Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 20(1): 202-16, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24339058

RESUMO

The synthesis, electrochemical, and photophysical properties of five multicomponent systems featuring a Zn(II) porphyrin (ZnP) linked to one or two anilino donor-substituted pentacyano- (PCBD) or tetracyanobuta-1,3-dienes (TCBD), with and without an interchromophoric bridging spacer (S), are reported: ZnP-S-PCBD (1), ZnP-S-TCBD (2), ZnP-TCBD (3), ZnP-(S-PCBD)2 (4), and ZnP-(S-TCBD)2 (5). By means of steady-state and time-resolved absorption and luminescence spectroscopy (RT and 77 K), photoinduced intramolecular energy and electron transfer processes are evidenced, upon excitation of the porphyrin unit. In systems equipped with the strongest acceptor PCBD and the spacer (1, 4), no evidence of electron transfer is found in toluene, suggesting ZnP→PCBD energy transfer, followed by ultrafast (<10 ps) intrinsic deactivation of the PCBD moiety. In the analogous systems with the weaker acceptor TCBD (2, 5), photoinduced electron transfer occurs in benzonitrile, generating a charge-separated (CS) state lasting 2.3 µs. Such a long lifetime, in light of the high Gibbs free energy for charge recombination (ΔG(CR)=-1.39 eV), suggests a back-electron transfer process occurring in the so-called Marcus inverted region. Notably, in system 3 lacking the interchromophoric spacer, photoinduced charge separation followed by charge recombination occur within 20 ps. This is a consequence of the close vicinity of the donor-acceptor partners and of a virtually activationless electron transfer process. These results indicate that the strongly electron-accepting cyanobuta-1,3-dienes might become promising alternatives to quinone-, perylenediimide-, and fullerene-derived acceptors in multicomponent modules featuring photoinduced electron transfer.

2.
Chemistry ; 17(11): 3262-73, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21308805

RESUMO

The self-assembly and self-organization behavior of chromophoric acetylenic scaffolds bearing 2,6-bis(acetylamino)pyridine (1, 2) or uracyl-type (3-9) terminal groups has been investigated by photophysical and microscopic methods. Systematic absorption and luminescence studies show that 1 and 2, thanks to a combination of solvophilic/solvophobic forces and π-π stacking interactions, undergo self-organization in apolar solvents (i.e., cyclohexane) and form spherical nanoparticles, as evidenced by wide-field optical microscopy, TEM, and AFM analysis. For the longer molecular module, 2, a more uniform size distribution is found (80-200 nm) compared to 1 (20-1000 nm). Temperature scans in the range 283-353 K show that the self-organized nanoparticles are reversibly formed and destroyed, being stable at lower temperatures. Molecular modules 1 and 2 were then thoroughly mixed with the complementary triply hydrogen-bonding units 3-9. Depending on the specific geometrical structure of 3-9, different nanostructures are evidenced by microscopic investigations. Combination of modules 1 or 2 with 3, which bears only one terminal uracyl unit, leads to the formation of vesicular structures; instead, when 1 is combined with bis-uracyl derivative 4 or 5, a structural evolution from nanoparticles to nanowires is observed. The length of the wires obtained by mixing 1 and 4 or 1 and 5 can be controlled by addition of 3, which prompts transformation of the wires into shorter rods. The replacement of linear system 5 with the related angular modules 6 and 7 enables formation of helical nanostructures, unambiguously evidenced by AFM. Finally, thermally induced self-assembly was studied in parallel with modules 8 and 9, in which the uracyl recognition sites are protected with tert-butyloxycarbonyl (BOC) groups. This strategy allows further control of the self-assembly/self-organization process by temperature, since the BOC group is completely removed on heating. Microscopy studies show that the BOC-protected ditopic modules 8 self-assemble and self-organize with 1 into ordered linear nanostructures, whereas BOC-protected tritopic system 9 gives rise to extended domains of circular nano-objects in combination with 1.


Assuntos
Nanoestruturas/química , Ligação de Hidrogênio , Microscopia de Força Atômica , Nanopartículas/química , Nanofios/química , Piridinas/química , Solventes/química , Temperatura , Uracila/química
3.
Chem Commun (Camb) ; 47(1): 451-3, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20922232

RESUMO

The synthesis, photoswitchability and NIR emitting properties of a novel π-extended pyrene derivative, peripherally decorated with four azobenzenyl-ethynyl legs, are reported.


Assuntos
Aracnoide-Máter/química , Pirenos/síntese química , Estrutura Molecular , Fotoquímica , Pirenos/química , Estereoisomerismo
4.
Chemistry ; 15(35): 8825-33, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19637165

RESUMO

Diethylamino-substituted oligophenylenevinylene (OPV) building blocks have been prepared and used for the synthesis of two [60]fullerene-OPV dyads, F-D1 and F-D2, which exhibit different conjugation length of the OPV fragments. The electrochemical properties of these acceptor-donor dyads have been studied by cyclic voltammetry. The first reduction is always assigned to the fullerene moiety and the first oxidation centered on the diethylaniline groups of the OPV rods, thus making these systems suitable candidates for photoinduced electron transfer. Both the OPV and the fullerene-centered fluorescence bands are quenched in toluene and benzonitrile, which suggests the occurrence of photoinduced electron transfer from the amino-substituted OPVs to the carbon sphere in the dyads in both solvents. By means of bimolecular quenching experiments, transient absorption spectral fingerprints of the radical cationic species are detected in the visible (670 nm) and near-IR (1300-1500 nm) regions, along with the much weaker fullerene anion band at lambda(max)=1030 nm. Definitive evidence for photoinduced electron transfer in F-D1 and F-D2 comes from transient absorption measurements. A charge-separated state is formed within 100 ps and decays in less than 5 ns.

5.
Org Biomol Chem ; 7(11): 2402-13, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19462051

RESUMO

Novel 5,15-bis(9-anthracenyl)porphyrin derivatives (, ) were synthesized by stepwise Suzuki-type coupling reactions using anthracenyl-boronates bearing various electronically active moieties. Absorption spectra of these porphyrin conjugates reveal some degree of delocalisation with the directly linked chromophores, particularly in the case of anthracenyl-porphyrin bearing dimethylanilino moieties at the two extremities. Fluorescence and 77 K phosphorescence properties indicate that the excitation energy is invariably funnelled to the lowest singlet and triplet states of the porphyrin chromophore. The latter levels have been probed also by transient absorption spectroscopy, showing the typical triplet features detected in meso-substituted porphyrins. Extensive electrochemical studies have been performed to unravel the electronic properties of the newly synthesized porphyrins. Low-temperature cyclic voltammetry investigations showed that the anthracenyl-porphyrins are capable of undergoing as many as four electron transfer processes. In particular, by means of UV-Vis-NIR spectroelectrochemical measurements, a NIR-centred intramolecular photoinduced intervalence charge transfer (IV-CT) from a neutral N,N-dimethylanilino moiety to the N,N-dimethylanilino radical cation has been observed for the doubly-oxidised porphyrin (2+). The molecules also showed unexpected electrogenerated chemiluminescence properties, which revealed to be largely controlled by the electronic characteristics of the peripheral anthracenyl substituents. The structural and the electronic properties of these complexes have been also characterised by DFT calculations, as well as by X-ray crystallographic analyses.


Assuntos
Antracenos/química , Luminescência , Porfirinas/química , Antracenos/síntese química , Simulação por Computador , Cristalografia por Raios X , Eletroquímica , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Porfirinas/síntese química , Teoria Quântica , Espectrofotometria
6.
Chem Commun (Camb) ; (20): 2830-2, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19436880

RESUMO

Chromophoric acetylenic scaffolds bearing complementary uracyl and 2,6-di(acetylamino)pyridyl moieties undergo supramolecular recognition and generate uniform nanoparticles, as observed by UV-Vis, AFM and TEM measurements.


Assuntos
Acetileno/química , Aminopiridinas/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanotecnologia/métodos , Uridina/química , Ligação de Hidrogênio , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectrofotometria
7.
J Am Chem Soc ; 131(2): 509-20, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19105700

RESUMO

Discrete and multicomponent nanoscale noncovalent assemblies on surfaces featuring polygonal porous domains are presented. The molecular engineering concept involves multivalent molecular modules that are preprogrammed to undergo heteromolecular recognition by exploiting complementary multiple H bonds. Two types of molecular modules have been engineered: (i) a linear unit of twofold symmetry exposing two 2,6-di(acylamino)pyridyl [donor-acceptor-donor (DAD)] recognition sites at its extremities with a 180 degree orientation relative to each other and (ii) an angular unit constituted by a 1,3,6,8-tetraethynylpyrene core peripherally functionalized with four uracil groups [acceptor-donor-acceptor (ADA)] positioned at 60 degrees and 120 degrees relative to each other. These molecular modules self-assemble through H-bonds between the complementary recognition sites, forming supramolecular architectures. Their symmetry depends upon the type of each individual subunit and the stoichiometry as well as on the combination and distribution of the main symmetry axes. These so-formed two-dimensional (2D) supramolecular oligomers have been studied in solution by optical spectroscopy and on highly ordered pyrolitic graphite (HOPG) substrates by scanning tunneling microscopy (STM) at the solid-liquid interface. Steady-state UV/vis absorption and emission titration measurements suggest the reversible formation of multiple oligomeric species with slightly modulated fluorescence spectra. This likely reflects the presence of various aggregates between the two polytopic receptors, which exhibit somewhat different electronic delocalization as a function of the aggregate size. The presence of multiple species is further confirmed by time-resolved luminescence measurements: lifetime values are fitted as double/multiple exponentials and are always shorter than 6.5 ns. The formation of several oligomeric species is further supported by in situ STM measurements at the solid-liquid interface that provided evidence, with submolecular resolution, for the formation of multicomponent and discrete 2D polygon-like assemblies. We highlight the role of accurate control of the concentration required to image on the surface the 2D oligomeric species formed in solution, which allows us to bypass the determinant role of the substrate-molecule interactions in forming the thermodynamically stable monocomponent architectures at the solid-liquid interface.


Assuntos
Alcinos/química , Nanoestruturas/química , Pirenos/química , Piridinas/química , Uracila/análogos & derivados , Alcinos/síntese química , Grafite/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Paládio/química , Pirenos/síntese química , Piridinas/síntese química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica , Uracila/síntese química
8.
Inorg Chem ; 46(3): 839-47, 2007 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-17257027

RESUMO

A series of quasilinear dinuclear complexes incorporating ruthenium(II)- and osmium(II)-tris(2,2'-bipyridine) units has been prepared in which the individual metal-containing moieties are separated by 3,4-dibutyl-2,5-diethenylthiophene spacers and end-capped by 3,4-dibutyl-2-ethenylthiophene subunits; related ruthenium(II) and osmium(II) mononuclear complexes have also been prepared where one bpy unit is likewise end-capped by 3,4-dibutyl-2-ethenylthiophene subunits [bpy = 2,2'-bipyridine]. Overall, mononuclear species, labeled here Ru and Os, and dinuclear species, RuRu, OsOs, and RuOs, have been prepared and investigated. Their electrochemical behavior has been studied in CH3CN solvent and reveals ethenylthiophene-centered oxidations (irreversible steps at > +1.37 V vs SCE), metal-centered oxidations (reversible steps at +1.30 V vs SCE for Ru(II/III) and +0.82 V vs SCE for Os(II/III)), and successive reduction steps localized at the substituted bpy subunits. The spectroscopic studies performed for the complexes in CH3CN solvent provided optical absorption spectra associated with transitions of ligand-centered nature (LC, from the bpy and ethenylthiophene subunits) and metal-to-ligand charge-transfer nature (MLCT), with the former dominating in the visible region (400-600 nm). While the constituent ethenylthiophene-bpy ligands are strong fluorophores (fluorescence efficiency in CH2Cl2 solvent, phi em = 0.49 and 0.39, for the monomer and the dimer, respectively), only weak luminescence is observed for each complex in acetonitrile at room temperature. In particular, (i) the complexes Ru and RuRu do not emit appreciably, and (ii) the complexes Os, OsOs, and RuOs exhibit triplet emission of 3Os --> L CT character, with phi em in the range from 10-3 to 10-4. These features are rationalized on the basis of the role of nonemissive triplet energy levels, 3Th, centered on the ethenylthiophene spacer. These levels appear to lie lower in energy than the 3Ru --> L CT triplet levels, and in turn higher in energy than the 3Os --> L CT triplet levels, along the sequence 3Ru --> L CT > 3Th > 3Os --> L CT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA