Lipoxigenase/química , Sondas Moleculares/química , Estrutura Molecular , Estereoisomerismo , Especificidade por Substrato , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA