Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38645249

RESUMO

Purpose: 1.1 Proton ( 1 H)-MRSI via spatial-spectral encoding poses high demands on gradient hardware at ultra-high fields and high-resolutions. Rosette trajectories help alleviate these problems, but at reduced SNR-efficiency due to their k-space densities not matching any desired k-space filter. We propose modified rosette trajectories, which more closely match a Hamming filter, and thereby improve SNR performance while still staying within gradient hardware limitations and without prolonging scan time. Methods: 1.2Analytical and synthetic simulations were validated with phantom and in vivo measurements at 7 T. The rosette and modified rosette trajectories were measured in five healthy volunteers in six minutes in a 2D slice in the brain. A 3D sequence was measured in one volunteer within 19 minutes. The SNR, linewidth, CRLBs, lipid contamination and data quality of the proposed modified rosette trajectory were compared to the rosette trajectory. Results: 1.3Using the modified rosette trajectories, an improved k-space weighting function was achieved resulting in an increase of up to 12% in SNR compared to rosette's dependent on the two additional trajectory parameters. Similar results were achieved for the theoretical SNR calculation based on k-space densities, as well as when using the pseudo-replica method for simulated, in-vivo and phantom data. The CRLBs improved slightly, but non-significantly for the modified rosette trajectories, while the linewidths and lipid contamination remained similar. Conclusion: 1.4By improving the rosette trajectory's shape, modified rosette trajectories achieved higher SNR at the same scan time and data quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA