Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 354(6317): 1269-1273, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27940869

RESUMO

Topological crystalline insulators are materials in which the crystalline symmetry leads to topologically protected surface states with a chiral spin texture, rendering them potential candidates for spintronics applications. Using scanning tunneling spectroscopy, we uncover the existence of one-dimensional (1D) midgap states at odd-atomic surface step edges of the three-dimensional topological crystalline insulator (Pb,Sn)Se. A minimal toy model and realistic tight-binding calculations identify them as spin-polarized flat bands connecting two Dirac points. This nontrivial origin provides the 1D midgap states with inherent stability and protects them from backscattering. We experimentally show that this stability results in a striking robustness to defects, strong magnetic fields, and elevated temperature.

2.
Adv Mater ; 28(45): 10073-10078, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27677534

RESUMO

The effective gating of topological insulators is demonstrated, through the coupling of molecules to their surface. By using electric fields, they allow for dynamic control of the interface charge state by adding or removing single electrons. This process creates a robust transconductance bistability resembling a single-electron transistor. These findings make hybrid molecule/topological interfaces functional elements while at the same time pushing miniaturization to its ultimate limit.

3.
Nat Commun ; 7: 12027, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27345240

RESUMO

Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, that is, gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials.

4.
Adv Mater ; 28(11): 2183-8, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26780377

RESUMO

A Bi2Te3 single crystal is grown with the modified Bridgman technique. The crystal has a nominal composition with a Te content of 61 mol% resulting in the existence of two distinct regions, p- and n-doped, respectively; color-coded tunneling spectra are taken over 60 nm at the transition region.

5.
Nat Commun ; 6: 8691, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26498368

RESUMO

Quantum interference is a striking manifestation of one of the basic concepts of quantum mechanics: the particle-wave duality. A spectacular visualization of this effect is the standing wave pattern produced by elastic scattering of surface electrons around defects, which corresponds to a modulation of the electronic local density of states and can be imaged using a scanning tunnelling microscope. To date, quantum-interference measurements were mainly interpreted in terms of interfering electrons or holes of the underlying band-structure description. Here, by imaging energy-dependent standing-wave patterns at noble metal surfaces, we reveal, in addition to the conventional surface-state band, the existence of an 'anomalous' energy band with a well-defined dispersion. Its origin is explained by the presence of a satellite in the structure of the many-body spectral function, which is related to the acoustic surface plasmon. Visualizing the corresponding charge oscillations provides thus direct access to many-body interactions at the atomic scale.

6.
Nat Commun ; 5: 5349, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25354961

RESUMO

The spin-momentum locking of topological states offers an ideal platform to explore novel magnetoelectric effects. These intimately depend on the ability to manipulate the spin texture in a controlled way. Here we combine scanning tunnelling microscopy with single-atom deposition to map the evolution of topological states under the influence of different magnetic perturbations. We obtain signatures of Dirac fermion-mediated magnetic order for extremely dilute adatom concentrations. This striking observation is found to critically depend on the single adatoms' magnetic anisotropy and the position of the Fermi level. Our findings open new perspectives in spin engineering topological states at the atomic scale and pave the way to explore novel spin-related topological phenomena with promising potential for applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA